Реферат на тему факториал

Обновлено: 05.07.2024

Здравствуйте, дорогие друзья! Спасибо, что читаете мой канал!

Вы когда-нибудь слышали о факториале? Сегодня расскажу Вам, что это такое и для чего он нужен.

Факториал - это математическая функция, применяемая к неотрицательным целым числам, равная произведению всех натуральных чисел от 1 до числа, для которого она вычисляется (о целых, натуральных и других числах можно почитать здесь ). Обозначается она очень просто: n! (произносится "эн факториал") - да, просто приписывается восклицательный знак к числу :) Чтобы было легче понять определение факториала, сразу приведу пример: 5!=1х2х3х4х5=120. То есть, чтобы найти факториал числа, нужно просто поочереди перемножить все натуральные числа от единицы до самого числа включительно. Математически определение факториала выглядит так:

Также из определения факториала следует следующая формула:

То есть, зная факториал числа, можно найти факториал предыдущего числа путём деления значения факториала на само число. Из этой же формулы следует, что 0!=1 при n=1. Хотя не все математики считают 0 натуральным числом (подробнее читайте в этой статье ), факториал для него можно вычислить.

Вы спросите: для чего же он нужен, этот факториал? Давайте теперь расскажу Вам о его применении.

Факториал очень активно используется в различных разделах математики, особенно там, где заходит речь о различных вариантах, перестановках, комбинациях и т. п. Он применяется в комбинаторике, теории чисел, математическом анализе и других областях. Очень хорошо становится понятным смысл факториала при изучении и применении вышеозвученной комбинаторики. В ней факториал натурального числа n интерпретируется как количество перестановок множества из n элементов. Что это означает на практике? Разберём задачу.

В гостиной стоит стол с четырьмя стульями вокруг. В комнату заходит четыре человека. Сколько существует вариантов для рассаживания вокруг стола всех четырёх человек?

Как раз для решения подобных задач требуется факториал. Зная его определение, задача решается в одно действие: 4!=1х2х3х4=24. То есть, ответ: 24 варианта (комбинации). Для такого небольшого числа, как 4, можно проверить правильность решения. Обозначим людей первыми буквами латинского алфавита: A, B, C, D. Тогда все возможные комбинации из них будут выглядеть так:

В комбинаторике множество подобных задач и в них повсеместно используется факториал.

Как можно заметить, факториал - очень быстрорастущая функция: если 3!=6, то, например, 10!=3 628 800. Факториал растёт гораздо быстрее, чем, например, показательная или степенная функции. Об этих двух обязательно в будущем ещё Вам расскажу.

В среде математиков существует одна занимательная задачка. Попробуйте её решить сами. Ответ будет в конце следующей статьи. Вот сама задача: дан отрезок времени 10! секунд; сколько это будет в каких-нибудь более удобных, крупных единицах времени?

Надеюсь, теперь Вы хорошо знаете, что такое факториал числа и где он может применяться.

Спасибо, что прочитали статью! Буду благодарен за комментарии, лайки, подписки.

Факториал числа n – это произведение чисел от 1 до n. Определён только для целых неотрицательных чисел. Формула факториала:

Это очень просто, вот пример:

7! = 1 * … * 7 = 5040.

Факторизация - разложение функции на множители.

Таблица факториалов

Таблица факториалов


Свойства факториалов

Рекуррентная формула

251

Комбинаторная интерпретация

Функция n может интерпретироваться как количество перестановок. К примеру, для 3-х элементов есть 3! = 6 перестановки.

Формула Стирлинга

Позволяет не перемножать большие числа. Обычно необходим только главный член:

Расчет по предыдущему значению

Функцию легко вычислить из предыдущего значения:

Однако было решено, что в случае 0 результат будет равен 1.

Свойства факториала

Некоторые очень большие значения

Некоторые браузеры могут не позволять копировать, поэтому необходимо будет загрузить большие результаты в виде текстового файла.

Примеры вычисления факториалов больших чисел:

100! это примерно 9 33262154444944152681699238856 x 101576 x 10157;

200! это примерно 7 88657867867364479050355236321393 x 103743.

Как найти функцию в Паскаль? Вычисление легко реализуется на разных языках программирования. Можно выбрать два метода: итеративный, то есть он создает цикл, в котором временная переменная умножается на каждое натуральное число от 1 до n, или рекурсивный, в котором функция вызывает себя до достижения базового варианта 0! = 1.

Программа на языке Паскаль:

Факториал на Паскале

На языке Си вычисления делаются с помощью рекурсивной функции. Следует заметить, что если начать вычислять факториал отрицательного числа в неаккуратно написанной функции, то это приведет к зацикливанию.

Факториал дроби (½) - это половина квадратного корня pi = (½)√π.


Факториа́л числа n (лат. factorialis — действующий, производящий умножающий; обозначается n !, произносится эн факториа́л) — произведение всех натуральных чисел от 1 до n включительно:

n! = 1\cdot 2\cdot\ldots\cdot n =\prod_<i=1></p>
<p>^n i.

5 ! = 5 \times 4 \times 3 \times 2 \times 1 = 120. \

По определению полагают 0! = 1. Факториал определён только для целых неотрицательных чисел.

Последовательность факториалов неотрицательных целых чисел начинается так:

1, 1, 2, 6, 24, 120, 720, 5040, 40 320, 362 880, 3 628 800, 39 916 800, 479 001 600, 6 227 020 800, 87 178 291 200, 1 307 674 368 000, 20 922 789 888 000, 355 687 428 096 000, 6 402 373 705 728 000, 121 645 100 408 832 000, 2 432 902 008 176 640 000, … (последовательность A000142 в OEIS)

e^<e^n></p>
<p>Факториал является чрезвычайно быстро растущей функцией. Он растёт быстрее, чем многочлен любой степени, и быстрее, чем экспоненциальная функция (но медленнее, чем двойная экспоненциальная функция
).

Содержание

Свойства

Рекуррентная формула


Комбинаторная интерпретация

В комбинаторике факториал натурального числа n интерпретируется как количество перестановок (упорядочиваний) множества из n элементов. Например, для множества A,B,C,D> из 4-х элементов существует 4! = 24 перестановки:

Комбинаторная интерпретация факториала служит обоснованием тождества 0! = 1, т. к. пустое множество упорядочено единственным способом.

Связь с гамма-функцией



Факториал связан с гамма-функцией от целочисленного аргумента соотношением:

n! = \Gamma(n+1).

Таким образом, гамма-функцию рассматривают как обобщение факториала для положительных вещественных чисел.

n=-1, -2, -3\ldots.

Путём аналитического продолжения её также расширяют и на всю комплексную плоскость, исключая особые точки при


Пи-функция, определённая для всех вещественных чисел, кроме отрицательных целых, и совпадающая при натуральных значениях аргумента с факториалом.

Более непосредственным обобщением факториала на множество вещественных (и комплексных) чисел является пи-функция, определяемая как

\Pi(z)=\int_0^\infty t^<z></p>
<p> e^\, \mathrmt\,.

Поскольку то пи-функция натурального числа совпадает с его факториалом: Как факториал, пи-функция удовлетворяет рекурсивному соотношению

Формула Стирлинга

n! = \sqrt<2\pi n></p>
<p>\left(\frac\right)^n \left(1 + \frac + \frac - \frac - \frac + \frac + \frac + O\left(n^\right)\right),

см. O-большое. Коэффициенты этого разложения дают последовательность A001163 в OEIS (числители) и последовательность A001164 в OEIS (знаменатели).

Во многих случаях для приближённого значения факториала достаточно рассматривать только главный член формулы Стирлинга:

n! \approx \sqrt<2\pi n></p>
<p>\left(\frac\right)^n.

При этом можно утверждать, что


Формула Стирлинга позволяет получить приближённые значения факториалов больших чисел без непосредственного перемножения последовательности натуральных чисел. Так, с помощью формулы Стирлинга легко подсчитать, что

  • 100! ≈ 9,33×10 157 ;
  • 1000! ≈ 4,02×10 2567 ;
  • 10 000! ≈ 2,85×10 35 659 .

Разложение на простые числа

Каждое простое число p входит в разложение n! на простые множители в степени

\left\lfloor \frac</p>
<p><p>\right\rfloor + \left\lfloor \frac\right\rfloor + \left\lfloor \frac\right\rfloor + \ldots.

n! = \prod_<p> p^<\lfloor \frac<p>\rfloor + \lfloor \frac\rfloor +\ldots>,

где произведение берётся по всем простым числам. Нетрудно видеть, что для всякого простого p большего n соответствующий множитель в произведении равен 1, а потому произведение можно брать лишь по простым p , не превосходящим n .

Другие свойства

Обобщения

Двойной факториал

Двойной факториал числа n обозначается n!! и определяется как произведение всех натуральных чисел в отрезке [1, n ], имеющих ту же чётность что и n . Таким образом,

^ 2i = 2^k\cdot k!," width="" height="" />
^ (2i+1) = \frac = \frac." width="" height="" />

По определению полагают 0!! = 1.

Последовательность значений n!! начинается так:

1, 1, 2, 3, 8, 15, 48, 105, 384, 945, 3840, 10 395, 46 080, 135 135, 645 120, 2 027 025, 10 321 920, 34 459 425, 185 794 560, 654 729 075, 3 715 891 200, 13 749 310 575, 81 749 606 400, 316 234 143 225, 1 961 990 553 600, 7 905 853 580 625, 51 011 754 393 600, … (последовательность A006882 в OEIS).

Кратный факториал

\textstyle n\underbrace<!!\ldots !></p>
<p> <i>m</i> -Кратный факториал числа <i>n</i> обозначается _m
и определяется следующим образом:

Пусть число n представимо в виде где ," width="" height="" />
." width="" height="" />
Тогда [1]

n\underbrace<!!\ldots !></p>
<p>_m = \prod_^k (mi-r).

Двойной факториал является частным случаем m -кратного факториала для m = 2.

Кратный факториал связан с гамма-функцией следующим соотношением [2] :

n\underbrace<!!\ldots !></p>
<p>_m = \prod_^ (mi-r)=m^k \cdot \frac  +1 \right )>  \right)>.

Убывающий факториал

Убывающим факториалом (или неполным факториалом) называется выражение

(n)_k = n^<\underline<k></p>
<p>> = n^= n\cdot (n-1)\cdot \ldots\cdot (n-k+1) = \frac.

Убывающий факториал даёт число размещений из n по k .

Возрастающий факториал

Возрастающим факториалом называется выражение

n^<(k)></p>
<p> = n^<\overline<k>> = n\cdot (n+1)\cdot \ldots\cdot (n+k-1) = \frac.

Праймориал или примориал

1, 2, 6, 30, 210, 2310, 30 030, 510 510, 9 699 690, 223 092 870, 6 469 693 230, 200 560 490 130, 7 420 738 134 810, 304 250 263 527 210, 13 082 761 331 670 030, 614 889 782 588 491 410, 32 589 158 477 190 044 730, 1 922 760 350 154 212 639 070, … (последовательность A002110 в OEIS).

Суперфакториалы

Нейл Слоан и Саймон Плоуф (англ.) в 1995 году определили суперфакториал как произведение первых n факториалов. Согласно этому определению, суперфакториал четырёх равен

 \operatorname<sf></p>
<p>(4)=1! \times 2! \times 3! \times 4!=288 \,

(поскольку устоявшегося обозначения нет, используется функциональное).

 \operatorname<sf></p>
<p>(n) =\prod_^n k! =\prod_^n k^ =1^n\cdot2^\cdot3^\cdots(n-1)^2\cdot n^1.

Последовательность суперфакториалов чисел n⩾0 начинается так:

1, 1, 2, 12, 288, 34 560, 24 883 200, … (последовательность A000178 в OEIS).

Идея была обобщена в 2000 году Генри Боттомли (англ.), что привело к гиперфакториалам (англ. Superduperfactorial ), которые являются произведением первых n суперфакториалов. Последовательность гиперфакториалов чисел n⩾0 начинается так:

1, 1, 2, 24, 6912, 238 878 720, 5 944 066 965 504 000, 125 411 328 000, 5 056 584 744 960 000, 1 834 933 472 251 084 800 000, 6 658 606 584 104 736 522 240 000 000, 265 790 267 296 391 946 810 949 632 000 000 000, 127 313 963 299 399 416 749 559 771 247 411 200 000 000 000 … (последовательность A055462 в OEIS)

Продолжая рекуррентно, можно определить факториал кратного уровня, или m -уровневый факториал числа n , как произведение первых n ( m −1)-уровневых факториалов, то есть

\operatorname</p>
<p>(n,m) = \operatorname(n-1,m)\operatorname(n,m-1)=\prod_^n k^,

где (n,0)=n" width="" height="" />
для и (0,m)=1." width="" height="" />

Субфакториал

Субфакториал ! n определяется как количество беспорядков порядка n , то есть перестановок n -элементного множества без неподвижных точек.

Ссылки

См. также

Примечания

Wikimedia Foundation . 2010 .

Полезное

Смотреть что такое "Факториал" в других словарях:

ФАКТОРИАЛ — [англ. factorial Словарь иностранных слов русского языка

ФАКТОРИАЛ — (от латинского factor деятель, создатель, множитель), произведение натуральных чисел от единицы до какого либо данного натурального числа n, т.е. 1?2. n; обозначается n! … Современная энциклопедия

ФАКТОРИАЛ — произведение натуральных чисел от единицы до какого либо данного натурального числа n, т. е. 1.2.3. .n; обозначается n!. Напр., 5! = 1.2.3.4.5 = 120 … Большой Энциклопедический словарь

факториал — сущ., кол во синонимов: 1 • термин (18) Словарь синонимов ASIS. В.Н. Тришин. 2013 … Словарь синонимов

Факториал — (от латинского factor деятель, создатель, множитель), произведение натуральных чисел от единицы до какого либо данного натурального числа n, т.е. 1´2´. ´n; обозначается n!. … Иллюстрированный энциклопедический словарь

ФАКТОРИАЛ — произведение всех натуральных чисел от 1 до данного натурального числа n; обозначается n! = 1·2·3·. ·n; по определению, 0! = 1 … Большая политехническая энциклопедия

Факториал — математическая функция целочисленного аргумента, обозначается n! (произведение целых чисел от 1 до n, весьма быстро растет с ростом аргумента); в данном случае возможна ассоциация с ее обозначением восклицательным знаком: ஐ Шел он сквозь… … Мир Лема - словарь и путеводитель

факториал — произведение натуральных чисел от единицы до какого либо данного натурального числа n, то есть 1·2·3·. ·n; обозначается: n!. Например, 5! = 1·2·3·4·5 = 120. * * * ФАКТОРИАЛ ФАКТОРИАЛ, произведение натуральных чисел от единицы до какого либо… … Энциклопедический словарь

факториал — faktorialas statusas T sritis fizika atitikmenys: angl. factorial vok. Faktorielle, f; Fakultät, f rus. факториал, m pranc. factorielle, f … Fizikos terminų žodynas

Гост

ГОСТ

Факториал

Формулы для факториалов — это формулы определения конкретных значений факториала.

Под факториалом числа понимается результат произведения всех натуральных неотрицательных чисел, начиная с единицы и до основания факториала.

Термин факториал числа – это математический оператор, но применяется в самых разных научных дисциплинах, таких как комбинаторика, функциональный анализ, теория чисел.

Рисунок 1. Факториал. Автор24 — интернет-биржа студенческих работ

Формула вычисления

Для вычисления факториала конкретного числового выражения, надо найти произведение чисел, начиная от единицы, и заканчивая заданным числом. Исходя из этого, операцию нахождения факториала, возможно определить так:

$n! = 1 • 2 •… • n$, здесь $n$ – это целое не отрицательное числовое значение. Стандартным обозначением факториала является знак восклицания.

Главные факториальные особенности:

  1. $0! = 1$;
  2. $n! = n • (n – 1)!$;
  3. $n!^2 ≥ n^n ≥ n! ≥ n$.

Выражение под номером два определяется термином рекурсия, а сам факториал выступает как элементарная рекурсивная функция. Рекурсивная функция находит широкое распространение в теории алгоритмов и при создании программных приложений для компьютеров, так как большинство алгоритмических структур и программных процедур обладают рекурсивным наполнением.

Вычислить факториал многоразрядных чисел возможно путём применения формулы Стирлинга, дающей, правда, не точный результат, хотя погрешность достаточно мала. Эту формулу можно представить следующим образом:

Готовые работы на аналогичную тему

$n! = (n/e)^n • √(2 • π • n) • (1 + 1/(12 • n) + 1/(288 • n^2) + …)$

$ln (n!) = (n + 1/2) • ln n – n + ln √(2 • π)$,

  • $e$ – является основанием натурального логарифма, его числовое значение примерно равно 2,71828…;
  • $π$ – постоянная (отношение длины окружности к диаметру), в числовом выражении равняется примерно 3,14.

Используется ещё и такое определение формулы Стирлинга:

$n! ≈ √(2 • π • n) • (n/e)^n$.

Есть, так же, разные обобщённые формулировки факториала. К примеру, удвоенный, m – кратный, растущий, уменьшающийся. Удвоенный факториал имеет обозначение !! и равняется произведению натуральных чисел в диапазоне от единицы до выбранного числового значения, но только тех, которые обладают такой же чётностью. Пример: $6!! = 2 • 4 • 6$.

M – кратный факториал является разновидностью двойного факториала для всех положительных чисел m:

для $n = mk$ – выполняется условие $n. = ∏ (m • I – r)$, здесь $r$ – целочисленный набор от нуля до $m –1$, $I$ – входит в числовое подмножество от единицы до $k$.

Читайте также: