Реферат на тему цветовое зрение у животных

Обновлено: 05.07.2024

Для большинства видов животных характерно цветовое зрение. Однако цвета разные виды животных воспринимают не в таких красках, как человек.

Так, водная среда может быть сильно пигментирована за счет планктонных организмов или неорганических веществ, и тогда она выступает в качестве светового фильтра. Кроме того, водная поверхность производит поляризацию света, что также приводит к искажению цветовой гаммы. Наконец, особенности морфологии зрительного анализатора рыб, птиц и млекопитающих предполагают особое восприятие цветов.

Эксперименты показывают, что у рыб ганглионарный слой глаза по-своему анализирует возникающий в фоточувствительных клетках потенциал действия. Цвет объекта формируется в результате двух процессов: суммирования основных цветов, с одной стороны, и вычитания — с другой.

В формировании цветовой палитры участвуют и структуры головного мозга, например, зрительные бугры среднего мозга.

К. Фриш методом условных рефлексов доказал способность пескаря, гольяна, колюшки и других рыб различать кормушки, окрашенные в различные цвета. Цветовая чувствительность глаза рыб утрачивается при снижении общей освещенности объекта до уровня менее 1 лк.

Свет как внешний раздражитель и, следовательно, зрение имеют неодинаковое значение для разных видов рыб. Планктонофаги и пелагические рыбы сильно зависят от света. При их искусственном ослеплении они утрачивают способность активно питаться.

Рыбы-планктонофаги имеют хорошо развитую зрительную систему. У них крупные глаза, большой зрачок, сложно организованная ретина и хорошо развитые отделы головного мозга, отвечающие за формирование зрительных образов (прежде всего средний мозг).

Активность таких видов рыб, как уклея, верховка, плотва, вобла, связана с освещенностью водоема. При изменении освещенности в пределах 1-500 лк пищевая активность рыб не меняется. Критическим уровнем освещения служит величина 0,1 лк, при которой рыбы прекращают активный поиск зоопланктона и поедают рачков только при непосредственном контакте с ними.

Для донных рыб (бентософагов) свет и зрение менее значимы. Так, при ослеплении осетровых их пищевая активность практически не изменялась. Глаза у них мелкие, ретина, чаще всего, однослойная, средний мозг менее развит. Пищевая активность наблюдается и при хорошей освещенности, и при полной темноте.

Многие хищные рыбы открытых вод при поиске и захвате добычи также полагаются исключительно на зрение, в связи с чем их пищевая активность проявляется только днем. У таких хищников, как окунь, судак, хорошо развит зрительный анализатор. Но среди хищных рыб есть и придонные виды, а также виды с пиком активности в ночное время. Понятно, что у этих хищников зрение хуже развито, второстепенно или вообще не имеет значения, по крайней мере, при поиске пищи.

Оптическая рецепция глаза основана на способности сетчатки поглощать достаточное количество световых квантов за счет разрушения светочувствительного пигмента. Установлено, что в сетчатке глаза большинства рыб с хорошим зрением присутствуют четыре фоточувствительных пигмента:

  • родопсин с максимумом поглощения света с длиной волны около 500 нм;
  • порфиропсин — с максимумом поглощения при 522 нм;
  • йодопсин — с максимумом поглощения при 562 нм;
  • цианопсин — с максимумом поглощения при 620 нм.

Измерения показали, что для рецепции синего света необходима структура, поглощающая излучение с длиной волны около 450 нм, для восприятия зеленого цвета — соответственно около 525 нм и красного — около 555 нм. Исходя из этого можно предположить, что у рыб могут быть проблемы с восприятием сине-фиолетовой части видимого спектра и более широкие возможности рецепции оранжевокрасной части.

Однако практика показывает, что шкалы световосприятия рыб зависят от их местообитания (химического состава, цвета воды, ее прозрачности). У морских рыб шкала световосприятия сдвинута в коротковолновую часть спектра, у пресноводных рыб — в длинноволновую.

Характер световосприятия зависит и от глубины обитания рыбы, так как по мере увеличения глубины происходит резкое усиление поглощения водной средой красных и УФ-лучей. На больших глубинах преобладают лучи из синего спектра. У донных обитателей (скаты, камбала) и глубоководных рыб воспринимаемый спектр сужен до 410-650 нм. У рыб из поверхностных слоев он расширен до 400-750 нм.

В основе спектральной чувствительности глаза рыб лежат несколько явлений.

Во-первых, в ретине глаза рыб обнаружены все 4 известные в пределах типа хордовых животных светочувствительных пигмента, хотя для цветового зрения достаточно и двух.

Во-вторых, все колбочки сетчатки глаза рыб (клетки, обеспечивающие цветовое восприятие) имеют в своем составе жировые капли, представляющие собой раствор каротиноидов. И прежде чем световой луч попадет на фоточувствительный пигмент, он подвергается фильтрации раствором каротиноидов.

Теоретически с такими морфологическими и физиолого-биохимическими особенностями глаза рыбы могут иметь очень насыщенные цветом зрительные образы. По крайней мере, механизмы цветового восприятия у высших наземных позвоночных (включая человека) проще.

Среда обитания наложила отпечаток на функции и морфологию органов зрения рыб. Известно, что за восприятие света у рыб отвечает не только глаз. Так, у круглоротых имеются светочувствительные клетки на коже. При помощи этих образований животные определяют силу источника света.

У всех рыб имеется эпифиз — структура в составе промежуточного мозга со специфическими функциями. Но изначально — это светочувствительный орган. У миноги он имеет вид пузырька и расположен на голове близко к коже, которая в этом месте прозрачна. Это, по существу, теменной глаз, при помощи которого минога довольно сносно ориентируется в воде — определяет силу и направление источника света. Настоящий глаз, конечно, более совершенен и по строению, и по функциям.

Относительная величина глаз у рыб может колебаться в значительных пределах в зависимости от образа жизни и места обитания.

Морской окунь, судак, щука и многие другие рыбы имеют сравнительно крупные глаза. А глаза различных сомов, пескаря, вьюна относительно размеров их тела очень небольшие.

У морских глубоководных рыб, приспособившихся к жизни при очень низкой освещенности, глаза имеют просто огромные размеры. Диаметр их глаза может составлять 30-50% от длины головы (Polyipnus sp., Bathymacrops sp., Mycthophium sp.). Однако у других глубоководных видов рыб глаза могут быть редуцированы или вообще отсутствовать (Idiacanthus sp., Ipnops sp.). У пещерных рыб также большое разнообразие в строении глаза: от хорошо развитого до полностью редуцированного.

На глубине 800-900 м рыбы и другие водные животные широко применяют такое явление, как люминесценция, для облегчения зрительной коммуникации.

У отдельных видов морских животных яркость люминесцентного свечения очень высока — до 1 кд/м 2 (освещенность поверхности ночного моря в ясную лунную погоду на три порядка ниже!). Заметить такой яркий объект в мрачной морской пучине способны животные и с плохо развитым зрением. Так, глубоководная акула Isisticus sp. испускает люминесцирующий зеленый свет такой интенсивности, что эту рыбу в темноте морской пучины человек замечает с расстояния 10-15 м.

Люминесцируют рыбы по двум причинам. Так называемое внутреннее свечение рыб (семейства Macruridae, Serranidae, Galedae и др.) возникает благодаря люминесценции симбиотических микробов, населяющих пищеварительный тракт этих рыб.

Наружное свечение создается самим животным. Некоторые виды рыб таких семейств, как Elasmobranchii, Myctophidae, Stomtatidae и др., имеют на теле особые клетки, которые выделяют специфический секрет, содержащий вещество люциферин. При контакте с морской водой люциферин окисляется с образованием кванта света.

Органы свечения имеют сложное и разнообразное строение. Люцифериновые железы располагаются по бокам тела рыб в виде одиночных или двойных тяжей (Elasmobrachii, Sternoptyx sp., Stomias sp.). Однако описаны виды рыб, у которых люминесцирующие органы имеют вид прожектора в передней части тела (Photoblepharon sp., Maurolicus sp.). У рыбы Searsia имеется особая надключичная железа, которая при возбуждении выбрасывает в воду люминесцирующий секрет.

Рыбы Anomalops sp. и Photoblepharon sp. напоминают роботизированных монстров. У них люминесцирующие органы локализованы в вентральной части глазниц. При возбуждении эти рыбы могут включать и выключать люминесценцию. Причем светящийся поток не попадает на собственную сетчатку. Аномалопс втягивает орган люминесценции, имеющий форму горошины, в глазную ямку при помощи стебелька, на котором расположен орган люминесценции. А фотоблефарон закрывает свой люминопрожектор ложным нижним веком.

Некоторые виды светящихся рыб испускают свет постоянно, а некоторые производят пульсирующую люминесценцию при возбуждении. Излучаемый при этом свет имеет окраску в пределах от зеленоголубого до зелено-желтого оттенка. Длина волны этого свечения лежит в пределах 400-700 нм.

Таким образом, в условиях плохой освещенности водные животные могут утратить орган зрения или, наоборот, довести его строение до совершенства с тем, чтобы использовать даже минимальную освещенность мест своего обитания. При этом у рыб развиваются дополнительные адаптационные изменения.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

Нажмите, чтобы узнать подробности

Многих людей очень интересует, а как же видят животные? Все ли цвета воспринимают? Могут ли различать некоторые оттенки? Попробуем разобраться, в чем особенности зрения животных, и какие виды зверей отличаются цветным зрением.

Собаки

Собаки видят мир в блеклых оттенках фиолетово-синих и желто-зеленых цветов. Поэтому они слабо различают другие цвета. Но, вместе с тем, собаки отлично воспринимают ультрафиолет и хорошо видят в темноте. Кроме того, по некоторым данным, большинство собак – близорукие, а поэтому им сложно различать предметы, расположенные на дальнем расстоянии.

Кошки

Кошки, как и собаки, обладают потрясающим ночным зрением. По цветовым характеристикам зрения, кошки также не отличаются от собак.

Лошади

Кони, как и предыдущие животные, слабовыраженные дихроматы. Они видят в основном, желто-синие оттенки, могут отличать серый, а также зеленый цвет. Совсем не видят красный.

Птицы

Птицы обладают хорошим зрением, как с точки зрения цветового восприятия, так и относительно остроты и четкости картинки.

Змеи

Змеи способны видеть инфракрасное излучение, но вместе с тем, вероятнее всего, не видят синий и фиолетовый цвет, точно как и черепахи.

Грызуны

Они видят два основных цвета – зеленый и ультрафиолетовый.

Рыбы

Зрение разных видов рыб отличается. Почему? Есть несколько факторов, влияющих на это. Во-первых, это химический состав воды. Во-вторых, глубина, на которой обычно проживает рыба. Соответственно, чаще всего, чем глубже живут рыбы, тем меньше цветовой диапазон их зрения. Но вместе с этим, они могут видеть ультрафиолетовое и инфракрасное свечение.

Пауки

Обычные пауки не различают цветов. Порой они даже не могут отличить время суток. Но, есть некоторые виды прыгающих и хищных пауков, которые обладают достаточно острым зрением, и могут распознавать широкий спектр оттенков. По некоторым данным, размерность цветового пространства может достигать 4.

Насекомые

В основной своей массе, насекомые имеют неплохое зрение. Могут различать оттенки зеленого, желтого, синего, видеть ультрафиолетовое свечение и даже чувствовать тепловое излучение. Большинство из насекомых, кроме бабочек, не видят красный цвет.

Медузы

Как ни странно, за неимением мозга, медузы все равно могут видеть, правда, очень размыто. Светлые оттенки они не различают вовсе, видят только темные объекты, которые воспринимаются ими как препятствия.

Креветка-богомол

Вот мы и подошли к существу, которое может воспринимать самую широкую гамму цветов! Это креветка-богомол. Дело в том, что обитает это животное на коралловых рифах, где водится огромное количество существ всех цветов радуги, а поэтому такое развитое цветовосприятие им необходимо для охоты и выживания.


Наверное, каждый из нас когда-то задавался вопросом о том, все же как видят животные? Я тоже интересовался этим вопросом, и, поискав ответ в книжках, нашел его. Каким же было моё удивление, когда, пересмотрев десятки видеороликов и прочитав самые популярные статьи на эту тему, я обнаружил, что все они не соответствуют реальности!
В этой статье я рассмотрю зрение собак, кошек и лошадей, оставив ссылки на авторитетные издания по ветеринарной офтальмологии. Однако начну немного издалека.

Зрение – это очень сложный процесс, одно из пяти внешних чувств, благодаря которому мы можем видеть объекты вокруг нас с помощью глаз.

Когда зрение только зарождалось в живых организмах, оно было представлено простейшим светочувствительным глазом и позволяло понять, где есть свет, а где – тьма. Очень необычным и интересным примером является кубомедуза, у которой есть 4 простейших светочувствительных глаза, а также 2 сложноустроенных камерных глаза с роговицей, хрусталиком, сетчаткой. Такая медуза может видеть мир, однако изображение не очень резкое!

Постепенно совершенствуясь, зрительный аппарат приобретал светочувствительные пигменты (опсины), позволявшие определять конкретные цвета светового спектра. Конечно же происходили и другие изменения, однако мы не будем их рассматривать в этой статье.

Как видят люди?

У человека три светочувствительных пигмента (опсина), благодаря которым он может видеть комбинации красного, зелёного и синего цвета. И это особенно забавно, потому что у гораздо более древних форм жизни этих пигментов больше. Например, у древнего рака-богомола 12 (!) таких опсинов, а у большинства птиц и рептилий – 4 опсина, что позволяет им видеть ультрафиолетовые волны. Большинство же млекопитающих является дихроматами (2 опсина), а киты – монохромами (1 опсин) – и вовсе видят в черно-белых тонах. Эксперты по эволюции объясняют такое явление тем, что во времена господства динозавров млекопитающие (и в том числе люди) бодрствовали преимущественно ночью. За столь долгий период их глаза приспособились к ночному свету, утеряв свои опсины (зачем они ночью?). Сейчас же мы наблюдаем иную картину: сменившийся образ жизни влечет новые изменения, например, обезьяны старого света восстановили красный опсин (возможно это им необходимо для того, чтобы отличать спелые фрукты от незрелых, а также от ядовитых).

Вот такую картинку мы, люди, будучи трихроматами, видим , сидя в парке (кликните для увеличения изображения).

Трихроматическое зрение человека Парк глазами человека

Как видят кошки

Кошки, как и люди, трихроматы. Это означает, что их сетчатка содержит три опсина, позволяющих видеть комбинации красного, синего и зелёного цветов. Кошки видят почти ту же цветовую палитру, что и люди, однако более бледную. Так же, из-за меньшего содержания опсина в сетчатке, цвет объекта будет зависеть от его размера: красное яблоко кошка будет видеть красным, однако красную черешню – сероватой. (Loop & Bruce, 1978). Вот примерное изображение того, каким видят мир кошки (кликните для увеличения изображения).

Трихроматическое зрение кошек Парк глазами кошки

Как видят собаки

Собаки – дихроматы. В их сетчатке имеются красные и синие опсины, отсутствую зелёные (Jacobs et al., 1993). Однако красный цвет они видят не таким, каким его привыкли видеть мы, потому что их цветовой диапазон затрагивает лишь малую часть красного спектра. Поэтому красный цвет у собак в большей степени оттеночный. Вот примерное изображение того, каким видят мир собаки. Обратите внимание на то, что для собак зеленый цвет представляет собой комбинацию серо-синих тонов: разница между тёмно-зелёным и светло-зелёным цветом будет ощущаться ими в виде оттенков. (кликните для увеличения изображения)

Дихроматическое зрение собаки Парк глазами собаки

Как видят лошади

Лошади тоже дихроматы. Их сетчатка распознаёт комбинации синего и зелёного цвета, однако у них нет красного опсина. Тем не менее это не означает, что красного цвета не существует для лошади, просто она его видит в более тёмном оттенке сине-зелёных цветов. (Roth et al., 2008). Однако у лошади есть еще одно хитрое приспособление – её хрусталик. Хрусталик лошади имеет желтый фильтр, благодаря чему лошадь видит всё в желтоватом цвете. Этот фильтр, как полагают, необходим не только для лучшего ночного зрения, но и для отсекания излишних синих волн (Brondsted et al., 2012). Вот примерное изображение того, каким видят мир лошади (кликните для увеличения изображения).

Дихроматическое зрение лошади Парк глазами лошади

Как видят животные в темноте?

Кроме различного восприятия цветовых спектров, всем известно, что ночное зрение у животных лучше, чем у людей. Кошкам и собакам приписывают фантастические способности видеть в темноте. Но так ли это? И все ли животные могут этим похвастаться? Давайте разбираться.

Для того, чтобы узнать как видят животные в темноте, обратимся к анатомии глазного дна.

На глазном дне у животных различают диск зрительного нерва, сетчатку, сосуды сетчатки и тапетум. Это очень похоже на человеческое глазное дно, за исключением тапетума. Именно в этой структуре кроется секрет хорошего ночного зрения у животных.

Tapetum lucidum — это своеобразная отражательная пластинка, расположенная под сетчаткой. Она очень разнообразна по цветовой гамме (голубая, желтая, зелёная, красная, оранжевая, коричневая), но в основном желто-зелёная у кошек и оранжевая у собак. Вы наверняка видели, как у кошки или собаки отсвечивают глаза. Это и есть отблеск тапетума или по ветеринарному — тапетальный рефлекс.

Глазное дно собаки Глазное дно кошки

Тапетум есть у многих животных: собак, кошек, лошадей, слонов, оленей, львов, тигров, волков. А вот у свиней, большинства обезьян, птиц и экзотических животных его нет. Поэтому не все животные отлично видят в темноте. Ночные хищные птицы имеют отдельные механизмы для ночного зрения, о них недостаточно много известно, поэтому пока ограничимся лишь упоминанием об этом.

Ночное зрение человека Ночное зрение лошади Ночное зрение кошки/собаки

Однако не спешите делать выводы. Дело в том, что наличие тапетума не является непоколебимой супер-способностью. Для того, чтобы тапетум выполнял свою функцию, некий источник света всё же нужен, например, звездное небо, месяц и т.д. Другими словами, тапетум улучшает сумеречное зрение и ночное, однако в кромешной тьме животное будет ориентироваться с помощью обоняния, слуха и осязания.

Чтобы получить максимально полное представление о зрении собак, кошек и лошадей, следует внести ещё один параметр – остроту зрения.

Острота зрения – это характеристика четкости воспринимаемого изображения. У людей она определяется с помощью таблицы Сивцева. Редкий человек не проходил это обследование. На западе для определения остроты зрения используется таблица Снеллена. Суть определения зрения сводится к тому, что пациент должен прочесть буквы на разных строках с расстояния 6 метров (20 футов). Для того, чтобы пациенту не приходилось отходить на далёкое от таблицы расстояние, каждая строка напечатана более мелким шрифтом. В зависимости от количества прочитанных строк выдается результат, например, 20/100 (это означает, что пациент увидел с 20 футов то, что здоровый человек видит со 100 футов, и это его лучший результат).

На основании исследований сетчатки, подкреплённых экспериментальными данными, ученые выяснили, что острота зрения собак может варьировать от 20/50 до 20/140 (в привычной нам системе Сивцева это примерно 0,4-0,14). У кошек зрение хуже – 20/100-20/200 (по таблице Сивцева 0,1-0,2). А вот лошадь видит лучше, чем кошки и собаки – 20/30 (примерно, 0,7-0,8! по таблице Сивцева).

Красный – кошка, синий-собака, жёлтый-лошадь

В мире существует огромное количество животных, способных видеть иначе, чем мы. Конечно, мы не можем точно сказать, как видят животные, однако на основе полученных данных от исследований учёных можем лишь предположить, как выглядит мир в их глазах. Порой сложно себе представить, насколько разнообразным может быть зрение. И каково это – видеть ультрафиолетовые или инфракрасные лучи, а может быть гамма лучи! И какой могла бы быть наша жизнь, если бы мы могли это всё увидеть?

глаза животных

Различают ли животные цвета? Это интересный вопрос, но дать на него точный и исчерпывающий ответ нелегко. Нам, обладающим цветным зрением, трудно представить себе вселенную без красок, и у нас, естественно, возникает предположение, будто все живые существа также воспринимают окружающий мир в виде многокрасочных картин. Однако такое представление не соответствует действительности.

Цвет — понятие довольно произвольное и трудноопределимое. Цветоощущение нелегко исследовать и объяснить; именно поэтому ученые издавна испытывали трудности в объективном и точном толковании этой способности. В сущности, ни один предмет не обладает цветом; он просто поглощает белый дневной свет и отражает при этом лишь одну долю этого света, ту или иную часть солнечного спектра. Так, например, зеленые листья дерева поглощают все части спектра, кроме зеленой, которая ими отражается; именно это и делает их зелеными для наших глаз.

Попробуйте объяснить слепому, не прибегая к сравнениям, что такое красный цвет. Это окажется совершенно невозможным. Даже среди зрячих людей широко распространены различные степени цветовой слепоты. Один и тот же цвет люди зачастую оценивают по-разному; кроме того, наша оценка цветов продолжает совершенствоваться и меняться. Ведь Гомер постоянно называет море винно-красным, а у некоторых древнегреческих авторов встречается упоминание о зеленом цвете человеческого лица.

Радуга

МИР БЕЛОГО И ЧЕРНОГО

Из сказанного достаточно ясно, как трудно (учитывая также, что и сами мы в какой-то незначительной степени можем страдать дальтонизмом) применять к другим существам наши ограниченные и не вполне точные знания в области цветоощущения. Данной теме посвящено немало исследований, но многие из них недостаточно доказательны. Чрезвычайно трудно установить, различает или нет то или иное животное цвета. Ведь сами животные не в состоянии ответить на этот вопрос. Более того, почти всегда трудно решить, на что реагирует животное — на цвет или на степень яркости и белизны предмета. Поэтому для того, чтобы эксперимент представлял ценность, необходимо применять цвета, равноценные по яркости и степени белизны. В противном случае подопытное животное, особенно если оно относится к высшим животным, может отличить красный цвет от зеленого по относительной яркости, как это имеет место у людей, страдающих дальтонизмом.

Но, несмотря на очевидные ограничения, мы все же кое-что знаем в этой области. Так, можно с уверенностью сказать, что почти все млекопитающие, за исключением всех видов обезьян, совершенно не различают цветов. Они живут в мире черного и белого со значительным диапазоном промежуточных серых оттенков. Они зачастую отчетливо улавливают разницу в интенсивности черного цвета, в световой насыщенности белых и серых тонов. Последнее обстоятельство нередко приводит людей к выводу, будто определенные животные (например, собаки) различают некоторые цвета.

собаки

Как часто восхищенный хозяин готов поклясться, что его собака опознает по цвету платье, даже если оно надето на незнакомом человеке, что она различает миску или подушку исключительно по их окраске! Трудно представить себе, что можно жить в мире, лишенном красок! Между тем большинство млекопитающих по своим повадкам относится к типу ночных или сумеречных животных; они выходят из убежищ только тогда, когда мир начинает погружаться во мрак и терять свои краски, освещенный лишь слабым и неверным светом луны.

Впрочем, и для людей все это не так уж непривычно. Ведь мы легко смотрим одноцветные кинокартины; много газет и журналов до сего времени иллюстрируется однотонными фотоснимками, и мы воспринимаем их как отображение подлинной жизни. Простой рисунок, выполненный черным карандашом, часто кажется нам чрезвычайно естественным и живым. Несмотря на все пристрастие человечества к краскам, мы ощущаем их отсутствие значительно слабее, чем нам порой может показаться.

ТОРЕАДОРУ НЕ НУЖЕН КРАСНЫЙ ПЛАЩ

Собаки, кошки, кролики, крысы, лошади, овцы и даже быки не различают цветов, по крайней мере, в нашем понимании этого слова. В Испании в целях отработки наилучшей техники боя на арене проводилось много опытов по определению цветоощущения у быков. И хотя выяснилось, что ни один бык не в состоянии ясно и определенно выделить красный цвет из других и что быки вообще не чувствительны к красному цвету, классический костюм тореадора с его красным плащом вряд ли будет изменен. Красный цвет боевого плаща — уже установившаяся и прочная традиция, хотя сами тореадоры прекрасно знают, что не цвет плаща, а производимые им движения побуждают быка бросаться в атаку. Разъяренное животное нападает независимо от цвета плаща, которым его дразнят. (А ведь испанская коррида и сегодня привлекает множество туристов со всего мира, вот даже русские покупают недвижимость в Испании все больше и больше).

Коррида

Множество экспериментов над другими млекопитающими, в частности кошками, лошадьми, крысами и собаками, дали те же результаты. Животных обычно приучали к тому, что один какой-нибудь цвет ассоциируется с кормлением, а другой — нет. После того, как у животного выработается определенная реакция на цвет, яркость не связанного с пищей цвета постепенно изменяют, чтобы убедиться, что выбор животного не определяется степенью яркости.

Так или иначе, проведенные до настоящего времени опыты с достаточной убедительностью продемонстрировали как общую неспособность большинства млекопитающих различать цвета, так и факт наличия хорошего цветоощущения у одной из групп млекопитающих — обезьян. Интересно отметить, что для животных упомянутой группы, способных различать цвета, характерна также и яркая окраска. (Можно было бы также предположить, что цветоощущение связано с развитием высшей нервной деятельности, однако это не так: птицы, рыбы, пресмыкающиеся и насекомые часто способны различать цвета.) Вспомним хотя бы о большом значении ярко-синего и розового цвета в половой жизни мандрил и других обезьян.

обезьяны

Для большинства же других млекопитающих характерна неяркая окраска: различные сочетания желтовато-серых, коричневых и черных цветов; нередко встречается и белый цвет, связанный с естественной маскировкой. Более яркие расцветки у некоторых животных — либо результат искусственного скрещивания (это относится к собакам, крупному домашнему скоту), либо естественная цветовая защита, выработанная в условиях прежней окружающей среды. Красноватый цвет самца лисицы, каштановый оттенок белки или желто-коричневая окраска медведя — все эти расцветки превосходно подходят к соответствующему природному окружению. Таким образом, учитывая коррективы на естественную маскировку, можно сказать, что наличие у животных ярких красок на теле является определенным признаком их способности различать цвета.

РОЛЬ ЦВЕТА В ЖИЗНИ ПТИЦ

Это можно со всей очевидностью проследить на птицах. Как известно, яркое оперение имеет у большинства птиц важное значение в период спаривания; это является прямым доказательством их способности различать яркие краски. Можно соглашаться или спорить с Дарвином, высказавшим предположение о том, что яркая расцветка птиц-самцов помогает продолжению рода, делая их более привлекательными для самок. Так или иначе, яркое оперение играет в жизни птиц значительную роль.

полет птицы

Птицы обычно хорошо различают желтые, красные, зеленые и оранжевые оттенки. Синий цвет они видят хуже — отсюда относительная редкость ярко-синего оперения. Лишь немногие птицы, по-видимому, способны различать фиолетовый цвет. Этот цвет встречается в их оперении весьма редко. Когда же в окраске птиц и бывает синий или фиолетовый цвет (например, у соек, зимородков, попугаев-макао), то он почти всегда очень ярок. Это наводит на мысль, что указанные цвета доступны зрению птиц только при условии их повышенной яркости. Австралийский лирохвост, известный необычной формой и красками оперения, способен различать как синий, так и фиолетовый цвет: он даже подыскивает растения с цветами этих оттенков и приносит их в гнездо. Однако, как правило, птиц привлекает главным образом блеск и яркость, будь то какое-то отличительное пятно в оперении, лепестки цветка, луч маяка, блестящие предметы (известно, что галки и сороки часто похищают и прячут их).

Над птицами производилось меньше опытов, чем над млекопитающими, — возможно, потому, что их способность различать цвета подтверждается самим их видом. Проведенные опыты касались почти исключительно тех птиц, которых без затруднений можно держать в неволе. Серия экспериментов, проведенных с обыкновенными домашними курами, дает возможность понять некоторые специфические трудности, возникающие при исследовании цветоощущения у птиц. Перед курами рассыпали зерно, осветив его лампами разных цветов. Куры склевали все красные, зеленые и желтые зернышки и не тронули освещенных синим светом. Отсюда был сделан довольно естественный вывод о слепоте кур к синему цвету. Лишь при проведении дальнейших опытов было установлено, что при некоторой настойчивости можно добиться, чтобы куры стали клевать и синие зерна. Причина, по которой они первоначально отказывались от синих зерен, заключается в том, что курам обычно не приходится иметь дело с пищей синего цвета.

куры

Некоторые рыбы также различают определенные цвета. Как установлено, окунь, форель, мелкие рыбы — пескарь и колюшка — способны различать широкий диапазон красок. Окуней и некоторых других рыб в течение длительного времени кормили окрашенными в красный цвет личинками; после этого они легко поддавались обману, когда им бросали красную шерсть. Подобные же опыты проводились с пищей, окрашенной в желтый, оранжевый, зеленый и коричневый цвета. Пильчатые и обычные креветки также обладают цветоощущением. Все разновидности рыб, могущие менять окраску в зависимости от окружающей обстановки, как видно, в состоянии различать и соответствующие цвета. Как ни странно, никаких убедительных опытов не было проделано с хамелеонами, известными своей способностью изменять окраску тела; они, видимо, также умеют различать некоторые цвета. Установлено, что способностью цветоощущения обладают черепахи, а также многие виды ящериц. Некоторые ящерицы не выносят соли; поэтому можно приучить их отличать определенный цвет, если на бумагу этого цвета класть пропитанных солью червей.

Насекомые, как правило, обладают цветоощущением, но у различных их представителей оно значительно варьируется. Больше всего опытов по его определению проводилось над пчелами.

Пчелы

Наряду с иными был проведен и следующий несложный эксперимент. Небольшие квадраты серой бумаги (различных оттенков, но одинаковой яркости) располагались в шахматном порядке; в центре размещался синий квадрат. На каждом квадрате устанавливалась кормушка, причем в кормушке, находившейся на синем квадрате, был налит сироп, остальные были пусты. Через некоторое время пчел удалось приучить летать только к синему квадрату, даже если его положение относительно других изменялось.

Когда же синяя бумага была заменена красной (одинаковой яркости), пчелы оказались дезориентированными — они не умели отличить красный квадрат от серых. Пчелы слепы не только к красному цвету; они живут как бы в мире синих, фиолетовых и желтых оттенков; вместе с тем они (как и ряд других насекомых) способны проникнуть дальше человека в ультрафиолетовую часть спектра. Конечно, насекомые, являющиеся переносчиками пыльцы, летят к цветам, руководствуясь не только цветом, но и запахом; об этом свидетельствует, в частности, то, как легко пчелы находят цветы ивы, плюща, липы.

полет пчелы

МОСКИТЫ ПРЕДПОЧИТАЮТ ЧЕРНОЕ

Как правило, цветоощущением обладают лишь насекомые с хорошо развитыми, фасеточными глазами. Наилучшим цветоощущением среди насекомых обладают стрекозы; второе место, по-видимому, занимают осовидные мухи, а также некоторые разновидности бабочек и мотыльков. Обыкновенные мухи различают синий цвет; они его, вероятно, не любят, так как сторонятся окон, вымытых синькой, синих стен и занавесок. Москиты, различающие желтый, белый и черный цвет, предпочитают, по-видимому, последний. В одном из изобилующих этими насекомыми районов Орегона (США) был проведен опыт, в котором участвовали семь человек, одетых в платье различных цветов. Было установлено, что наибольшее количество москитов привлекла черная одежда (1499 за полминуты); на втором месте, со значительным отставанием, оказалась белая (520 насекомых за тот же промежуток времени).

Читайте также: