Реферат на тему гидроудар

Обновлено: 04.07.2024

Введение

Достаточно большое количество аварий на предприятиях происходит вследствие гидравлического удара. Это физическое явление наносит огромный ущерб как деталям машин и техническим устройствам, так и целым системам.

Практически определить причиной аварии гидравлический удар на 100% невозможно, но предупредить его реально. Для этого в данной работе рассмотрим сначала механизм возникновения гидравлического удара, а затем и методы его предотвращения.

1. Гидравлический удар и его механизм

Гидравлический удар - резкое изменение давления, распространяющееся с большой скоростью по трубопроводу.

Гидравлический удар характерен колебаниями давления с высокой амплитудой, в десятки, а иногда и в сотни раз превышающей нормальное рабочее давление. Гидравлический удар может грозить разрушением трубопровода, агрегатов, элементов СЭУ.

Вызывающие гидравлический удар силы инерции и соответствующие им локальные ускорения настолько велики, что развивающееся под их действием давление оказывает заметное влияние на изменение плотности и сжимаемость жидкости. Примером гидравлического удара может быть движение жидкости в простом трубопроводе (рис. 1).

Рисунок 1. Движение жидкости в простом трубопроводе

При рабочем положении I задвижка полностью открыта и жидкость под действием напора Н движется по трубопроводу со скоростью ?, обеспечивая в сечении I-I у задвижки рабочее давление Рраб. Будем упрощенно считать, что время закрытия задвижки (tз = 0), после чего она занимает положение II.

При закрытии задвижки ближайший к ней слой жидкости (слева по рисунку), натолкнувшись на преграду, остановится, его скорость упадет до нуля.

За время ?t процесс остановки жидкости распространится вверх по трубопроводу на длину ?s.

На левой границе отсека 1-2 (в сечении 2-2) сохранятся нормальные рабочие условия: скорость ? и давление Р2 = Рраб. В сечении 1-1 скорость равна нулю ? = 0, а давление за счет действия сил инерции повысится на значение ударного давления Руд и будет равно Р1 = Рраб + Руд.

Обычно давление Руд достигает десятков мегапаскалей. Повышенное давление вызовет деформацию жидкости в отсеке 1-2 и стенок трубы: жидкость окажется сжатой (сечение 2-2 переместится в положение 2-2); диаметр трубопровода увеличится (на рис. 1 показано штриховой линией).

В большинстве случаев стенки трубопроводов настолько жестки, а сжимаемость жидкости настолько мала, что в решении ряда задач можно не учитывать изменений площади живого сечения ? и длины отсека ?s.

Отношение c = ?s/?t показывает скорость распространения процесса вдоль трубопровода и называется скоростью ударной волны. Она равна скорости распространения звука в данной среде.

Точное исследование задачи о гидравлическом ударе было впервые выполнено Н.Е. Жуковским (в 1898 г.). В качестве исходного он принял положение, что при гидравлическом ударе вся кинетическая энергия остановившейся жидкости идет на работу по ее сжатию и на работу по растяжению стенок трубы.

Ударное давление можно определить по формуле Жуковского.

При мгновенном закрытии затвора повышение давления в трубопроводе определяется по формуле Жуковского:

уд = ?с?, (1)

где ? - плотность жидкости, кг/м 3 ;

? - средняя скорость движения в трубопроводе до закрытия затвора, м/с;

с - скорость распространения ударной волны, определяемая по формуле

где K - модуль упругости жидкости;

E - модуль упругости материала стенок трубопровода;

D - внутренний диаметр, мм;

е - толщина стенок трубопровода, мм.

Для воды в нормальных условиях:

? = 102 кг*с 2 /м 4 = 1 000 кг/м 3 ;

K = 2,07 · 108 кг/м 2 = 2,03 · 106 кН/м 2 .

Поэтому скорость распространения ударной волны в воде будет:

Значения величин K/Е и Е для различных жидкостей и материалов приводятся в справочной литературе.

Скорость ударной волны увеличивается с уменьшением демпфирующего эффекта от сжатия самой жидкости и с увеличением жесткости стенок трубы, т.е. чем меньше сжимаемость жидкости, тем больше скорость с.

В общем случае фигурирующую в выражении ударного давления скорость ? следует понимать как ее изменение при резком торможении или ускорении жидкости. При этом необязательно, чтобы скорость падала до нуля.

Гидравлический удар, но меньшей силы, наблюдается и при резком торможении потока до какой-либо конечной скорости. Волна, движущаяся против течения и сопровождающаяся повышением давления вдоль трубопровода, называется прямой.

В резервуаре у входа в трубу давление практически постоянно Р = ?Н, а в начале трубопровода при подходе прямой волны - значительно выше за счет ударного давления. Имеющееся в рассматриваемый момент состояние покоя неустойчиво. Ближайший к выходу отсек жидкости от перепада давлений в трубопроводе (высокого) и в резервуаре (низкого) будет вытолкнут обратно в напорный бак.

Сжатая в трубопроводе давлением Руд жидкость сможет начать расширение под действием сил упругости - возникнет обратная волна понижения давления.

Теоретически понижение имеет то же значение, но с обратным знаком - Руд (рис. 2а). Время прохождения и прямой, и обратной волнами расстояния l будет равно l/с.

Следовательно, продолжительность повышения давления у задвижки, называемая фазой гидравлического удара, равна ?0 = 2 l/с.

Рисунок 2.

У задвижки волна снова отражается, начинается очередное повышение давления. В реальных условиях описанный процесс осложняется потерями энергии на трение, на деформацию жидкости и стенок трубы. Давление достигает максимума на первом пике, как показывает запись на индикаторе давления (рис. 2б), а сам процесс гидравлического удара постепенно затухает во времени.

Если вернуться к схеме на рис. 1 и рассмотреть участок трубопровода ниже задвижки, то единственным отличием будет то, что здесь внезапное перекрытие трубопровода вначале вызовет отрицательную волну понижения давления. Такой процесс характерен для напорной линии насосных установок при резкой остановке насоса.

2. Причины возникновения гидравлического удара и методы его предотвращения

В судовых энергетических установках (СЭУ) явление гидравлического удара может встречаться в основных элементах СЭУ: в системе охлаждения, в топливно-масляной системе, ЦПГ.

В парогенераторе в избежание гидравлических ударов в паровых подогревателях, установленных в резервуарах, перед пуском в них пара они должны освобождаться от воды (конденсата). Пуск пара должен производиться путем постепенного и плавного открытия задвижек. В зимнее время до начала интенсивного подогрева подогреватели следует предварительно прогреть, пропуская через них небольшие порции пара.

Во избежание гидравлических ударов все участки паропроводов, которые могут быть отключены запорными органами, снабжаются дренажными устройствами для удаления конденсата.

Во избежание гидравлических ударов сток конденсата обеспечивается прокладкой паропровода с уклоном в сторону движения пара. В местах возможного скопления конденсата устанавливают автоматически действующие водоотделители.

В системе охлаждения гидравлические удары могут быть вызваны поступлением в цилиндр компрессора жидкого хладагента, паров повышенного влагосодержания (при их сжатии в цилиндрах влажный пар превращается в жидкость или смеси масла с хладагентом). Чаще всего это происходит из-за несовершенства охлаждающих систем, а также из-за нарушения режимов эксплуатации.

Чтобы исключить подобные явления, необходимо осуществлять плавный переход от одного давления к другому, а потребителей холода подключать постепенно или останавливать компрессоры при включении или выключении потребителей холода. Гидравлические удары могут возникать в компрессоре при поступлении в него жидкости через нагнетательный трубопровод. Это может произойти при конденсации пара в нагнетательном трубопроводе во время стоянки компрессора - при охлаждении его наружным воздухом, температура которого ниже температуры конденсации (если нагнетательный трубопровод имеет уклон в сторону компрессора).

Чтобы предотвратить эти явления, необходимо нагнетательный трубопровод устанавливать с наклоном в сторону от компрессора к конденсатору. Если конденсатор расположен выше компрессора, то надо устанавливать дополнительный сборник жидкого аммиака, в сторону которого должен быть уклон нагнетательного трубопровода от компрессора. Из этого сборника жидкий аммиак следует своевременно удалять.

В топливной системе для предохранения топливных, масляных и гидравлических систем от гидравлического удара применяются перепускные клапаны, демпферы, дроссели и гидравлические аккумуляторы

В форсунках и главном двигателе мгновенное перекрытие подачи топлива в форсунках дизельного двигателя приводит к появлению колебаний давления в жидкости. Вторичные повышения давления настолько велики, что происходит вторичный впрыск лишних порций топлива в цилиндры двигателя. Циклические повышения давления особенно заметны в протяженных трубопроводах и в двигателе, при большой протяженности трубопроводов высокого давления, приходится устанавливать специальные насосные форсунки взамен одного насоса высокого давления.

Заключение

1. плавное закрытие задвижки с постепенным уменьшением скорости;

2. варьируя толщину стенки и диаметр трубы также можно снизить последствия гидравлического удара;

3. замена материала трубы (например, стальной трубы на резиновый шланг) приведет к изменению величины ударного давления;

4. использование уплотнительных материалов, набивок и смазок;

5. установка перед участками, где возможно возникновение гидравлического удара разнообразных аккумуляторов, воздушных колпаков, предохранительных клапанов и т.д.;

6. повышение прочности слабых элементов гидравлической системы.

Список использованной литературы

Достаточно большое количество аварий на предприятиях происходит вследствие гидравлического удара. Это физическое явление наносит огромный ущерб как деталям машин и техническим устройствам, так и целым системам.

Практически определить причиной аварии гидравлический удар на 100% невозможно, но предупредить его реально. Для этого в данной работе рассмотрим сначала механизм возникновения гидравлического удара, а затем и методы его предотвращения.

Гидравлический удар – резкое изменение давления, распространяющееся с большой скоростью по трубопроводу.

Гидравлический удар характерен колебаниями давления с высокой амплитудой, в десятки, а иногда и в сотни раз превышающей нормальное рабочее давление. Гидравлический удар может г розить разрушением трубопровода, агрегатов, элементов СЭУ.

Вызывающие гидравлический удар силы инерции и соответствующие им локальные ускорения настолько велики, что развивающееся под их действием давление оказывает заметное влияние на изменение плотности и сжимаемость жидкости. Примером гидравлического удара может быть движение жидкости в простом трубопроводе (рис. 1).


Рисунок 1. Движение жидкости в простом трубопроводе

При рабочем положении I задвижка полностью открыта и жидкость под действием напора Н движется по трубопроводу со скоростью υ, обеспечивая в сечении I–I у задвижки рабочее давление Рраб . Будем упрощенно считать, что время закрытия задвижки (tз = 0), после чего она занимает положение II.

При закрытии задвижки ближайший к ней слой жидкости (слева по рисунку), натолкнувшись на преграду, остановится, его скорость упадет до нуля.

За время Δt процесс остановки жидкости распространится вверх по трубопроводу на длину Δs.

На левой границе отсека 1–2 (в сечении 2–2) сохранятся нормальные рабочие условия: скорость υ и давление Р2 = Рраб . В сечении 1–1 скорость равна нулю υ = 0, а давление за счет действия сил инерции повысится на значение ударного давления Руд и будет равно Р1 = Рраб + Руд .

Обычно давление Руд достигает десятков мегапаскалей. Повышенное давление вызовет деформацию жидкости в отсеке 1–2 и стенок трубы: жидкость окажется сжатой (сечение 2–2 переместится в положение 2'-2'); диаметр трубопровода увеличится (на рис. 1 показано штриховой линией).

В большинстве случаев стенки трубопроводов настолько жестки, а сжимаемость жидкости настолько мала, что в решении ряда задач можно не учитывать изменений площади живого сечения ω и длины отсека Δs.

Отношение c = Δs/Δt показывает скорость распространения процесса вдоль трубопровода и называется скоростью ударной волны. Она равна скорости распространения звука в данной среде.

Точное исследование задачи о гидравлическом ударе было впервые выполнено Н.Е. Жуковским (в 1898 г.). В качестве исходного он принял положение, что при гидравлическом ударе вся кинетическая энергия остановившейся жидкости идет на работу по ее сжатию и на работу по растяжению стенок трубы.

Ударное давление можно определить по формуле Жуковского.

При мгновенном закрытии затвора повышение давления в трубопроводе определяется по формуле Жуковского:

где ρ – плотность жидкости, кг/м 3 ;

υ – средняя скорость движения в трубопроводе до закрытия затвора, м/с;

с – скорость распространения ударной волны, определяемая по формуле


(2)

где K – модуль упругости жидкости;

E – модуль упругости материала стенок трубопровода;

D – внутренний диаметр, мм;

е – толщина стенок трубопровода, мм.

Для воды в нормальных условиях:

ρ = 102 кг*с 2 /м 4 = 1 000 кг/м 3 ;

K = 2,07 · 108 кг/м 2 = 2,03 · 106 кН/м 2 .

Поэтому скорость распространения ударной волны в воде будет:


м/с (3)

Значения величин K/Е и Е для различных жидкостей и материалов приводятся в справочной литературе.

Скорость ударной волны увеличивается с уменьшением демпфирующего эффекта от сжатия самой жидкости и с увеличением жесткости стенок трубы, т.е. чем меньше сжимаемость жидкости, тем больше скорость с.

В общем случае фигурирующую в выражении ударного давления скорость υ следует понимать как ее изменение при резком торможении или ускорении жидкости. При этом необязательно, чтобы скорость падала до нуля.

Гидравлический удар, но меньшей силы, наблюдается и при резком торможении потока до какой-либо конечной скорости. Волна, движущаяся против течения и сопровождающаяся повышением давления вдоль трубопровода, называется прямой.

В резервуаре у входа в трубу давление практически постоянно Р = γН, а в начале трубопровода при подходе прямой волны – значительно выше за счет ударного давления. Имеющееся в рассматриваемый момент состояние покоя неустойчиво. Ближайший к выходу отсек жидкости от перепада давлений в трубопроводе (высокого) и в резервуаре (низкого) будет вытолкнут обратно в напорный бак.

Сжатая в трубопроводе давлением Руд жидкость сможет начать расширение под действием сил упругости – возникнет обратная волна понижения давления.

Теоретически понижение имеет то же значение, но с обратным знаком – Руд (рис. 2а). Время прохождения и прямой, и обратной волнами расстояния l будет равно l/с.

Следовательно, продолжительность повышения давления у задвижки, называемая фазой гидравлического удара, равна τ0 = 2 l/с.


У задвижки волна снова отражается, начинается очередное повышение давления. В реальных условиях описанный процесс осложняется потерями энергии на трение, на деформацию жидкости и стенок трубы. Давление достигает максимума на первом пике, как показывает запись на индикаторе давления (рис. 2б), а сам процесс гидравлического удара постепенно затухает во времени.

Если вернуться к схеме на рис. 1 и рассмотреть участок трубопровода ниже задвижки, то единственным отличием будет то, что здесь внезапное перекрытие трубопровода вначале вызовет отрицательную волну понижения давления. Такой процесс характерен для напорной линии насосных установок при резкой остановке насоса.

В судовых энергетических установках (СЭУ) явление гидравлического удара может встречаться в основных элементах СЭУ: в системе охлаждения, в топливно-масляной системе, ЦПГ.

В парогенераторе в избежание гидравлических ударов в паровых подогревателях, установленных в резервуарах, перед пуском в них пара они должны освобождаться от воды (конденсата). Пуск пара должен производиться путем постепенного и плавного открытия задвижек. В зимнее время до начала интенсивного подогрева подогреватели следует предварительно прогреть, пропуская через них небольшие порции пара.

Во избежание гидравлических ударов все участки паропроводов, которые могут быть отключены запорными органами, снабжаются дренажными устройствами для удаления конденсата.

Во избежание гидравлических ударов сток конденсата обеспечивается прокладкой паропровода с уклоном в сторону движения пара. В местах возможного скопления конденсата устанавливают автоматически действующие водоотделители.

В системе охлаждения гидравлические удары могут быть вызваны поступлением в цилиндр компрессора жидкого хладагента, паров повышенного влагосодержания (при их сжатии в цилиндрах влажный пар превращается в жидкость или смеси масла с хладагентом). Чаще всего это происходит из-за несовершенства охлаждающих систем, а также из-за нарушения режимов эксплуатации.

Чтобы исключить подобные явления, необходимо осуществлять плавный переход от одного давления к другому, а потребителей холода подключать постепенно или останавливать компрессоры при включении или выключении потребителей холода. Гидравлические удары могут возникать в компрессоре при поступлении в него жидкости через нагнетательный трубопровод. Это может произойти при конденсации пара в нагнетательном трубопроводе во время стоянки компрессора – при охлаждении его наружным воздухом, температура которого ниже температуры конденсации (если нагнетательный трубопровод имеет уклон в сторону компрессора).

Чтобы предотвратить эти явления, необходимо нагнетательный трубопровод устанавливать с наклоном в сторону от компрессора к конденсатору. Если конденсатор расположен выше компрессора, то надо устанавливать дополнительный сборник жидкого аммиака, в сторону которого должен быть уклон нагнетательного трубопровода от компрессора. Из этого сборника жидкий аммиак следует своевременно удалять.

В топливной системе для предохранения топливных, масляных и гидравлических систем от гидравлического удара применяются перепускные клапаны, демпферы, дроссели и гидравлические аккумуляторы

В форсунках и главном двигателе мгновенное перекрытие подачи топлива в форсунках дизельного двигателя приводит к появлению колебаний давления в жидкости. Вторичные повышения давления настолько велики, что происходит вторичный впрыск лишних порций топлива в цилиндры двигателя. Циклические повышения давления особенно заметны в протяженных трубопроводах и в двигателе, при большой протяженности трубопроводов высокого давления, приходится устанавливать специальные насосные форсунки взамен одного насоса высокого давления.

Проанализировав факторы, определяющие величину повышения давления можно дать целый ряд рекомендаций:

1. плавное закрытие задвижки с постепенным уменьшением скорости;

2. варьируя толщину стенки и диаметр трубы также можно снизить последствия гидравлического удара;

3. замена материала трубы (например, стальной трубы на резиновый шланг) приведет к изменению величины ударного давления;

4. использование уплотнительных материалов, набивок и смазок;

5. установка перед участками, где возможно возникновение гидравлического удара разнообразных аккумуляторов, воздушных колпаков, предохранительных клапанов и т.д.;

6. повышение прочности слабых элементов гидравлической системы.

Общая протяженность подземных нефте-, газо- и водопроводов в Российской Федерации составляет около 17 млн км, при этом из-за постоянных интенсивных волновых (колебаний давления, гидроударов) и вибрационных процессов участки этих коммуникаций приходится постоянно ремонтировать и полностью заменять. Весьма актуальны для нефтегазодобывающей и перерабатывающей отраслей и вопросы защиты от коррозии, вследствие металлоемкости резервуаров хранения нефтепродуктов и прочих сооружений, наличия здесь агрессивных сред и жестких условий эксплуатации металлоконструкций.

Содержание работы

Введение…………………………………….………………………………………………….. 3
Описание явления гидравлического удара ………………………….……………………….. 4
Особенности явления гидравлического удара……………..…. ……………………………. 7
Расчет параметров гидравлического удара……………….………………………………….. 10
Особые случаи……………………………………….………………………………………… 16
О сверхединичности гидравлического удара………………………………………………… 26
Методы предотвращения гидравлического удара…………………. ………………………. 27
Список литературы…………………………………………………………………………….. 30

Содержимое работы - 1 файл

Реферат - Гидравлический удар.doc

Федеральное агентство по образованию

Государственное образовательное учреждение высшего профессионального образования

Пермский государственный технический университет

Выполнил: Урахов И. Ю.

АДФ, СДМу – 06, з/о.

доктор технических наук

Севастьянов Валерий Васильевич

Описание явления гидравлического удара ………………………….………………………..

Особенности явления гидравлического удара……………..…. …………………………….

Расчет параметров гидравлического удара……………….…………………………………..

О сверхединичности гидравлического удара…………………………………………………

Методы предотвращения гидравлического удара………………….. .……………………….

Введение.

Общая протяженность подземных нефте-, газо- и водопроводов в Российской Федерации составляет около 17 млн км, при этом из-за постоянных интенсивных волновых (колебаний давления, гидроударов) и вибрационных процессов участки этих коммуникаций приходится постоянно ремонтировать и полностью заменять. Весьма актуальны для нефтегазодобывающей и перерабатывающей отраслей и вопросы защиты от коррозии, вследствие металлоемкости резервуаров хранения нефтепродуктов и прочих сооружений, наличия здесь агрессивных сред и жестких условий эксплуатации металлоконструкций. Убытки, вызываемые гидроударами и коррозией, составляли, например, для Минтопэнерго бывшего СССР несколько сотен миллиардов долларов, на восстановительные мероприятия приходилось использовать около 50 тыс. т черных металлов в год. При общей динамике аварийности, по оценкам экспертов, причинами разрыва трубопроводов являются:

- 60% случаев — гидроудары, перепады давления и вибрации;

- 25% — коррозионные процессы;

- 15% — природные явления и форс- мажорные обстоятельства.

В течение всего срока эксплуатации трубопроводы испытывают динамические нагрузки (пульсации давления и связанные с ними вибрации, гидроудары и т.д.). Они возникают при работе нагнетательных установок, срабатывании запорной трубопроводной арматуры, случайно возникают при ошибочных действиях обслуживающего персонала, аварийных отключениях электропитания, ложных срабатываниях технологических защит и т.п. Техническое же состояние эксплуатируемых по 20–30 лет трубопроводных систем оставляет желать лучшего. Замена изношенного оборудования и трубопроводой арматуры в последние 10 лет ведется крайне низкими темпами. Именно поэтому, как свидетельствует госстатистика, в Российской Федерации наблюдается устойчивая тенденция увеличения аварийности на трубопроводном транспорте — на 7–9% в год.

Участились аварии на трубопроводах, сопровождающиеся большими потерями природных ресурсов и широкомасштабным загрязнением окружающей среды. По официальным данным, только потери нефти из-за аварий на магистральных нефтепроводах превышают 1 млн. т в год, и это без учета потерь при прорывах внутрипромысловых трубопроводов.

Поэтому полное устранение или существенное уменьшение интенсивности волновых и вибрационных процессов в трубопроводных системах позволяет не только в несколько раз уменьшить количество аварий с разрывами трубопроводов и выходом из строя трубопроводной арматуры и оборудования, повысить надежность их работы, но также значительно увеличить срок их эксплуатации.В настоящее время для борьбы с пульсациями и колебаниями давления и расхода в трубопроводных системах используют воздушные колпаки, аккумуляторы давления, гасители различных типов, ресиверы, дроссельные шайбы, клапаны сброса и т.п.

Описание явления гидравлического удара.

Фазы развития гидроудара.

Как же развивается явление гидроудара? Рассмотрим это на самом простом примере — внезапном заполнении жидкостью пустой трубы постоянного сечения, погружённой на некоторую глубину. Один конец этой трубы закрыт жёсткой заглушкой, а другой свободно сообщается с окружающей жидкостью. Кстати, практически то же самое будет, если рассматривать резкое перекрытие установившегося потока в такой же трубе, только там будет отсутствовать первая фаза — заполнение пустой трубы, — а роль заглушки будет играть перекрывшая трубу заслонка.


Схема возникновения гидравлического удара при заполнении жидкостью пустой трубы.
Голубым цветом обозначена внешняя среда с исходным давлением, светло-голубым — область пониженного давления, синим — область повышенного давления (зона гидроудара). Синие стрелки показывают перемещение вещества среды (жидкости), красные — перемещение границы зоны повышенного давления (без существенного перемещения вещества). H — глубина (напор) на входе трубы; h — перепад высот трубы, L — длина трубы от входа до заглушки. Цифрами обозначены фазы развития явления.

Таблица 1. Фазы развития гидравлического удара

Под действием внешнего давления жидкость заполняет трубу, при этом в соответствии с законом Бернулли её давление несколько меньше давления неподвижной среды вне трубы.

Встреча с препятствием

Жёсткая заглушка внезапно останавливает поток, который ударяется в неё. Однако практически вся жидкость в трубе ещё продолжает своё движение вперёд.

Рост зоны повышенного давления

Максимум повышенного давления

Начало обратного движения

В момент, когда граница зоны пониженного давления достигает заглушки, во всей трубе жидкость снова испытывает пониженное давление и движется обратно ко входу со скоростью, равной скорости потока в трубе в фазе 2.

Фаза разрежения (отрыва)

Факторы, влияющие на силу гидроудара.

Эластичные стенки трубопровода значительно снижают силу гидроудара, достаточно легко увеличивая объём трубы или шланга в месте остановки жидкости. Если труба заполнена воздухом и по мере продвижения жидкости он не успевает покинуть трубу с нужной скоростью, это также способно предотвратить сильный гидроудар, поскольку в этом случае воздух играет роль пневматического амортизатора, в котором плавно повышается давление, и потому он оказывает всё большее сопротивление движению жидкости, постепенно замедляя её. Именно эти принципы использует большинство устройств для защиты трубопроводов от гидроударов.

Следует чётко понимать, что эти факторы лишь растягивают процесс гидроудара во времени, но общая энергия гидравлического удара при этом остаётся прежней. Однако за счёт увеличения времени процесса, снижается его мощность, а значит, и максимальное давление, и максимальное усилие, воздействующее на стенки трубы. Но именно это и является целью защиты от гидроудара — ведь теперь трубу уже не разорвёт!

И, конечно, силу гидроудара снижает более плавное перекрытие потока и уменьшение рабочей скорости движения жидкости в трубе (если необходимо сохранить расход, то для этого придётся увеличить диаметр трубы — скорость уменьшится пропорционально увеличению площади её просвета).

Если же силу гидроудара надо увеличить, то тут рекомендации обратные — как можно более жёсткая (и прочная!) труба, как можно более резкое перекрытие потока и как можно больший разгон жидкости перед остановкой потока.

Особенности явления гидроудара.

Гидроудар в силу своей природы имеет несколько существенных особенностей, о которых нельзя забывать.

Высокая скорость процесса.

Прежде всего, следует учесть высокую скорость процесса. Поскольку скорость перемещения границ зон с различным давлением при высокой жёсткости трубы и заглушки определяется скоростью распространения упругих деформаций в жидкости, т.е. скоростью звука, всё происходит за очень короткое время.

Скорость звука в жидкостях обычно составляет порядка 1000. 1500 м/с (для воды при 4°С — 1.435 км/с, при 45°С 1.51 км/с (максимум), при 100°С — 1.46 км/с), поэтому в трубе с водой длиной 15 метров процесс распространения ударной волны от заглушки до входа или обратно займёт примерно 10 миллисекунд. За это время тело, находящееся в покое, под действием ускорения свободного падения успеет набрать лишь скорость в 9.8 см/сек и пройти путь менее 5 сантиметров. При более коротких длинах эти цифры пропорционально уменьшатся.

Условия отрыва жидкости. Сильные и слабые гидроудары

В фазе разрежения отрыв жидкости от заглушки происходит не всегда. Для этого скорость потока должна быть достаточно высокой, а стенки трубы — достаточно жёсткими, чтобы удар получился резким. Если удар окажется слишком слабым (или слишком плавным), то пустой области у заглушки не образуется, хотя в любом случае в фазе разрежения давление внутри трубы, в том числе непосредственно у заглушки, будет меньше, чем давление окружающей жидкости снаружи.

Для того, чтобы жидкость смогла оторваться от заглушки и появилась область отрыва, обратное давление (в идеале, без учёта потерь, равное максимальному повышению давления при сжатии) должно превышать давление среды снаружи. Таким образом, отрыв жидкости с образованием вакуума возможен при выполнении условия

где ΔPуд — максимальное повышение давления в фазе сжатия относительно внешнего давления; P0 — абсолютное внешнее давление в резервуаре возле входа в трубу (т.е. давление относительно вакуума, а не атмосферы над поверхностью жидкости); ΔPh — гидростатическая разность давлений между входом в трубу и заглушкой, если труба расположена не горизонтально; ΔPT — необратимые потери давления при сжатии и расширении жидкости и стенок трубы в фазах 2-6.

Если пренебречь потерями, то для строго горизонтальной трубы критерий возникновения области вакуума будет ещё проще:

Может возникнуть вопрос: как же повышение давления при гидроударе может превысить давление на входе в трубу? Однако здесь нет парадокса, так как скачок давления зависит лишь от резкости остановки потока и набранной им к этому моменту кинетической энергии, поэтому жёсткая труба и малосжимаемая жидкость могут обеспечить сильный удар даже при не слишком высокой скорости потока.

Жидкость под действием указанного повышения давления устремится с некоторой скоростью, а в слои с меньшим давлением, в которых также будет повышаться плотность и увеличиваться напряжение в стенках трубопровода, способствующее увеличению площади трубопровода. В связи с этим потребуется некоторое время на распространение этих деформаций вдоль трубопровода. С другой стороны, перемещение массы dm… Читать ещё >

Гидравлический удар в трубопроводах ( реферат , курсовая , диплом , контрольная )

Гидравлический удар в трубопроводах

Теоретическое и экспериментальное исследование гидравлического удара в трубопроводах впервые было проведено известным русским учёным Николаем Егоровичем Жуковским в 1899 году. Это явление связано с тем, что при быстром закрытии трубопровода, по которому течёт жидкость, или быстром его открытии (т.е. соединении тупикового трубопровода с источником гидравлической энергии) возникает резкое, неодновременное по длине трубопровода изменение скорости и давления жидкости. Если в таком трубопроводе измерять скорость жидкости и давление, то обнаружится, что скорость меняется как по величине, так и по направлению, а давление — как в сторону увеличения, так и в сторону уменьшения по отношению к начальному. Это означает, что в трубопроводе возникает колебательный процесс, характеризующийся периодическим повышением и понижением давления. Такой процесс очень быстротечен и обусловлен упругими деформациями стенок трубы и самой жидкости.

Подробно рассмотрим его картину для случая полного и прямого гидравлического удара.

Гидравлический удар в трубопроводах.

Будем считать, что в исходном состоянии трубопровод открыт. Жидкость движется по трубе со скоростью V>0.

колебательный гидравлический удар давление.

Гидравлический удар в трубопроводах.

Давление в жидкости равно Ро.

Трубопровод мгновенно закрывается. Слои жидкости, натолкнувшись на заслонку крана, останавливаются. Кинетическая энергия жидкости переходит в деформацию стенок трубы (труба у заслонки расширится), и жидкости (давление у заслонки повысится на величину Р). На остановившиеся у заслонки слои жидкости будут набегать следующие, вызывая сжатие жидкости и рост давления, который будет с некоторой скоростью распространяться в сторону противоположную направлению скорости движения жидкости. Переходная область в сечении A-Aназывается ударной волной. Скорость перемещения сечения A-A (фронта волны) называется скоростью распростра нения ударной волны и обозначается буквой а. Такой процесс проходит в период времени.

Гидравлический удар в трубопроводах.

В момент времени весь трубопровод окажется расширенным, а жидкость сжатой и неподвижной. Но такое состояние неравновесное. Поскольку у источника давление Ро, а в трубе Р = Ро+Р, то жидкость начнёт двигаться в сторону меньшего давления, т. е. из трубы в резервуар.

Гидравлический удар в трубопроводах.

Гидравлический удар в трубопроводах.

Гидравлический удар в трубопроводах.

Этот процесс начинается от начала трубы. Жидкость будет вытекать из трубы в резервуар с некоторой скоростью V. Сечение A-A(ударная волна) начнёт перемещаться к концу трубы со скоростью а. При этом давление в трубе будет снижаться до P0.

Этот процесс будет происходить в период времени.

Гидравлический удар в трубопроводах.

Гидравлический удар в трубопроводах.

Энергия деформации жидкости переходит в кинетическую энергию, и жидкость приобретает некоторую скорость V, но направленную в обратную сторону. Во всём трубопроводе устанавливается давление Ро. По инерции жидкость продолжает двигаться к началу трубы и начинает испытывать деформации растяжения, что приводит к уменьшению давления вблизи заслонки.

Гидравлический удар в трубопроводах.

Возникает отрицательная ударная волна, движущаяся от конца трубы к началу со скоростью а, и за фронтом волны остается сжатая труба. Кинетическая энергия снова превращается в энергию деформации (сжатия).

В момент времени.

Гидравлический удар в трубопроводах.

вся труба окажется сжатой, а волна достигает начала трубы. Давление вблизи источника выше, чем во фронте. Из-за этого слои жидкости под действием перепада давления начинают двигаться к концу трубы (к заслонке) с некоторой скоростью V>0, а давление поднимается до Ро.

Гидравлический удар в трубопроводах.

Поэтому период времени.

Гидравлический удар в трубопроводах.

происходит процесс выравнивания давления в трубопроводе. При этом происходит движение ударной волны со скоростью а от начала трубы к её концу.

В момент времени.

Гидравлический удар в трубопроводах.

ударная волна достигает конца трубы.

Гидравлический удар в трубопроводах.

Далее весь процесс начинается сначала. При исследовании этого процесса возникает три основных вопроса. Первый — какова скорость протекания этого колебательного процесса и от чего она зависит? Второй вопрос — как сильно меняется давление в трубопроводе за счёт описанного процесса? И третий — как долго может протекать этот процесс?

Гидравлический удар в трубопроводах.

Изменения давления и скорости потока в трубопроводах происходят не мгновенно в связи с упругостью твёрдых стенок трубы и сжимаемостью рабочей среды, а с некоторой конечной скоростью, обусловленной необходимостью компенсации упругих деформаций жидкости и трубы. Рассмотрим случай когда в трубопроводе длиной L и площадью сечения Й под давлением Р находится жидкость, плотность которой Б. Предположим, что в момент времени t в сечении 1 — 1давление повысится на величину dp. Это повышение вызывает увеличение плотности на величину dБ,а также расширение внутреннего диаметра трубы. Следовательно, площадь проходного сечения увеличится на величину dЙ. В результате увеличится объём W участка трубы на величину dW. За счёт этого произойдет увеличение массы жидкости находящейся в трубе на участке длиной L. Масса увеличится за счёт увеличения, во-первых, плотности жидкости, во-вторых, за счёт увеличения объёма W.

Такая ситуация рассматривалась при выводе уравнения неразрывности потока в дифференциальной форме, с той только разницей, что там рассматривалось лишь изменение массы во времени, без учёта вызвавших это изменение причин.

Гидравлический удар в трубопроводах.

По аналогии с приведённым уравнением запишем выражение, описывающее изменение массы за счёт изменения давления.

Гидравлический удар в трубопроводах.

Жидкость под действием указанного повышения давления устремится с некоторой скоростью а в слои с меньшим давлением, в которых также будет повышаться плотность и увеличиваться напряжение в стенках трубопровода, способствующее увеличению площади трубопровода. В связи с этим потребуется некоторое время на распространение этих деформаций вдоль трубопровода. С другой стороны, перемещение массы dm за время dt происходит под влиянием результирующей Fрсил давления, действующих вдоль линии движения на торцовые поверхности цилиндрического объёма длиной L

Гидравлический удар в трубопроводах.

В этом случае уравнение импульса силы может быть представлено.

Гидравлический удар в трубопроводах.

Гидравлический удар в трубопроводах.

и подставив это в предыдущее выражение, получим.

Гидравлический удар в трубопроводах.

Заметим, что произведение Приравняем оба выражения для и получим:

Гидравлический удар в трубопроводах.

Гидравлический удар в трубопроводах.

Выразим из последнего равенства величину a 2

Гидравлический удар в трубопроводах.

Разделим числитель и знаменатель на W, а первое слагаемое в знаменателе искусственно умножим и разделим на Б:

Гидравлический удар в трубопроводах.

Обратим внимание на то, что, а. После подстановки этих равенств в последнее выражение и извлечения корня получим выражение для скорости распространения ударной волны, которая, по сути, является скоростью распространения упругих деформаций жидкости в трубе.

Гидравлический удар в трубопроводах.

Здесь первое слагаемое под корнем характеризует упругие свойства рабочей среды (жидкости), а — второе упругие силы материала трубы.

Гидравлический удар в трубопроводах.

Рассмотрим подробнее эти слагаемые.

Как известно из гидростатики, сила, действующая на цилиндрическую поверхность, равна произведению давления на проекцию площади этой поверхности в направлении действия силы. На рассматриваемый участок трубы с толщиной стенок ґ, длиной L и диаметром D действует изнутри давление P. Вследствие этого возникает разрывающая сила F, равная.

Гидравлический удар в трубопроводах.

В стенках трубы возникает сила сопротивления, равная произведению площади сечения стенок трубы на внутренние напряжения в материале стенок трубы, т. е.

Гидравлический удар в трубопроводах.

Гидравлический удар в трубопроводах.

Гидравлический удар в трубопроводах.

Если приравнять две эти силы, получим равенство.

Гидравлический удар в трубопроводах.

из которого найдём выражение, определяющее внутреннее напряжение в стенках трубы :

Гидравлический удар в трубопроводах.

Гидравлический удар в трубопроводах.

Полагая, что относительное увеличение диаметра трубы, равное, прямо пропорционально напряжению в стенках трубы, можно записать.

Гидравлический удар в трубопроводах.

Гидравлический удар в трубопроводах.

где Ет — коэффициент пропорциональности, который является модулем упругости материала трубы.

Из двух последних выражений следует, что абсолютное приращение радиуса сечения трубы может быть выражено формулой.

Гидравлический удар в трубопроводах.

Запишем выражение, определяющее увеличение площади сечения трубы:

Гидравлический удар в трубопроводах.

где Й — начальная площадь сечения трубы,.

Йр— площадь сечения трубы при давлении P.

Пренебрегая малой величиной высшего порядка «R 2 и подставив выражение для «R, получим.

Гидравлический удар в трубопроводах.

Продифференцировав это выражение по P и рассматривая Й как функцию, зависящую от P, получим:

Гидравлический удар в трубопроводах.

В итоге слагаемое, описывающее упругие свойства материала трубы в выражении для скорости распространения ударной волны, можно представить в следующем виде:

Гидравлический удар в трубопроводах.

Теперь рассмотрим слагаемое, описывающее упругость жидкости. Ранее при рассмотрении свойств жидкости было установлено, что если изменение объёма происходит за счёт изменения плотности, то можно определить коэффициент сжимаемости жидкости Іw:

Гидравлический удар в трубопроводах.

Гидравлический удар в трубопроводах.

Часто этот коэффициент выражают через обратную величину, называемую модулем упругости жидкости , т. е. :

Гидравлический удар в трубопроводах.

Отсюда следует, что второе слагаемое, характеризующее упругие свойства рабочей среды, может быть представлено в виде:

Гидравлический удар в трубопроводах.

Таким образом, окончательно выражение для скорости распространения ударной волны в упругом трубопроводе можно переписать в следующем виде:

Гидравлический удар в трубопроводах.

где — плотность жидкости,.

D — диаметр трубопровода,.

— толщина стенки трубопровода,.

Ет — объёмный модуль упругости материала трубы,.

Еж — объёмный модуль упругости жидкости.

Из формулы следует, что скорость распространения ударной волны зависит от сжимаемости жидкости и упругих деформаций материала трубопровода.

  • 1. Лойцянский Л.Г. Механика жидкости и газа. — М.: Наука, 1970. -904 с.
  • 2. Повх И.Л. Техническая гидромеханика. -Л.: Машиностроение, 1976.-
  • 502 с.
  • 3. Шлихтинг Г. Теория пограничного слоя. Перевод с немецкого, под редакцией Л. Г. Лойцянского . — М.: Наука, 1969. -742 с.
  • 4. Идельчик И.Е. Справочник по гидравлическим сопротивлениям. -

М.: Машиностроение, 1975. -560 с.

5. Теплои массообмен. Теплотехнический эксперимент. Справочник/ Под общей редакцией В. А. Григорьева и В. М. Зорина . -М.: Энергоиздат, 1982. — 510с.

Читайте также: