Реферат на тему эмаль зуба

Обновлено: 04.07.2024

Эмаль покрывает анатомическую коронку зуба и является самой твердой его тканью, резистентной к изнашиванию. Эмаль располагается поверх дентина, с которым тесно связана структурно и функционально как в процессе развития зуба, так и после завершения его формирования. Она защищает более мягкий подлежащий дентин и пульпу зуба от воздействия внешних раздражителей.

Несмотря на то, что эмаль твердая, она в то же время очень хрупкая, а это может быть причиной ее перелома или откалывания. Тем не менее комбинация ее прочности с амортизирующим эффектом дентина и поддерживающим действием периодонта позволяет эмали выдерживать большие механические нагрузки. Поэтому разрушение подлежащего слоя дентина приводит к растрескиванию эмали.

Толщина слоя эмали в различных отделах коронки неодинакова и колеблется от 1,62—1,7 мм на жевательной поверхности до 0,01 мм в области шейки зуба.

Эмаль полупрозрачна, цвет ее варьирует от желтоватого до серовато-белого. Эти оттенки вызываются различной толщиной и прозрачностью эмали, а такзке цветом подлежащего дентина. Вариации степени минерализации эмали проявляются изменениями ее окраски. Так, участки гипоминерализованной эмали выглядят менее прозрачными, чем окружающая эмаль.

эмаль зуба - анатомия

Строение зуба (термины указаны на латинском языке)

Мельчайшими структурными единицами эмали являются кристаллы апатитов, которые плотно уложены вместе в виде более сложных образований — эмалевых призм. Диаметр призм равен приблизительно 5—8 мкм. На поперечном срезе они имеют форму замочной скважины с головкой и хвостом.

Эмалевые призмы начинаются у дентино-эмалевого соединения и идут к поверхности эмали, многократно изгибаясь в виде спирали. Поэтому на шлифах зуба не всегда можно проследить ход каждой отдельной призмы. В общем, они уложены радиально наподобие веера: в области жевательных бугров или режущего края лежат параллельно длинной оси зуба, а на боковых поверхностях коронки постепенно перемещаются в плоскость, перпендикулярную к длинной оси.

Укреплению структуры эмали способствуют волнообразные изгибы призм, вклинивание призматических отростков между смежными призмами и переход кристаллов из одной призмы в другую.

На поперечном срезе недеминерализованной эмали обнаруживается кристаллическое вещество, структурные образования которого представлены в виде призм, межпризменных микропространств и ламелл. Последние данные электронной микроскопии указывают на однородность кристаллической структуры призм и межпризменного вещества, а то, что ранее считалось органическими оболочками эмалевых призм, оказалось микропространствами, в области которых граничат кристаллы смежных призм. Резкие изменения ориентации кристаллов по периферии эмалевых призм только имитируют наличие оболочки.

Интактная структура органического матрикса эмали представляет собой упорядоченное переплетение нитей органической материи, которые следуют направлению кристаллов и призм и в целом создают впечатление, что каждый кристалл и призма имеют собственную органическую субстанцию. На самом деле это органическое вещество, редуцированное до минимума и сохраняющее элементы первоначальных структурных особенностей, заложенных в период амелогенеза.

Благодаря тому что эмалевые призмы имеют S-образную изогнутость по своему ходу, на продольном шлифе не удается разрезать каждую призму строго продольно на всем протяжении. Некоторые участки призм оказываются сошлифованными в продольном направлении, а их продолжение — в поперечном или косом. Правильное чередование поперечных (диазоны) и продольных (паразоны) шлифов пучков эмалевых призм объясняет возникновение темных и светлых полос, которые пересекают в радиальном направлении толщу эмали. Это так называемые полосы Гунтера— Шрегера, хорошо заметные даже при малом увеличении на продольных шлифах зуба.

Кроме полос Гунтера—Шрегера, в эмали часто бывают видны линии или полосы Ретциуса, которые на продольном шлифе идут более отвесно, чем полосы Гунтера— Шрегера, и пересекают их под острым углом. Как правило, они имеют темновато-коричневый цвет. На поперечных шлифах зуба линии Ретциуса располагаются в виде концентрических кругов, сравниваемых некоторыми исследователями с годичными кольцами роста на поперечном срезе ствола дерева. Это сравнение вполне оправдано, так как, по мнению большинства исследователей, линии Ретциуса представляют собой волнообразные стадии в процессе развития зуба и являются участками с пониженным содержанием минеральных солей.

Своеобразными структурами, присущими нормальной эмали, являются эмалевые пластинки. Это тонкие листообразные структуры, которые проходят через всю толщину эмали и видны только на поперечных шлифах зубов. Они состоят из органического материала с небольшим содержанием минералов.

Эмаль зуба - уникальный сложносоставной биокерамический материал и самая твёрдая ткань человеческого организма.

В отличие от других твёрдых тканей организма эмаль не обладает клеточной структурой (рис1).


Рисунок 1. Эмаль

Структура и свойства эмали

Основная масса неорганических компонентов представлена кристаллами гидроксиапатита (75%), карбонатного апатита (12%), фторапатита (1%) и других форм апатитов, прочно связанных с органической матрицей. Тонкие, длинные кристаллы гидроксиапатитов эмали имеют размеры от десятков до сотен нанометров и отличаются от кристаллов других плотных тканей своими размерами( рис2).


Рисунок 2. Кристаллы гидроксиаппатитов

Основной функцией эмали является защита дентина и пульпы зуба от воздействия внешних раздражителей в окружении большого количества бактерий без катастрофических последствий для организма.


Рисунок 3. Защитная функция эмали

Кристаллы гидроксиапатита создают в эмали эффект молекулярного сита, через которое в эмалевую жидкость проникают небольшие органические молекулы и минеральные ионы. Эмалевая жидкость распределяется неравномерно. В поверхностных участках эмали жидкости немного и её количество увеличивается по направлению к эмалево-дентинной границе.


Рисунок 4. Структура эмали на срезе

В отличие от воды гидратных оболочек кристаллов, эмалевая жидкость более подвижна и её можно удалить, прогревая зубные ткани при относительно невысоких температурах. Движение жидкости обусловлено капиллярным механизмом, и по жидкости диффундируют ионы и молекулы. Хотя эмаль не содержит клеток и не способна к регенерации, однако в ней постоянно происходит обмен веществ. В эмаль поступают ионы, преимущественно из слюны, а также через дентин из пульпы зуба.

Химический состав эмали

Неорганические вещества зрелой эмали составляют 94-95%, в незрелой формирующейся эмали их намного меньше - всего 5%, а в эмали молочных зубов - 80%. (рис 5)

После удаления минеральных компонентов остается тонкая сеть органической матрицы.

Кроме солей фосфата кальция в составе эмали обнаружены свыше 30 разных элементов. В относительно больших количествах присутствуют ионы Mg 2+ , Na + , а также Cl - , K - , Zn 2+ и Fe 2+ . Минеральный состав эмали может колебаться в зависимости от характера питания, но процентное соотношение кальция, фосфора и карбоната довольно постоянно. Содержание Sr 2+ , Pb 2+ и некоторых других микроэлементов в эмали колеблется значительно и зависит от их количества в почве данной местности.

Минеральные вещества в эмали распределены неравномерно. Поверхностные более плотные слои содержат меньше воды, карбонатов и больше фтора. Количество неорганических компонентов уменьшается в направлении от поверхности к зоне перехода эмали в дентин.

Содержание кальция и фосфора в эмали соответственно составляет 33,6-39,4 и 16,1-18,0% по отношению к остальным элементам эмали и в направлении от поверхности зуба к дентину их содержание снижается. Обычно снаружи она для ионов Ca 2+ составляет 37,8, а внутри - 34,5% и для фосфатов - 18 и 15%. Напротив, содержание карбонатов, натрия, магния и железа в эмали увеличивается по направлению к дентину. Свинец присутствует в низких концентрациях. Он накапливается в поверхностных слоях эмали, в то время как медь и стронций равномерно распределяются по всей толщине эмали.


Рисунок 5. Химический состав эмали зуба

Чтобы укрепить эмаль важно сохранить баланс кальция и фосфора в ее поверхности. Для этого важно регулярно проводить профессиональную гигиену - убирать мягкий и твердый налет, который провоцирует появление кариеса. А затем на очищенную поверхность зубов наносить фторсодержащие препараты - проводить ремотерапию.

Эмаль (enamelum) – самая твёрдая ткань человеческого организма (250-390 ед. Виккерса, до 800 ед.!). Поверхностные слои эмали обладают наибольшей твёрдостью, но вместе с тем они достаточно хрупки. Чем ближе эмаль к дентиноэмалевой границе, тем ниже её твёрдость и соответственно ниже хрупкость. Толщина слоя эмали в разных отделах коронки не одинакова, она составляет 1.5-1.7 мм. на уровне жевательных бугров, постепенно уменьшается на боковых поверхностях, и сходит на нет в области шейки зуба (всего 0.01 мм.).

Структура эмали зуба


Эмалевые призмы являются основным структурным образованием эмали, их диаметр составляет всего 4-6 мкм, но благодаря своей извилистой форме, длина призмы превосходит толщину эмали. Эмалевые призмы, собираясь в пучки, образуют s-образные изгибы. Благодаря этому на шлифах эмали обнаруживаются тёмные и светлые полосы: в одном участке призмы срезаны в продольном направлении, а в другом – в поперечном (полосы Гунтера-Шрегера). На шлифах эмали можно заметить линии, идущие в косом направлении и достигающие поверхности эмали - это линии Ретциуса, они особенно хорошо видны при обработке эмали кислотой. Их образование связывают с цикличностью минерализации эмали в процессе её формирования. И как раз в этих участках минерализация менее выражена, следовательно, при травлении кислотой в линиях Ретциуса происходят наиболее ранние и выраженные изменения.

Эмалевая призма имеет поперечную исчерченность, которая отражает суточный ритм отложения минеральных солей. В поперечном сечении эмалевая призма имеет аркадообразную форму или по форме напоминает чешую, но может быть округлой, гексагональной или полигональной. Нужно отметить, что к эмали лучше всего фиксируются зубные виниры. Межпризменное вещество эмали состоит из таких же кристаллов, что и сама призма, но отличается их ориентацией. Органическое вещество эмали имеет вид тончайших фибриллярных структур, которые по существующему мнению, определяют ориентацию кристаллов эмалевой призмы.

В эмали зуба встречаются такие образования, как пластинки, пучки и веретёна. Пластинки (их ещё называют ламеллы) проникают в эмаль на значительную глубину, пучки – на меньшую, веретёна (отростки одонтобластов) попадают в эмаль через дентиноэмалевое соединение.

Мельчайшей структурной единицей эмали является апатитоподобное вещество, которое формирует эмалевые призмы. В разрезе эти кристаллы имеют шестигранную форму, сбоку они имеют вид небольших стержней. Кристаллы эмали являются самыми большими кристаллами твёрдых тканей человека. Их длина составляет 160нм, ширина-40-70нм, а толщина -26нм. Кристаллы в эмалевой призме прилегают плотно друг к другу, пространство между ними не превышает 2-3 нм, в ядре призмы кристаллы направлены параллельно оси призмы. В межпризменном веществе кристаллы менее упорядочены и направлены перпендикулярно оси эмалевой призмы. Каждый кристалл имеет гидратную оболочку толщиной 1нм. и окружён слоем протеинов и липидов.

Кроме связанной воды, входящей в состав гидратной оболочки, в микропространствах эмали имеется свободная вода. Общий объём воды в эмали составляет 3.8%.

На поверхности коронки зуба человека часто обнаруживается тонкий слой безпризменной эмали. Её толщина составляет 20-30мкм и кристаллы в ней плотно прилегают друг к другу, располагаясь параллельно поверхности. Безпризменную эмаль часто можно обнаружить в молочных зубах и фиссурах, а также в области шеек зубов у взрослых людей.

Химический состав

Эмаль имеет следующий состав: неорганические вещества – 95%, органические – 1,2%, вода – 3,8%. Ниже будет представлен более подробный химический состав эмали зуба.

Эмаль зуба состоит из апатитов многих типов, основным из которых является гидроксиапатит Ca10(PO4)6(OH)2. Состав неорганического вещества эмали представлен: гидроксиапатит -75,04%, карбонапатит – 12,06%, хлорапатит – 4,39%, фторапатит – 0,663%, карбонат кальция – 1,33%, карбонат магния – 1,62%. В составе химических неорганических соединений кальция 37%, а фосфора – 17%. Соотношение Ca/P во многом определяет состояние эмали зуба. Оно непостоянно и может изменяться от действия различных факторов, более того, оно может изменяться в пределах одного зуба.

В эмали зубов выявлено более 40 микроэлементов их расположение в эмали неравномерно. В наружном слое выявлено большое содержание фтора, свинца, железа, цинка при меньшем содержании натрия, магния, карбонатов. Более равномерное расположение по слоям у стронция, меди, алюминия и калия.

В эмали органическое вещество представлено белками, липидами и углеводами. Общее количество белков составляет 0,5%, липидов – 0,6%. Также в эмали обнаружены цитраты (0,1%) и совсем немного полисахаридов (0,00165%).


Эмаль является самой высокоминерализованной тканью и к тому же самым твердым материалом в организме [64]. Эмаль образована эмалевыми призмами и межпризменным веществом и покрыта кутикулой [47, 63]. Эмалевые призмы являются главными структурно-функциональными единицами эмали, проходящие пучками через всю ее толщу радиально и несколько изогнутые в виде буквы S. Форма призм на поперечном сечении преимущественно арочная. Их диаметр 3–5 мкм.

Кристаллиты зубной эмали состоят из обладающего ярко выраженной кристаллической структурой биологического апатита (преимущественно гидроксилапатитов кальция), характеризующегося уникальным ионнозамещенным составом и, в особенности, высоким содержанием карбонат-ионов в кристаллической структуре [65]. Широкий спектр замещений в апатите обусловлен его уникальной кристаллической структурой [66, 67]. При этом содержание биологического апатита в эмали достигает 97 % от ее общего веса.

Существует несколько исследований, описывающих химический состав и кристаллографические свойства полностью сформировавшейся эмали человеческо-
го зуба [68, 69].

Интересные результаты были получены в работах [68, 70–73], в которых показано, что химический состав зубной эмали не остается постоянным, даже в том случае, если данные собирались в течение продолжительного времени. В работе [74] исследовались причины широких вариаций соотношения Ca/P в кристаллической структуре в зависимости от конкретного биоминерала. Было показано, что значительное отклонение вычисленных значений в химическом составе биологических апатитов является фундаментальным. Зубы каждого человека уникальны, независимо от сходства их морфологии.

Исследование, в ходе которого использовались образцы двадцати зубов, отчетливо показали, что кристаллы апатита в зубной эмали широко варьируются по параметрам кристаллической решетки в зависимости от зуба: от 9,441 Å до 9,469 Å по длине а-оси и от 6,874 Å до 6,901 Å по длине с-оси [75]. А поскольку размеры элементарной ячейки апатита отражают его химический состав, изменения в этих значениях могут свидетельствовать и об изменениях в компонентах эмали. В частности, результатом подобных изменений могут являться и частые замещения.

Как показали исследования, в химическом составе [76] и плотности [77] зубной эмали наблюдаются пространственные вариации, а также, вариации в слоях карбонатной составляющей [78] и в степени кристалличности [79] в эмали каждого зуба. Некоторые исследования описывают различные химические и физические характеристики, зависящие от типа зуба [80].

Органическая составляющая эмали зубов включает в основном белки: амелогенин, энамелин и амелобластин [81]. Несмотря на то, что эта составляющая невелика, массовая доля ~1 % [82], она очень тонко распределена по иерархической структуре эмали и связывает воедино наноразмерные кристаллы гидроксилапатитов кальция как внутри призм, так и внутри призменных оболочек. Именно это свойство делает эмаль зуба проницаемой для ионов, осуществляющих транспортировку минерала в основную массу эмали и, тем самым, осуществляющих регулирование поверхностных зарядов кристаллов.

Амелогенин в целом играет ключевую роль в начальной стадии формирования зубной эмали. В его присутствии наноразмерные кристаллы гидроксилапатитов кальция формируют не хаотичные скопления, как обычно, а упорядоченные структуры [83].

Также эмаль содержит небольшое количество липидов и углеводов. Кроме того, в состав эмали входит около 3 % воды [47]. Вода занимает свободное пространство в кристаллической решетке и органической основе, а также располагается между кристаллами.

Читайте также: