Реферат на тему электрические станции

Обновлено: 02.07.2024

Электрическая станция – совокупность установок, оборудования и аппаратуры, используемых непосредственно для производства электрической энергии, а также необходимые для этого сооружения и здания, расположенные на определённой территории.
В зависимости от источника энергии различают:

Содержание

Введение 3
1 Гидроэнергетика 3
1.1 История гидроэнергетики 3
1.1.1 Античная и средневековая гидроэнергетика 3
1.1.2 Гидроэнергетика в девятнадцатом столетии 3
1.1.3 Гидроэлектроэнергетика в двадцатом веке 3
1.1.4 Советская гидроэнергетика 3
1.1.5 Мировая гидроэнергетика в 21 веке 3
1.2 Перспективы гидроэнергетики 3
1.3 Потенциал мировой гидроэнергетики 3
1.4 ГЭС 3
1.5 Технологии 3
1.6 Принцип работы ГЭС 3
1.7 Плотина 3
1.8 Большая и малая гидроэнергетика 3
1.9 Новые разработки 3
1.10 Основные достоинства и недостатки 3
1.11 Экологические аспекты использования гидроэнергетики 3
2 ГРЭС (КЭС) 3
2.1 Общие сведения 3
2.2 Технологическая схема КЭС. Назначение каждого элемента схемы. Основные особенности КЭС 3
3 ТЭС 3
4 ТЭЦ 3
4.1 Схема снабжения котлов газом. Подготовка к сжиганию газообразного топлива 3
4.2 Влияние ТЭЦ на окружающую среду 3
5 АЭС 3
5.1 Передвижные АЭС 3
5.2 Рельсы и гусеницы 3
5.3 Энергосамоходы 3
5.4 Дела так и не нашлось 3
5.5 Для экстремальных условий 3
5.6 Оранжевый дым 3
5.7 Зачем снимать колеса? 3
5.8 Реактор, которого испугались 3
6 Гидроаккумулирующие электростанции 3
7 ITER 3
7.1 История 3
7.2 Строительство 3
7.3 Радиационная безопасность 3
8 другие виды электростанций 3
8.1 Ветроэнергетика 3
8.1.1 История ветроэнергетики 3
8.1.2 Ветряные электростанции. 3
8.1.3 Перспективы ветроэнергетики 3
8.2 Волновые электростанции 3
8.2.1 История волновых электростанций 3
8.3 Геотермальная энергетика 3
8.3.1 Геотермальные электростанции 3
8.3.2 Источники геотермальной энергии 3
8.3.3 Принципы работы 3
8.3.4 Перспективы геотермальной энергетики 3
8.4 Солнечная энергетика 3
8.4.1 Солнечные электростанции 3
8.4.2 СЭС башенного типа 3
8.4.3 СЭС тарельчатого типа 3
8.4.4 СЭС, использующие фотобатареи 3
8.4.5 СЭС использующие параболические концентраторы 3
8.4.6 Комбинированные СЭС 3
8.5 Перспективы солнечной энергетики 3
9 Осмотическая электростанция 3
9.1 Экологичность 3
9.2 Принцип действия 3
9.3 Преимущества и недостатки технологии 3
9.4 Потенциал и перспективы осмотической энергетики 3
Заключение 3

Работа содержит 1 файл

реферат электростанции.docx

Федеральное агентство по образованию РФ

ГОУ ВПО Уральский Федеральный университет – УрФУ

им. первого Президента России Б.Н. Ельцина

Кафедра технической физики

преподаватель кафедры технической физики

1 Гидроэнергетика 3

1.1 История гидроэнергетики 3

1.1.1 Античная и средневековая гидроэнергетика 3

1.1.2 Гидроэнергетика в девятнадцатом столетии 3

1.1.3 Гидроэлектроэнергетика в двадцатом веке 3

1.1.4 Советская гидроэнергетика 3

1.1.5 Мировая гидроэнергетика в 21 веке 3

1.2 Перспективы гидроэнергетики 3

1.3 Потенциал мировой гидроэнергетики 3

1.5 Технологии 3

1.6 Принцип работы ГЭС 3

1.8 Большая и малая гидроэнергетика 3

1.9 Новые разработки 3

1.10 Основные достоинства и недостатки 3

1.11 Экологические аспекты использования гидроэнергетики 3

2.1 Общие сведения 3

2.2 Технологическая схема КЭС. Назначение каждого элемента схемы. Основные особенности КЭС 3

4.1 Схема снабжения котлов газом. Подготовка к сжиганию газообразного топлива 3

4.2 Влияние ТЭЦ на окружающую среду 3

5.1 Передвижные АЭС 3

5.2 Рельсы и гусеницы 3

5.3 Энергосамоходы 3

5.4 Дела так и не нашлось 3

5.5 Для экстремальных условий 3

5.6 Оранжевый дым 3

5.7 Зачем снимать колеса? 3

5.8 Реактор, которого испугались 3

6 Гидроаккумулирующие электростанции 3

7.2 Строительство 3

7.3 Радиационная безопасность 3

8 другие виды электростанций 3

8.1 Ветроэнергетика 3

8.1.1 История ветроэнергетики 3

8.1.2 Ветряные электростанции. 3

8.1.3 Перспективы ветроэнергетики 3

8.2 Волновые электростанции 3

8.2.1 История волновых электростанций 3

8.3 Геотермальная энергетика 3

8.3.1 Геотермальные электростанции 3

8.3.2 Источники геотермальной энергии 3

8.3.3 Принципы работы 3

8.3.4 Перспективы геотермальной энергетики 3

8.4 Солнечная энергетика 3

8.4.1 Солнечные электростанции 3

8.4.2 СЭС башенного типа 3

8.4.3 СЭС тарельчатого типа 3

8.4.4 СЭС, использующие фотобатареи 3

8.4.5 СЭС использующие параболические концентраторы 3

8.4.6 Комбинированные СЭС 3

8.5 Перспективы солнечной энергетики 3

9 Осмотическая электростанция 3

9.1 Экологичность 3

9.2 Принцип действия 3

9.3 Преимущества и недостатки технологии 3

9.4 Потенциал и перспективы осмотической энергетики 3

Список использованной литературы: 3

Электрическая станция – совокупность установок, оборудования и аппаратуры, используемых непосредственно для производства электрической энергии, а также необходимые для этого сооружения и здания, расположенные на определённой территории.

В зависимости от источника энергии различают:

тепловые электростанции (ТЭС), использующие природное топливо;

гидроэлектростанции (ГЭС), использующие энергию падающей воды запруженных рек;

атомные электростанции (АЭС), использующие ядерную энергию;

иные электростанции, использующие ветровую, солнечную, геотермальную и другие виды энергий.

В нашей стране производится и потребляется огромное количество электроэнергии. Она почти полностью вырабатывается тремя основными типами электростанций: тепловыми, атомными и гидроэлектростанциями.

В России около 75% энергии производится на тепловых электростанциях. ТЭС строят в районах добычи топлива или в районах потребления энергии. ГЭС выгодно строить на полноводных горных реках. Поэтому наиболее крупные ГЭС построены на сибирских реках: Енисее, Ангаре. Но также построены каскады ГЭС и на равнинных реках: Волге, Каме.

АЭС построены в районах, где потребляется много энергии, а других энергоресурсов не хватает (в западной части страны).

Гидроэнергетика

История гидроэнергетики

Человек всегда жил возле водоёмов и не мог не обращать внимание на огромный потенциал воды как источника энергии. Поэтому история гидроэнергетики ведёт своё начало ещё с древних времён. Уже тогда люди научились с помощью воды производить помол зерна или дутьё воздуха при выплавке металла.

Постепенно механизмы совершенствовались, и водяные колёса становились всё более эффективными. В конце девятнадцатого века наступил современный этап в развитии гидроэнергетики. Но полномасштабное использование водных ресурсов началось только в двадцатом столетии, а точнее – в тридцатых годах, когда вода начала использоваться человеком для получения электричества. Именно в это время в мире начинается строительство крупных гидроэлектростанций.

Гидроэнергетика прошла довольно долгий и интересный путь развития и продолжает развиваться, одаривая человека всё новыми возможностями. В данном разделе мы шаг за шагом пройдём путь, проделанный гидроэнергетикой в течение многих веков, рассмотрим этапы и особенности её развития, от водяных колёс, используемых в эпоху античности и Средневековья, до современных гидроэлектростанций, появившихся уже в двадцатом веке.

Античная и средневековая гидроэнергетика

Трудно сказать, когда человек начал использовать водные ресурсы для получения энергии. Самые ранние упоминания о подобных процессах относятся к четвёртому веку до нашей эры. При этом учёные склонны полагать, что использование воды происходило параллельно во многих регионах планеты. Кстати, археологи обнаружили свидетельства того, что водные ресурсы эксплуатировали и на территории бывшего Советского Союза: на территории современной Армении и в бассейне реки Амударья.

Древние греки использовали водяное колесо для облегчения некоторых видов тяжёлого ручного труда. Например, это приспособление осуществляло перемол зерна. Постепенно технологии совершенствовались, количество водяных колёс в европейских государствах неуклонно росло. Так, в одиннадцатом веке в Англии и Франции одна мельница приходилась на двести пятьдесят человек. Согласно утверждениям историков, приблизительно в тринадцатом веке водяные мельницы появляются в средневековой Руси, а точнее – в её юго-западных и северо-восточных регионах.

С течением времени увеличивались и сферы применения устройств. Водяные мельницы обеспечивали работу сукновальных фабрик и откачивающих насосов, участвовали в распилке леса, помогали человеку варить пиво, применялись на маслобойнях. До восемнадцатого столетия применялись исключительно колёса нижнего боя. Позже появились среднебойные и нижнебойные водяные колёса.

Гидроэнергетика в девятнадцатом столетии

Достижения предыдущих столетий уже не могли удовлетворять потребности человека в девятнадцатом веке. Толчок дальнейшему развитию гидроэнергетики дало изобретение водяных турбин. Хотя попытки создания более совершенного по сравнению с водяным колесом механизма предпринимались и до этого. Так, ещё в шестнадцатом веке на Урале использовали быстроходное мутовчатое колесо с вертикальным расположением вала. В таких механизмах вода попадала на изогнутые лопасти колеса из специального желоба.

Впоследствии аналогичным образом были устроены свободноструйные водяные гидротурбины. Но полноценная водяная турбина была создана только в начале девятнадцатого века. Её создание – заслуга нескольких талантливых изобретателей. Одним из них русский исследователь И. Сафонов, который в 1837 году произвёл установку сконструированной им водяной турбине на реке Нейве. Два года спустя Сафонов усовершенствовал собственное изобретение, установив несколько переделанную турбину на одном из местных заводов. Параллельно с Сафоновым над созданием водяных турбин работал французский учёный Фурнейрон. Изобретённое им устройство было представлено в 1834 году. Изобретения, сделанные обоими учёными, быстро завоевали популярность, и в течение последующих пятидесяти лет появляется множество самых разнообразных турбин.

Уже в конце девятнадцатого века происходит событие, которое фактически откроет современный этап в истории мировой гидроэнергетики. В 1891 году русский инженер М. О. Доливо- Добровольский, проживающий в Германии и покинувший Россию по причине своей политической неблагонадёжности, прибыл в город Франкфурт-на-Майне для участия в электротехнической выставке. Там он должен был продемонстрировать свой изобретение – двигатель переменного тока. Тогда подобный аттракцион вообще был в новинку, но автор решил дополнить его ещё одним сооружением.

Это была гидроэлектростанция. В небольшом городке Лауффен Доливо- Добровольский установил генератор трёхфазног о тока, который вращала водяная турбина небольших размеров. Вырабатываемая электроэнергия поступала на территорию выставки посредством линии передачи. Её длина равнялась 175 километрам. Сегодня никого не удивляют линии протяжённостью в несколько тыс. километров, но в те времена всё это было бесспорной сенсацией. Эпоха гидроэлектростанций началась.

Гидроэлектроэнергетика в двадцатом веке

Несмотря на открытие Доливо-Добровольского, дальнейшее развитие гидроэнергетики было замедлено некоторыми объективными факторами. Строительство крупных гидроэлектростанций, которые были бы действительно эффективными, оказалось предприятием более сложным, чем экспериментальная установка, показанная на выставке. Ведь чтобы заставить вращаться большие турбины, необходим значительный запас воды.

В начале двадцатого века такое строительство представлялось довольно сложным. За первые два десятилетия нового века было построено всего лишь несколько гидроэлектростанций. Но это было только начало. Уже в тридцатых годах были сооружены крупные станции, например, ГЭС Гувер в США мощностью в 1,3 ГВт.

Другим ярким событием в истории американской гидроэнергетики стало открытие гидроэлектростанции Адамс, расположенной на Ниагарском водопаде. Её мощность достигала 37 МВт. Запуск таких мощных гидроэлектростанций обусловил увеличение объёмов потребляемой энергии в промышленно развитых странах, что, в свою очередь, дало толчок программам освоения гидроэнергетических потенциалов.

Советская гидроэнергетика

К началу двадцатого века развитие российской гидроэнергетики было весьма медленным. Так, в 1913 году на территории Российской империи функционировало около пятидесяти тыс. гидросиловых установок. Их общая мощность составляла около миллиона лошадиных сил. При этом около семнадцати тыс. установок были оборудованы гидротурбинами.

Суммарная годовая выработка электроэнергии на всех гидроэлектростанциях не превышала тридцать пять миллионов КВт в час при установленной мощности около 16 МВт. В то же время во многих европейских странах общая мощность составляла приблизительно 12000 МВт. Ситуация изменилась после Октябрьской революции. Новая власть хорошо понимала важность развития отрасли.

План предусматривал сооружение ГЭС общей мощностью в 21254 тыс. лошадиных сил. При этом в европейской части России общая мощность станций составит 7394, в Туркестане – 3020, в Сибири – 10840 тыс. лошадиных сил. Предусматривалось строительство десяти гидроэлектростанций, суммарная мощность которых составит 640 МВт.

Первым советской гидроэлектростанцией стала Днепровская гидроэлектростанция имени Ленина в Запорожье. Ещё в 1921 году Ленин подписал решение о начале строительства, а само строительство было начато в 1927 году. Запуск первого агрегата был произведён в 1932 году, а достичь проектной мощности удалось в 1939 году. Она составила 560 МВт. При возведении плотины были затоплены знаменитые пороги Днепра, что сделало реку полностью судоходной.

За несколько десятилетий Советский Союз стал одним из лидеров мировой гидроэнергетики. Например, в начале семидесятых советская гидроэнергетика по установленной мощности уступала только американской. Строительство гидроэлектростанций велось на Волге, Каме, Дону, Днепре, Свири и других крупных реках.

Это позволило превратить их в водные магистрали Европейской части страны, существенно повысить уровень воды в реках и получить в результате целостную судоходную систему, которая соединяла между собой Каспийское, Чёрное, Азовское, Балтийское и Белое моря. К концу семидесятых годов двадцатого века были сооружены самые большие гидроэлектростанции в мире. Это Саяно-Шушенская и Красноярская, расположенные на реке Енисей, Братская и Усть-Илимская (река Ангара), Нурекская (река Вахш), Волжская.

Мировая гидроэнергетика в 21 веке

В начале двадцать первого века гидроэнергетика обеспечивает до шестидесяти трёх процентов возобновляемой энергии в мире. Это девятнадцать процентов всей мировой электроэнергии. Установленная гидроэнергетическая мощность составляет 715 ГВт.

Типы электрических станций

Электрические станции могут быть разделены па следующие основные типы: тепловые, атомные, гидравлические, солнечные и ветряные.

Электрические станции бывают районные, промышленные, городские и сельские. Районные электрические станции строятся недалеко от места добычи топлива или па крупных реках и предназначаются для электроснабжения потребителей электроэнергии, расположенных в зоне действия станции. Мощности таких станций весьма велики и достигают сотой тысяч и даже миллионов киловатт.

Типы электрических станций

Промышленные электростанции сооружаются на территории крупных предприятий и снабжают электроэнергией производственные цехи, вспомогательные службы, жилые здания и учреждения, расположенные вблизи предприятия.

Городские или коммунальные станции снабжают электроэнергией в основном города и населенные пункты. Эти станции чаще всего обеспечивают потребителей не только электроэнергией, но и теплом и называются в таких случаях теплоэлектроцентралями (ТЭЦ).

Тепловые электрические станции

Тепловые электрические станции зависимости от первичного двигателя различают следующие тины тепловых электростанций:

паротурбинные станции, на которых в качестве первичного двигателя используется паровая турбина. На этих станциях турбина, соединенная непосредственно с генератором электрической энергии, образует энергетический агрегат, который называют турбоагрегатом;

паромашинные станции, на которых используется в качестве первичного двигателя поршневая паровая машина;

дизельные станции, на которых установлены двигатели внутреннего сгорания;

газотурбинные станции, на которых используете газовая турбина.

Тепловая электрическая станция

Электрические станции с поршневыми машинами и двигателями внутреннего сгорания строятся на небольшие мощности и в большинстве случаев используются для местных нужд.

Почти на всех тепловых электрических станциях, имеющих промышленное значение, в качестве первичных двигателей используются паровые турбины.

Преобладающее распространение паровых турбин на тепловых станциях объясняется следующими их достоинствами:

1. Турбины могут быть изготовлены на число оборотов, которое имеют современные генераторы. Это дает возможность осуществить непосредственный привод без промежуточной передачи.

2. Турбины обладают высокой равномерностью хода, которая дает возможность получить постоянную частоту переменного тока.

3. Паровые турбины могут быть изготовлены на большие мощности — 150, 200, 300, 600 тыс. кВт и более (мощность турбины характеризуется электрической мощностью приводимого ею генератора).

Паротурбинные электрические станции в свою очередь можно разделить на конденсационные и теплофикационные.

Паровые турбины, у которых отработанный пар подвергается конденсации в специальных конденсаторах, называют конденсационными.

Электрические тепловые станции, снабжающие потребителей только электрической энергией и оборудованные конденсационными турбинами, называют конденсационными.

Тепловая электрическая станция

Смотрите по этой теме: Как производится электроэнергия на тепловой электростанции

Паротурбинные теплофикационные электрические станции выполняют одновременно две функции. Кроме выработки электрической энергии, они осуществляют также снабжение теплом потребителей, расположенных относительно близко к станции.

При экономичной работе теплофикационных электрических станции, т. е. при одновременном отпуске потребителям оптимальных количеств электроэнергии и тепла, коэффициент полезного действия их достигает 60 - 70%. Наоборот, в периоды, когда часть потребителей полностью прекращает потреблять тепло (например, неотопительный сезон), коэффициент полезного действия станции снижается. Наиболее экономичная эксплуатация теплофикационной станции может быть осуществлена при круглогодовом отпуске тепла потребителям.

При работе станции по графику снабжения потребителей теплом размеры выработки электрической энергии в отдельные месяцы года будут изменяться. При этом вследствие различных режимов работы потребителей тепловой и электрической энергии может оказаться, что в отдельные периоды года потребности в электроэнергии окажутся больше, чем может произвести данная станция, или наоборот, производительность данной станции превысит потребность абонентов.

Для наиболее эффективной работы такие электростанции соединяют для параллельной работы с другими станциями, причем при избытке электрической энергии на станции часть ее передается в систему, а при недостатке забирается из общей сети.

Атомные электрические станции

Атомные электрические станции относятся к числу тепловых станций, на которых в зависимости от режима работы могут быть установлены как конденсационные, так и теплофикационные турбины. В качестве источника энергии на этих станциях применяется ядерное топливо, перерабатываемое в атомных реакторах, в которых в результате цепной реакции деления ядер урана выделяется очень большое количество тепловой энергии.

Атомная электрическая станция

Количество энергии, выделяемой в реакторе в единицу времени, зависит от интенсивности происходящей в нем реакции. Регулирование скорости протекания реакции осуществляется специальными стержнями, расположенными в вертикальных рабочих каналах, из материала, обладающего способностью активно поглощать нейтроны.

Атомные электрические станции имеют ряд преимуществ по сравнению с другими типами электрических станции:

незначительный расход ядерного горючего (урана), требуемого для производственного процесса станции. Суточный расход урана на станции мощностью 5 тыс. кВт составляет всего лишь 30 г, в то время как станции тон же мощности, работающей на угле, потребовалось бы 100 г топлива;

возможность сооружения в любом месте, так как они не связаны с местом расположения естественных запасов топлива;

отсутствие транспортных затруднении, связанных с доставкой большого количества топлива, а также строительства специальных сооружений для его хранения;

отсутствие загрязнения наружного воздуха копотью и дымом.

Атомная электрическая станция

Гидроэлектрические станции

На гидроэлектрических станциях производство электрической энергии осуществляется за счет энергии падающей воды. Вода в реках вследствие разности уровней непрерывным потоком перемещается от истока к устью. Если в каком-либо месте (створе) перегородить реку плотиной, то уровень воды перед плотиной значительно повысится по сравнению с ее уровнем после плотины.

Станции мощностью до 10-15 мВт относятся к малым. Устройтво и принцип их работы: Малые ГЭС - виды и конструкции

Гидроэлектростанция

Мощность гидроэлектрической станции зависит от величины напора и от количества воды, протекающей в единицу времени через все турбины, установленные на станции.

К. п. д. у современных гидростанций намного выше, чем у тепловых станций той же мощности, и достигает 85%.

По характеру сооружений гидроэлектрические станции разделяются на следующие типы:

приплотинные, в которых напор воды создается плотиной. Эти станции сооружаются главным образом на равнинных реках при небольших напорах, так как с увеличением напора вследствие невысоких берегов рек приходится создавать водохранилища, затопляющие большие пространства;

деривационные, значительным напор которых создается при помощи деривационных (обходных) каналов. Такие станции сооружаются на горных реках, имеющих большие уклоны, создающие нужные напоры при относительно небольшом расходе воды.

Плотина гидроэлектростанции

Крупные гидроэлектрические станции не работают изолированно от других станций. Наиболее экономичный режим создается при работе гидроэлектрических станций параллельно с тепловыми. При этом достигается рациональное использование оборудования отдельных станций, топлива и энергии водных ресурсов.

Гидроэлектрические станции имеют преимущества перед тепловыми электрическими станциями:

1) производственный процесс выработки электрической энергии несравненно проще, чем на тепловых станциях;

2) значительно более высокий к. п. д.;

3) себестоимость электрической энергии на крупных гидроэлектрических станциях примерно в 5 раз ниже, чем на тепловых станциях той же мощности. Это объясняется тем, что нет затрат на приобретение и транспортировку топлива, меньшая потребность в обслуживающем персонале из-за отсутствия на станции топливного устройства и вспомогательных служб, необходимых для эксплуатации котельной.

Читайте также: