Реферат метаматериалы метаповерхности устройства на метаматериалах

Обновлено: 07.07.2024

Презентация на тему: " Метаматериалы 1. Метаматериалы материалы,природные свойства которых обусловлены не столько природными физическими свойствами, сколько периодической микроструктурой." — Транскрипт:

2 Метаматериалы материалы,природные свойства которых обусловлены не столько природными физическими свойствами, сколько периодической микроструктурой создаваемой человеком. Куб метаматериала представляет собой трехмерную матрицу, образованную медными проводниками и кольцами с разрезом. Микроволны с частотами около 10 ГГц ведут себя в таком кубе необычно, потому что для них куб имеет отрицательный показатель преломления. Шаг решетки 2,68 мм Суперлинза со сверх разрешением радиодиапазона 2/24

3 Свойства и строение метаматериалов Строительными блоками метаматериалов являются электромагнитные резонаторы, обычно в виде металлических полосок, спиралей, разорванных колец. (рис. 1) Изменяя форму, размеры, взаимное расположение резонаторов, можно направленно формировать свойства метаматериалов. Свойства метаматериалов существенно отличаются от свойств компонентов, входящих в его состав, и определяются особым упорядочением и структурой компонентов (рис. 2) рис. 1 рис. 2 3/24

4 История создания В 1898 году Джагадис Чандра Бозе провел первый микроволновый эксперимент по исследованию поляризационных свойств созданных им структур искривленной конфигурации. В 1914 году Линдман воздействовал на искусственные среды, представлявшие собой множество беспорядочно ориентированных маленьких проводов, скрученных в спираль и вложенных в фиксировавшую их среду. Первые упоминания о метаматериалах с отрицательным коэффициентом преломления начинаются с упоминания работы советского физика Виктора Веселаго, опубликованной в журнале "Успехи физических наук" за 1968 г. 4/24 Джагадис Чандра Бозе Виктор Веселаго

5 Отрицательный показатель преломления Для всех сред, которые могут быть найдены в природе, лучи падающего и преломленного света находятся по разные стороны от нормали, восстановленной к границе раздела сред в точке преломления. Природные материалы с отрицательной диэлектрической проницаемостью хорошо известны – это любой металл при частотах выше плазменной частоты. В этом случае ε

6 Отрицательный показатель преломления Для достижения μ

8 Применение Потенциальные применения метаматериалов охватывают все области, в которых используется электромагнитное излучение - от космических систем до медицины. Спектр электромагнитных метаматериалов, разрабатываемых в настоящее время огромен: С помощью метаматериалов можно создавать устройства, создание которых невозможно только при использовании природных материалов. отрицательный коэффициент преломления изображение высокой четкости плащ-невидимка нано-оптические и квантовые информационные технологии радиочастотные, СВЧ, терагерцевые, оптические метаматериалы работы в соответствующей области нанотехнологий - нанофотонике - позволят создавать устройства, гораздо быстрее обрабатывающие информацию, чем существующие компьютеры. Благодаря тому, что метаматериалы обладают отрицательным показателем преломления, они идеальны для маскировки объектов, так как их невозможно обнаружить средствами радиоразведкимаскировкирадиоразведки 8/24

9 Используя метаматериалы можно не только существенно улучшить параметры известных электромагнитных приборов, но и создать принципиально новые приборы: от сверх линз с разрешением много меньшим длины волны излучения до экранов невидимости. Большинство практических применений - от экранов невидимости до сверх линз и поляризаторов требуют создания метаматериала с прецизионными трехмерными элементами. 9/24

10 ДОСТИЖЕНИЯ: 1. Суперлинза (материалах с отрицательным показателем преломления можно преодолеть дифракционный предел разрешения обычной оптики.Первая экспериментально продемонстрированная линза с отрицательным показателем преломления имела разрешение в три раза лучше дифракционного предела.) 2. Видение сквозь стены. ( новый класс искусственных материалов, которые демонстрируют сильный магнитный отклик на излучение терагерцевого диапазона.) 3. Блеф-стена. (создаёт иллюзию отсутствия реального объекта, то "ворота" формируют впечатление, что объект (в данном случае стена) существует там, где на деле его нет (то есть имеется открытый канал). 4. Антизеркало ( при отражении электромагнитной волны оно обращает магнитную составляющую колебаний, но не трогает электрическую. Так что в сравнении с зеркалом обычным, это можно было бы назвать анти зеркалом.) 5. Плащ-невидимка. 10/24

11 Фотонный кристалл Фотонный кристалл – это периодическая структура, позволяющая изменять направление излучения и выделять (пропускать или поглощать) излучение с определенной частотой. Идея фотонного кристалла была предложена в 1987 году Эли Яблоновичем Благодаря периодическому изменению коэффициента преломления, позволяют получить разрешённые и запрещённые зоны для энергий фотонов. 11/24

12 Фотонный чип Устройство, основанное на квантовой запутанности фотонов, в котором производятся всевозможные манипуляции с квантовым состоянием запутанных фотонов и с высокой точностью производятся измерения полученных результатов. Цель – создание компактных высокоскоростных устройств обработки информации, которые могут успешно справляться с входными потоками, скоростью более чем 100 гигабит в секунду. 12/24 Квантовые запутанности фотонов

13 Такой плащ позволяет сделать невидимым закрываемый им объект, поскольку он не отражает свет. 13/24

15 Гиперболические метаматериалы Характеристики: Высокая степень анизотропности Изготавливаются из переходных металлов и диэлектрических слоев Обладают свойствами металла и диэлектрика Дисперсия света в таких материалах становится гиперболической Могут повысить плотность фотонах состояний, пропорциональную скорости радиоактивного распада Большое их количество вызывает потери Метаматериалы с гиперболической дисперсией.Примеры 3D HMMs с высокой степенью анизотропности. Изготовлены из плазмонной нанопроволки(А) и переходных слоев металла и диэлектрика(В). k(x) и k(0)-тангенциальные компоненты нормированного волнового вектора;Ex,Ey,Ez-это диагональные компоненты тензора диэлектрической проницаемости свободного пространства,-длина волны в свободном пространстве. (С)Имитация излучения в HMM и спектра мощности в HMM по (вверху)сравнению с обычными диэлектриками(внизу) 15

16 Метаповерхности Метаповерхности это очень тонкие пленки метаматериалов, содержащих слои оксидов или двумерную структуру мельчайших субволновых антенн. Метаповерхности создаются с использованием электронно-пучковой литографии или резки сфокусированным ионным пучком, совместимых с существующими полупроводниковыми технологиями и процессами. В последнее время создаются из оксидов цинка и индия, легированного алюминия и галлия. У этих металлов и окисей металлов меньшие оптические потери и более широкие возможности для модуляции в уже существующие оптические системы. Метаповерхность 16/24

17 Свойства мета поверхностей характеризуются малыми потерями широкий рабочий спектр контроль характеристик света(частота, фаза, импульс, угловой момент и поляризация) эффективная модуляции света генерация световых импульсов заданной формы, управления распространением световых пучков в пространстве диагностика структур с нано точностью 17/24 Изображения мета поверхности, полученное при помощи сканирующего туннельного микроскопа.

18 18/24 Справа на рисунке (часть Б) схематически изображена так- называемая "гиперболическая мета поверхность" - миниатюрная металлическая решетка, используемая для увеличения скорости испускания фотонов квантовыми излучателями. Область ее применения - квантовые информационные системы, включая квантовые компьютеры, потенциально намного более мощные, чем современные компьютеры Слева на рисунке (часть A) показана матрица нано-антенн, представляющая собой пример плазмонной мета поверхности. Ее использование возможно в ряде приложений, включая применение ее в качестве гиперлинзы с целью повышения разрешающей способности оптических микроскопов, в некоторых случаях до 10 раз.

19 Гиперболические мета поверхности Характеристики: Малые,восполнимые потери Широкий контроль над плотностью фотонных состояний Гиперболические мета поверхности.(А) Иллюстрация увеличения скорости излучения квантовых источников на мета поверхности,состоящей из металлической решетки на диэлектрической подложке (В и С)Иллюстрация поверхностных гиперлинз без усиления(В) и с усилением (С).Два рассеивателя находятся на верхней части решетки и обладают субволновым разделением 19/24

21 Вывод Потенциальные применения метаматериалов охватывают все области, в которых используется электромагнитное излучение - от космических систем до медицины. отрицательный коэффициент преломления изображение высокой четкости маскировочные технологии нано-оптические и квантовые информационные технологии компьютерные технологии на основе фотонного чипа В каждой из областей ученые добились немалых достижений, но пока технологии на основе метаматериалов не получили широкого использования в обществе. Основная проблема во всех областях-миниатюризация технологий. 21/24

23 Презентацию подготовили: Группа 1350 Сальянов Александр Добрых Дмитрий Михайловская Анна Соколов Павел Чернядьев Александр Зверев Александр 23/24

Теперь Смит надеется математическим образом рассчитать и построить трехмерную структуру, которая могла бы скрывать объект полностью при наблюдениях из любой точки. А проблема с видимым светом состоит в том, что экспериментаторам в таком случае придется иметь дело с гораздо меньшими длинами волн, ну, а это в свою очередь означает, что оптические метаматериалы должны быть основаны уже на структурах… Читать ещё >

Основная задача, стоящая перед разработчиками маскирующих устройств, заключается в том, чтобы сделать объект невидимым, за счет выполнения двух необходимых требований: свет не должен отражаться от объекта, и должен полностью обходить объект. При этом наблюдатель должен видеть только задний фон, а никоим образом не предмет, замаскированный устройством-невидимкой.

Благодаря последним достижениям в области материаловедения идея Веселаго была возрождена. Электромагнитные свойства веществ определяются особенностями образующих их атомов и молекул, обладающих довольно узким диапазоном характеристик. Поэтому свойства миллионов известных нам материалов не так уж разнообразны. Однако в середине 1990;х гг. ученые из Центра технологии материалов им. Маркони в Англии занялись созданием метаматериалов, которые состоят из макроскопических элементов и рассеивают электромагнитные волны совсем не так, как любые известные вещества.

В 2000 г. Дэвид Смит вместе с коллегами из Калифорнийского университета в Сан-Диего изготовил метаматериал с отрицательным показателем преломления. Поведение света в нем оказалось настолько странным, что теоретикам пришлось переписать книги по электромагнитным свойствам веществ. Экспериментаторы уже занимаются разработкой технологий, в которых используются удивительные свойства метаматериалов, и создают суперлинзы, позволяющие получать изображения с деталями меньше длины волны используемого света.

В настоящее время принцип работы, так называемых плащей-невидимок из метаматериалов (греч. мета — сверх, за пределами), может быть основан на том, что они преломляют проходящий сквозь них свет таким образом, что внешний наблюдатель не может заметить скрываемый предмет. Для их создания требуются материалы с отрицательным показателем преломления света, которые и позволяют свету огибать твёрдое тело так, как будто на его месте ничего нет.

1. Метаматериалы

Метаматериамл — композиционный материал, свойства которого обусловлены не столько свойствами составляющих его элементов, сколько искусственно созданной периодической структурой.

Одно из возможных свойств метаматериалов — отрицательный (или левосторонний) коэффициент преломления, который проявляется при одновременной отрицательности диэлектрической и магнитной проницаемостей. Пример такого метаматериала показан на Рисунке 1.

Диэлектрическая проницаемость средыфизическая величина, характеризующая свойства изолирующей среды и показывающая зависимость электрической индукции (D) от напряженности электрического поля (E)

Магнитная проницаемостьфизическая величина коэффициент (зависящий от свойств среды), характеризующий связь между магнитной индукцией (B) и напряженностью магнитного поля (H) в веществе.

Природные материалы с отрицательной диэлектрической проницаемостью хорошо известны — это любой металл при частотах выше плазменной частоты (при которой металл становится прозрачным). В этом случае е щ0.

1.1 Создание метаматериалов

Отрицательные е или м получаются в том случае, когда электроны в материале движутся в направлении, противоположном по отношению к силам, создаваемым электрическим и магнитным полями. Хотя такое поведение кажется парадоксальным, заставить электроны двигаться против сил электрического и магнитного полей не так уж сложно.

Ключ к такого рода отрицательной реакции —резонанс, то есть стремление колебаться со специфической частотой. Он создается в метаматериале искусственно с помощью крошечных резонансных контуров, имитирующих отклик вещества на магнитное или электрическое поле. Например, в разорванном разрезном кольцевом резонаторе (РКР) магнитный поток, проходящий через металлическое кольцо, наводит в нем круговые токи, аналогичные токам, обуславливающим магнетизм некоторых материалов. А в решетке из прямых металлических стержней электрическое поле создает направленные вдоль них токи.

Свободные электроны в таких контурах колеблются с резонансной частотой, зависящей от формы и размеров проводника. Если приложено поле с частотой ниже резонансной, будет наблюдаться нормальная положительная реакция. Однако с увеличением частоты отклик становится отрицательным, так же как в случае с маятником, движущимся навстречу, если толкать его с частотой выше резонансной. Таким образом, проводники в некотором диапазоне частот могут реагировать на электрическое поле как среда с отрицательной е, а кольца с разрезами могут имитировать материал с отрицательной м. Эти проводники и кольца с разрезами и есть элементарные блоки, необходимые для создания широкого ассортимента метаматериалов, в том числе таких, которые искал Веселаго.

Тонкие металлические проволоки

Массив из тонких металлических проволок предложен как первая структура с отрицательной диэлектрической проницаемостью. Большое влияние на развитие исследований материалов с отрицательным показателем преломления оказали работы Пендри. Структура с е 2 + мH 2 .

Действительно, если диэлектрическая и магнитная проницаемости меньше нуля, то из данной формулы совершенно очевидно, что энергия, переносимая волной в данном материале отрицательна! Ограниченность применения вышеуказанной формулы заключается в том, что диэлектрическая и магнитная проницаемости зависят от частоты, поэтому выражение для плотности энергии следует записать с учетом дисперсии в виде:

откуда получаем необходимые условия:

То есть, в левых средах неминуемо присутствует частотная дисперсия.

Следует заметить, что сам факт противоположной направленности фазовой и групповой скорости не является чем-то новым. Он, в частности, обсуждался ещё в работе Л. И. Мандельштама . Кроме того, давно известны электронные устройства (например, лампы обратной волны ЛОВ), в которых фазовая скорость противоположна направлению потока энергии. В последнее время очень интенсивно обсуждаются свойства так называемых фотонных кристаллов, в которых также может быть реализована противоположная направленность векторов фазовой и групповой скорости. Однако фотонные кристаллы в общем случае являются существенно анизотропными материалами и не могут быть охарактеризованы скалярным коэффициентом преломления n. Это же относится и к устройствам типа ЛОВ.

Появление веществ с отрицательным значением n ставит очень важный вопрос: в какой мере для них справедливы все те законы и формулы электродинамики, оптики и смежных технических наук, в которые входит величина коэффициента преломления.

4. Материалы — невидимки

Это возможно благодаря тому, что слои с обычным и отрицательным коэффициентом преломления расположены особым образом, что приведет к тому, что лучи будут огибать предмет, помещенный внутри полости и, выходить из-под плаща-невидимки так, как будто внутри него ничего нет (См. Рисунок 4).

4.1 Материалы — невидимки. Первые прототипы

Американские исследователям под руководством Д. Смита (David Smith) в 2000 г. удалось создать метаматериал. Созданный метаматериал состоял из металлических стержней, ответственных за е Блиох К. Ю. , Блиох Ю. П. Что такое левые среды и чем они интересны?// Успехи физических наук, Т. 174, № 4, 2004. -С. 439−447.

2. Веселаго В. Г. Электродинамика материалов с отрицательным коэффициентом преломления // Успехи физических наук. — 2003. — 7. — с. 790—794.

3. Веселаго, В. Г. Электродинамика веществ с одновременными отрицательными значениями и/В. Г. Веселаго//Успехи физических наук. -1967. -Т. 92. -№ 3. -C. 517−525.

4. Головкина М. В. Материалы с отрицательным показателем преломления в волноведущих структурах // ИНФОКОММУНИКАЦИОННЫЕ ТЕХНОЛОГИИ. — Самара: Поволжский государственный университет телекоммуникаций и информатики, 2006. — С. 14−21.

Метаматериалы. Что это такое, спросите вы? Какая-то новая сверхпрочная ткань или что-то в этом роде? Не совсем. В сети можно найти много статей по данной теме. Но там все написано сухим, скучным научным языком, который может и доступен технарям, но гуманитариям вроде нас режет глаз. Постараюсь объяснить просто и доступно.

Итак, метаматериалы – это композитные (состоящие из нескольких компонентов) материалы, электромагнитные (например, оптические) и акустические (звуковые) свойства которых не встречаются в природе и сложнодостижимы технологически.

Человечество давно использует оптику, для управления светом. Сюда относятся очки, лазеры, телескопы. Эти приборы эффективны, но отличаются большими размерами. Сейчас же все стремятся перейти к компактным, наноразмерным устройствам.

Хорошие возможности для этого и предоставляют метаповерхности (двумерный аналог метаматериалов) – тонкие пленки из наночастиц, определенным образом размещенных на подложке. Метаповерхности особенно хорошо подходят для управления светом, поскольку процесс их изготовления более простой и дешевый.

Первые работы по созданию метаматериалов велись еще в 19 веке. Например, В 1898 году Джагадис Чандра Бозе провёл первый микроволновый эксперимент по исследованию поляризационных свойств созданных им структур искривлённой конфигурации.

Примеры метаматериалов и перспективы их использования в нашей жизни

Плащ-невидимка

Самым ярким примером использования метаматериалов является сказочный плащ-невидимка. Ученым Дэвиду Смиту, Дэвиду Шуригу из школы инжиниринга Пратта университета Дюка и Джону Пендри из Имперского колледжа Лондона удалось создать нечто подобное, правда, с серьезными оговорками.

Плащ из такого метаматериала отклоняет электромагнитные волны, так будто его не существует. Но пока это действует только в двухмерном пространстве при облучении объекта микроволнами, неразличимыми для человеческого глаза.

Однако это серьезный шаг вперед, буквально лет через 5 ученые на основе данного открытия создадут новый материал, который научится отклонять и видимый нами свет. И тогда толпы невидимок заполонят города, проникая в чужие квартиры и шпионя за другими людьми.

Вряд ли, конечно, ибо технология создания метаматериалов очень дорогая и простому потребителю окажется не по карману.

Но все же применение таким аксессуарам найдется. Начиная от банального развлечения и заканчивая маскировкой солдат и военной техники. Причем, вся соль в том, что обнаружить замаскированные объекты нельзя будет ни визуально, ни средствами радиоэлектронной разведки.

Суперлинза

Такие линзы имеют разрешение в разы превосходящее дифракционный предел. Проще говоря, микроскопы и другие приборы, оснащенные такими линзами, смогут показать нам такие мелкие частицы, которые ранее были недоступны для аналогичных приборов. Например, микроскопических микробов и вирусов, которые теоретически существуют, но увидеть их не удалось еще никому.

Терагерцевые приборы

Ученые из Калифорнийского университета разработали новый вид метаматериалов, которые демонстрируют сильный магнитный отклик на излучение терагерцевого спектра.

Иллюзорная стена

Китайские учёные придумали невидимость наоборот. Новые метаматериалы создают иллюзию того, что предметы больше, чем они есть на самом деле. С их помощью можно визуально увеличить стену и закрыть ей реально существующий дверной проем.

Антизеркало

Использование метаматериалов позволило создать не существовавший ранее в природе тип отражающей поверхности.

Создатели антизеркала утверждают, что его необычные свойства могут пригодиться во многих экспериментах со светом, а также при создании новых типов фотодатчиков или элементов систем связи.

Антенная техника

Метаматериалы используют для изготовления подложек и излучателей в печатных антеннах для достижения широкополосности, уменьшения размеров антенных элементов и для увеличения эффективности антенной техники, в целом.

Метаматериалы

Метаматериалы, это специальные композиционные материалы, которые получаются, путём искусственной модификации внедряемых в них элементов. Изменение структуры осуществляется на наноуровне, что дает возможность менять размеры, формы и периоды решетки атома, а также иные параметры материала.

Благодаря искусственному преобразованию структуры, модифицированный объект приобретает совершенно новые свойства, которых нет у материалов природного происхождения.

Благодаря вышеуказанному преобразованию модифицируется магнитная, диэлектрическая проницаемость, а также иные физические показатели выбранного объекта.

В результате преобразованные материалы приобретают уникальные оптические, радиофизические, электрические и иные свойства, которые открывают широкие перспективы для развития научного прогресса. Работы в данном направлении могут привести к появлению совершенно новых устройств и изобретений, которые будут поражать воображение.

Виды и классификация метаматериалов

Метаматериалы принято классифицировать по степени преломления:

В них степень преломления постоянно меняется лишь в единственном направлении пространства. Подобные материалы выполнены из слоев элементов, расположенных параллельно и имеющих отличающиеся степени преломления. Они способны демонстрировать уникальные свойства лишь в единственном направлении пространства, которое перпендикулярно указанным слоям.

В них степень преломления постоянно меняется лишь в 2-х направлениях пространства. Подобные материалы в большинстве случаев выполнены из прямоугольных структур, имеющих преломление m1, и располагающихся в среде с преломлением m2. В то же время элементы с преломлением m1 располагаются в 2-х мерной решетке с кубической основой. В результате подобные материалы способны демонстрировать свои свойства в 2-х направлениях пространства. Но двухмерность материалов не ограничивается только прямоугольником, она может быть создана с помощью круга, эллипса или иной произвольной формой.

В них степень преломления постоянно меняется в 3-х направлениях пространства. Подобные материалы условно можно представить в виде массива областей в объемном значении (эллипс, куб и так далее), расположенных в трехмерной решетке.

Метаматериалы также делятся на:

  1. Проводники. Они перемещают квазичастицы на значительные длины, но с небольшими потерями.
  2. Диэлектрики. Представляют зеркала почти идеального состояния.
  3. Полупроводники. Это элементы, которые могут, к примеру, отражать квазичастицы только некоторой длины волны.
  4. Сверхпроводники. В этих материалах квазичастицы могут перемещаться почти на неограниченные расстояния.

К тому же существуют материалы:

Отличие резонансных материалов от элементов нерезонансного типа в том, что у них возникает диэлектрическая проницаемость лишь на определенной частоте резонанса.

Метаматериалы могут создаваться с разными электрическими свойствами. Поэтому их делят по их относительной проницаемости:

  1. DNG, то есть double negative — проницаемости отрицательные
  2. DPS, то есть double positive — проницаемости положительные
  3. Hi-Z, то есть high impedance surfaces (высокоомные поверхности)
  4. SNG, то есть single negative — материалы смешанного типа
  5. DZR, то есть double zero – материал имеет проницаемость равной нулю

Устройство метаматериалов

Метаматериалы представляют вещества, свойства которых обеспечиваются микроскопической структурой, внедряемой людьми. Они синтезируются включением в заданный элемент природного происхождения периодических структур с разнообразными формами геометрии, модифицирующие магнитную и диэлектрическую восприимчивость исходной структуры.

Метаматериалы

Метаматериалы

Условно подобные включения можно рассмотреть в качестве искусственных атомов, которые имеют довольно большие размеры. Во время синтезирования у создателя материала имеется возможность придать ему различные параметры, которые базируются на форме и размерах структур, переменности периода и тому подобное. Благодаря этому можно получать материалы, которые имеют удивительные свойства.

Одним из наиболее известных подобных элементов являются фотонные кристаллы. Их особенность проявляется периодической сменой степени преломления в пространстве в одном, двух и трех направлениях. Благодаря указанным параметрам материал может иметь зоны, которые могут получать или не получать энергию фотонов.

В результате, если на указанное вещество отпускается фотон, имеющий определенную энергию (требуемой частоты и длины волны), несоответствующей зоне указанного кристалла, то он отражается в противоположном направлении. Если же на кристалл попадает фотон с параметрами, которые отвечают параметрам разрешенной зоны, то он перемещается по нему. По-другому, кристалл выступает в виде оптического фильтрующего элемента. Именно поэтому указанные кристаллы имеют невероятно сочные и яркие цвета.

Применение метаматериалов

Метаматериалы находят и будут находить широчайшее применение во всех сферах, где применяется электромагнитное излучение. Это медицина, наука, промышленность, космическое оборудование и многое другое. Сегодня создается огромное количество электромагнитных материалов, которые уже находят применение.

Читайте также: