Реферат методы испытания материалов

Обновлено: 16.05.2024

При проведение испытаний стремятся воспроизвести такие условия воздействия на материал, которые имеют место при эксплуатации изделия, изготовленного из этого материала.

Основные признаки видов испытаний:

Способ нагружения (растяжение, сжатие, изгиб, кручение, срез);

Скорость нагружения (статическая, динамическая);

Продолжительность процесса испытания (кратковременная, длительная);

Методы испытания должны быть достаточно простыми и пригодными для массовго контроля качества продукции. Методы испытаний должны быть строго регламентированы стандартами.

Виды испытаний:

Статические испытания – испытуемый материал подвергается воздействию постоянной силы.

Измерение твердости – наиболее простой метод испытания св-в. Твердостью называют св-во материала оказывать сопротивление деформации в поверхностном слое при местных контактных воздействиях: вдавливание индентора (по Бринеллю, Виккерсу, Роквеллу) или царапанье (по Моосу).

Испытание на трещиностойкость.

В случае хрупкого разрушения для безопасной работы элементов конструкции и машин необходимо количественно оценивать размеры допустимых трещиноподобных дефектов.

Испытание на изгиб и сжатие.

Испытание на изгиб – схема испытаний образца, находящегося под действием двух пар сил, расположенных в плоскости его продольной оси, в которой возникают растягивающие и сжимающие напряжения. Целесообразность этих испытаний определяется широким распространением изгиба в практике нагружения деталей. На изгиб чаще испытывают материалы с малой пластичностью: чугуны, стали, керамика. Различают простой, или плоский, изгиб, при котором внешние силы лежат в одной из главных плоскостей образца, и сложный, вызываемый силами, расположенными в одной плоскости. Испытание на изгиб можно проводить почти на всех машинах, пригодных для испытания на сжатия, для этого применяют образцы прямоугольной или круглой формы в сечении. Определяющими хар-ми служат предел прочности при изгибе и угол изгиба. Три метода: 2-х точечный, 3-х точечный и 4-х.

Испытание на сжатие. Статические испытания на сжатие проводят для определения механических хар-к: модуля упругости, пределов пропорциональности, упругости и прочности, а также физического и условного пределов текучести. Эти хар-ки необходимы для обоснования конструкторских решений машин и узлов, рачета на прочность деталей машин и элементов конструкций, выбора материалов. Для описания процессов сжатия применим закон Гука (уравнение теории упругости)

Сила упругости, возникающая в теле при его деформации, прямо пропорциональна величине этой деформации. Испытание проводится на специальных машинах (прессах). В отличии от испытаний на растяжение, при испытании на сжатие деформациями образца являются укорочение и увеличение поперечного сечения, а не удлинение и сужение.

32. Методы определения твёрдости.

Твёрдость — свойство материала сопротивляться проникновению в него другого, более твёрдого тела — индентора. Для измерения твёрдости существует несколько шкал (методов измерения): Метод Бринелля — твёрдость определяется по диаметру отпечатка, оставляемому металлическим шариком, вдавливаемым в поверхность. Метод Роквелла— твёрдость определяется по относительной глубине вдавливания металлического шарика или алмазного конуса в поверхность тестируемого материала. Метод Виккерса — твёрдость определяется по площади отпечатка, оставляемого четырёхгранной алмазной пирамидкой, вдавливаемой в поверхность. Твёрдость по Шору (Метод вдавливания) — твёрдость определяется по глубине проникновения в материал специальной закаленной стальной иглы (индентора) под действием калиброванной пружины. Твёрдость по Шору (Метод отскока) — метод определения твёрдости очень твёрдых (высокомодульных) материалов, преимущественно металлов, по высоте, на которую после удара отскакивает специальный боёк, падающий с определённой высоты. Метод Кузнецова — Герберта — Ребиндера— твёрдость определяется временем затухания колебаний маятника, опорой которого является исследуемый металл; Метод Польди (двойного отпечатка шарика) — твердость оценивается в сравнении с твердостью эталона, испытание производится путем ударного вдавливания стального шарика одновременно в образец и эталон

Динамические испытания

ДИНАМИЧЕСКОЕ ИСПЫТАНИЕ, измерение силы воздействия движущихся тел на среду, сопротивляющуюся их движению. При помощи динамических испытаний выясняют, например, воздействие автомобиля на мост, по которому он проезжает, либо силу удара шасси самолета о землю при посадке.

Ударная вязкость – это работа удара, отнесенная к начальной площади поперечного сечения образца в месте концентратора. Тзмерение ударной вязкости материалов является основным динамическим испытанием. Наиболее распространение получили методы Изота и Шарпи. Оба метода основаны на разрушении образца с надрезом одним ударом маятникого копра. Образец закрепляют в опорах и наносят удар: по стороне с зарубкой – метод Изода, по противоположному надрезу стороне – метод Шарпи.

При испытании по Изоду измеряют энергию, поглощенную консолью при переломе образца во время опыта.

При испытании по Шарпи измеряют энергию, поглощенную бруском при переломе образца в процессе опыта.

Ударную вязкость определяют как отношение работы разрушения, затраченной на деформацию и разрушение ударным изгибом надрезанного образца, к начальной площади поперечного сечения образца в месте надреза.

Испытания ударной вязкости широко применяется для оценки склонности материала к хрупкому разрушению при низких температурах. Преимущество этого метода является простота эксперимената, учет влияния скорости нагружения и концентраций.

Испытания при циклическом нагружении.

Испытание на усталость. Различные виды испытания на усталость имитируют изменения напряжений, которым подвергаются материалы различных деталей, находящихся в эксплуатации. Усталостное разрушение наблюдается при растяжении, сжатии, изгибе и кручении, а также при более сложных видах нагружения.

Цикл нагружения – совокупность последовательных значений переменных напряжений за один период процесса их изменения. Результаты испытания могут быть выражены графически, а также определы расчетным путем по формулам. При испытании на усталостьс постоянным средним напряжением цикла предел выносливости определяют как наибольшее значени амплитуды напряжений цикла, при котором не происходит усталостного разрушения после произвольно большего числа циклов нагружения.

Испытания на долговечность.

Долговечность материалов определяют испытаниями на усталость, ползучесть, длительную прочность, износ, коррозию.

Испытание на ползучесть. Медленная пластическая деформация материала под действием постоянной нагрузки, создающей в детали напряжения, превышающие предел упругости, но меньшие, чем предел текучести при данной темпер. , называется ползучестью. Различают

ползучесть при низких и высоких температурах. Испытания проводятся под действием растяжения.

Трибологические испытания. При трибологических испыт. Основными понятиями являются износ и износостойкость. Износ – изменение размеров, формы, массы или состояния поверхности вследствие разрушения поверхностного слоя изделия при трении. Износ-ть – способность материалов сопротивл. Изнашиванию в условиях внешнего трения. Износ деталей машин, элементов строительных конструкций зависит от условий трения и св-в материала изделия. Износ, сопровождается отрывом частиц материала и потерей массы.

Реферат - Методы статических испытаний материалов


1. Испытания материалов в обоймах и камерах высокого давления
2. Испытания образцов с плоскими гранями
3. Испытания материалов на трубчатых образцах
4. Испытания плоских образцов и элементов сосудов при двухосном напряжении.
5. Другие методы статических испытаний материалов при сложном напряженном состоянии.

Биргер И.А. Остаточные напряжения

  • формат djvu
  • размер 13.24 МБ
  • добавлен 26 января 2009 г.

Государственное научно-техническое издательство машиностроительной литературы, Москва, 1963 г. В книге рассмотрены вопросы, касающиеся образования остаточных напряжений в металлах и влияния их на прочность при статических и переменных нагрузках; описаны методы определения и расчета остаточных напряжений в стержнях, пластинках, трубах, дисках, цилиндрах, а также в поверхностных слоях деталей произвольной формы. Книга предназначена для инженеров-к.

Блюменлуэр Х. Испытание материалов

  • формат pdf
  • размер 38.89 МБ
  • добавлен 10 ноября 2010 г.

Справочник. Пер. с нем. 1979. - 448 с. В справочнике систематизированы приемы экспериментирования при механико-технологических испытаниях (на растяжение, сжатие, изгиб, кручение, срез, усталость, ударную вязкость, определение параметров механики разрушения, технологические пробы), а также при изучении структурных изменений (оптическая и электронная микроскопия, в том числе растровая, рентгеновские и другие методы радиографического исследования, а.

Галин Л.А (ред.). Развитие теории контактных задач в СССР

  • формат djvu
  • размер 6.14 МБ
  • добавлен 14 декабря 2010 г.

М.: Наука, 1976. - 493 с. Книга содержит обзор основных научных результатов, посвященных решению контактных статических, динамических и температурных задач для упругих, вязкоупругих и пластических тел. Изложены математические методы решения плоских и пространственных задач при различных граничных условиях на площадках контакта. Приведены основные соотношения механики сплошных сред и теории упругости. Рассчитана на научных и инженерно-технических.

Клюшников В.Д. Математическая теория пластичности

  • формат djvu
  • размер 1.57 МБ
  • добавлен 23 января 2010 г.

М., Изд-во Моск. ун-та, 1979. 208 с 71 ил. Библиогр. 34назв. В книге излагаются основы современной теории пластичности и аналитические методы решения статических краевых задач, включая задачи устойчивости. Большое количество примеров иллюстрирует, с одной стороны, особенности применения того или иного соотношения пластичности, а с другой - возможности различных методов решения.

Реферат - Испытания при пониженных температурах

  • формат doc
  • размер 253.3 КБ
  • добавлен 12 февраля 2010 г.

Реферат - Нормативные документы в области механических испытаний конструкционных материалов

  • формат docx, doc
  • размер 810.61 КБ
  • добавлен 23 декабря 2009 г.

Испытания на растяжение, сжатие, изгиб, усталость, ползучесть, кручение и т. д. Сделан по материалам ГОСТов.

Сорокин В.Н. Экспериментальная механика

  • формат doc
  • размер 9.43 МБ
  • добавлен 29 января 2011 г.

Конспект лекций – Омск: Изд-во ОмГТУ, 2010. – 116 с. Объекты испытаний. Требования к образцам и их классификация. Структура испытательных комплексов. Узлы испытательных машин. Машины для статических испытаний. Машины для испытаний на усталость. Стенды для испытания натурных конструкций. Тензометрические методы измерения деформаций. Поляризационно-оптический метод исследования напряжений. Голографическая интерферометрия. Оптико-геометрические мето.

Терентьев В.Ф., Колмаков А.Г. Механические свойства металлических материалов

  • формат doc
  • размер 7.09 МБ
  • добавлен 13 октября 2011 г.

Учебное пособие.- М.: Изд-во МГТУ им. Н.Э.Баумана, 2002. - 120 с., ил. Рассмотрены современные представления о процессах пластической деформации и разрушения металлических материалов Даны основные положения теории и практики проведения испытаний и определения основных характеристик механических свойств. В соответствии с государственными стандартами описаны основные методы испытаний в условиях кратковременного статического деформирования: растяж.

Трощенко В.Т. Прочность металлов при переменных нагрузках

  • формат djvu
  • размер 1.57 МБ
  • добавлен 29 марта 2010 г.

Киев. Наук. Думка. 1978. 176 с. В монографии изложены современные представления о прочности металлов при переменных нагрузках. Рассмотрены основные вопросы усталости металлов; методы испытаний металлов в условиях переменных нагрузок; закономерности влияния различных конструктивных, эксплуатационных и технологических факторов на характеристики сопротивления усталостному разрушению; рассеяние результатов испытаний на усталость; методы расчета преде.

Школьник Л.М. Справочник. Методика усталостных испытаний

  • формат djvu
  • размер 7.18 МБ
  • добавлен 29 марта 2010 г.

М., Металлургия, 1978. 304 с. В справочнике впервые на современном научном уровне рассматриваются методы и оборудование для проведения длительных и ускоренных испытаний металлов, деталей машин и механизмов при переменных нагрузках и наложении среды, трения и температуры, используемые при определении характеристик усталостной прочности. Предназначен для широкого круга инженерно-технических работников металлургической промышленности, тяжелого, тран.


Введение ……………………………………………………………….….. 3
1. Механические свойства металлов. Упругая и пластическая деформация …………………………………………………………………. …. 4
2. Свойства металлов при статических испытаниях: растяжение, сжатие, изгиб ……………………………………………………………….……. 7
3. Свойства при динамических испытаниях ………………………..…. 21
Заключение…………………………………………………………. …. 27
Список использованной литературы ……………………………..……. 28
Нормативные ссылки …………………………………………………… 29


В данной курсовой рассмотрены основные виды статических и динамических испытаний металлов, имеющих практическое значение для изучения их механических свойств, которые определят их поведениепри эксплуатации и обработке. Для оценки механических свойств в связи с многообразием их эксплуатации и обработки проводят испытания, в той или иной мере имитирующие реальные условия. Результаты испытаний используются для решения основной задачи – повышение качества металлических материалов, в частности улучшение их механических свойств.1. Механические свойства металлов. Упругая и пластическая деформация.

Под действием сил или системы сил металлический образец реагирует на это, изменяя свою форму (деформируется). Различные характеристики, которыми определяются поведение и конечное состояние металлического образца в зависимости от вида и интенсивности сил, называются механическими свойствами металла.Интенсивность силы, действующей на образец, называется напряжением и измеряется как полная сила, отнесенная к площади, на которую она действует. Под деформацией понимается относительное изменение размеров образца, вызванное приложенными напряжениями.
Деформация называется упругой, если после снятия нагрузки тело восстанавливает свою первоначальную форму.
Некоторые металлическиеконструкции намеренно проектируют так, чтобы они упруго деформировались. Так, от пружин обычно требуется довольно большая упругая деформация. В других случаях упругую деформацию сводят к минимуму. Мосты, балки, механизмы, приборы делают по возможности более жесткими. Упругая деформация металлического образца пропорциональна силе или сумме сил, действующих на него. Это выражается законом Гука, согласнокоторому напряжение равно упругой деформации, умноженной на постоянный коэффициент пропорциональности, называемый модулем упругости: ( = (E, где ( – напряжение, ( – упругая деформация, а E – модуль упругости (модуль Юнга). Модули упругости ряда металлов представлены в таблице 1.
Таблица 1
|Металл |Вольфрам |Железо (сталь) |Медь |Алюминий |Магний|Свинец |
|Модуль Юнга, 105 |3,5 |2,0 |1,1 |0,70 |0,45 |0,18 |
|МПа | | | | | | |


Когда к металлическому образцу прикладываются напряжения,превышающие его предел упругости, они вызывают пластическую (необратимую) деформацию, приводящую к необратимому изменению его формы. Более высокие напряжения могут вызвать разрушение материала.
Важнейшим критерием при выборе металлического материала, от которого требуется высокая упругость, является предел текучести. У самых лучших пружинных сталей практически такой же модуль упругости, как и у самыхдешевых строительных, но пружинные стали способны выдерживать гораздо большие напряжения, а следовательно, и гораздо большие упругие деформации без пластической деформации, поскольку у них выше предел текучести.
Пластические свойства металлического материала (в отличие от упругих свойств) можно изменять путем сплавления и термообработки. Так, предел текучести.

Наклеп может быть также следствием холодной обработки металла. Например, при изготовлении клепаных конструкций отверстия для заклепок зачастую продавливают (пробивают) на специальных прессах. В результате материал у краев отверстия оказывается наклепанным, обладает повышенной хрупкостью и при действии переменных напряжений в этой зоне возможно появление трещин. Поэтому целесообразно пробивать… Читать ещё >

  • техническая механика: сопротивление материалов

Испытание материалов па растяжение и сжатие. Основные механические характеристики материалов ( реферат , курсовая , диплом , контрольная )

Конструктор, выбирая материал для проектируемой детали, а затем рассчитывая ее на прочность (жесткость, устойчивость), должен располагать данными о механических свойствах материала, т. е. его прочности, пластичности и т. п.

В связи с этим создано много различных видов испытаний, но основными и наиболее распространенными являются испытания на растяжение и сжатие. С их помощью удается получить наиболее важные характеристики материала, находящие прямое применение в расчетной практике.

Для испытания на растяжение используют специально изготовленные образцы (рис. 11), основной особенностью которых является наличие усиленных мест захвата и плавного перехода к сравнительно узкой ослабленной рабочей части. Начальную расчетную длину /0 образца принимают обычно раз в 10 большей диаметра d.

Стандартный образец для испытаний на растяжение.

Рис. 11. Стандартный образец для испытаний на растяжение.

Испытания на растяжение и сжатие проводят на специальных машинах, где усилие создают либо при помощи груза, действующего на образец через систему рычагов (рычажная машина), либо при помощи гидравлического давления, передаваемого на поршень (гидравлическая машина). Современные испытательные машины обычно снабжены прибором для автоматической записи диаграммы растяжения — сжатия. Это дает возможность сразу после испытаний получить вычерченную в определенном масштабе кривую F = / (At), которую называют диаграммой растяжения образца.

Диаграмма растяжения образца.

Рис. 12. Диаграмма растяжения образца.

На рис. 12 показан примерный вид диаграммы растяжения, полученной при испытании образца из малоуглеродистой стали. На диаграмме точка 0 соответствует началу растяжения образца. В начальной стадии испытания (до точки А с ординатой F"4) зависимость между силой и удлинением линейна, т. е. справедлив закон Гука. При растягивающей силе Fy (т. В), почти не отличающейся от Fm, в образце возникают первые остаточные деформации. При некотором значении растягивающей силы FT наблюдается рост удлинения образца без увеличения нагрузки. Это явление называется текучестью металла. Соответствующий участок диаграммы (почти горизонтальная линия) называется площадкой текучести.

В этой стадии деформации полированная поверхность образца становится матовой и на ней можно обнаружить сетку линий, наклоненных к оси образца под углом примерно 45°. Это так называемые линии Людерса — Чернова, представляющие собой следы сдвигов частиц материала. Направление указанных линий соответствует площадкам, на которых при растяжении образца возникают наибольшие касательные напряжения.

По окончании стадии текучести материал вновь начинает сопротивляться деформации (т. L), здесь связь между силой и удлинением нелинейна: удлинение растет быстрее нагрузки. Этот участок диаграммы называют зоной упрочнения. При силе, примерно равной Fmax, на образце появляется местное утоньшение — шейка (т. С), в результате сопротивление образца падает и его разрыв (т. D) происходит при силе, меньшей Fmax.

Пользоваться построенной диаграммой растяжения образца неудобно, так как она существенно зависит от размера поперечного сечения образца и длины выбранной измерительной базы /0. Для того чтобы исключить влияние этих факторов, диаграмму Д/ = /(F) перестраивают: все ординаты делят на начальную площадь поперечного сечения Аа, а все абсциссы — на начальную расчетную длину /а. В результате получают так называемую условную диаграмму растяжения материала 5%. К числу пластичных материалов можно отнести медь, алюминий, латунь, малоуглеродистую сталь и др. Менее пластичными являются дюраль и бронза. К числу слабопластичных материалов относится большинство легированных сталей.

На рис. 14, а представлены диаграммы растяжения различных пластичных материалов. Как видим, некоторые пластичные материалы не имеют ярко выраженной площадки текучести.

Диаграммы растяжения различных материалов.

Рис. 14. Диаграммы растяжения различных материалов: а) пластичные материалы; б) хрупкий материал Противоположным свойству пластичности является свойство хрупкости, т. е. способность материала разрушаться при незначительных остаточных деформациях. Для таких материалов величина остаточного удлинения при разрыве не превышает 2−5%, а в ряде случаев измеряется долями процента. Типичные хрупкие материалы — серый чугун, высокоуглеродистая инструментальная сталь, камень и др. Хрупкие материалы дают иного рода диаграммы растяжения (см. рис. 14, б).

Такая диаграмма не имеет явно выраженного прямолинейного участка, т. е. прямой пропорциональности между напряжением и относительным удлинением не наблюдается. У хрупкого материала отсутствует явление текучести, и деформации упруги почти вплоть до разрушения. Следует отметить, что деление материалов на пластичные и хрупкие является условным, так как в зависимости от условий испытания (скорость нагружения, температура и т. п. ) и вида напряженного состояния хрупкие материалы способны вести себя как пластичные, а пластичные — как хрупкие.

Остановимся дополнительно еще на некоторых вопросах, связанных со статическими испытаниями малоуглеродистой стали (и других пластичных материалов) на растяжение. Опытным путем установлено, что при разгрузке образца, растянутого так, что в нем возникают напряжения выше предела упругости и даже выше предела текучести (например, от точки N диаграммы на рис. 15), линия разгрузки оказывается прямой, параллельной начальному участку ОА диаграммы. Следовательно, полная деформация образца состоит из двух частей — упругой, исчезающей после снятия нагрузки, и остаточной (пластической).

Закон упругой разгрузки.

Рис. 15. Закон упругой разгрузки.

Полное удлинение, соответствующее нагрузке в точке N, выражается отрезком OL, упругое — отрезком ML и пластическое — отрезком ОМ оси абсцисс диаграммы (см. рис. 15).

Упругая деформация и при напряжениях, больших предела пропорциональности, может быть также определена по закону Гука. Это следует из того, что линия разгрузки — прямая. Параллельность этой линии начальному участку диаграммы указывает, что модуль упругости Е при разгрузке имеет то же значение, что и при нагружении в пределах справедливости закона Гука.

Если подвергнуть повторному нагружению образец, который был предварительно растянут до возникновения в нем напряжений, больших предела текучести, то оказывается, что линия нагрузки практически совпадает с линией разгрузки, а часть диаграммы, лежащая левее точки, от которой производилась разгрузка, не повторяется. Таким образом, в результате предварительной вытяжки материала за предел текучести его свойства изменяются: повышается предел пропорциональности и уменьшается пластичность. Это явление называется наклепом. В определенном смысле можно сказать, что в результате наклепа материал упрочняется.

Уменьшение пластичности материала при наклепе подтверждается следующим. Пластичность материала характеризуется значением относительного остаточного удлинения при разрыве Показать весь текст Стоимость уникальной работы

Читайте также: