Реферат машины и оборудование

Обновлено: 02.07.2024

Способ позволяет успешно производить процесс сварки без применения электродных покрытий и флюсов, имеет высокую производительность и легко поддается к автоматизации.

В настоящее время этот способ широко применяется при изготовлении конструкций из стали, алюминия, титана, циркония, никеля, меди и их сплавов.

Сварочные соединения, выполненные этим способом, имеют прочность, близкую к прочности основного метала. В качестве защитных газов применяются инертные и активные газы. Из числа инертных газов применяют гелий и аргон, а из числа активных – азот, водород и углекислый газ.

Сущность способа при электродуговой сварке в защитных газах электрод, расплавленный металл сварочной ванны и расплавляемая часть присадочной проволоки защищаются поступающим из горелки в зону сварки газом, который оттесняет окружающий воздух от зоны горящей дуги эффективность газовой защиты зоны сварки зависит от типа свариваемого соединения и скорости сварки.

На защиту влияет также расстояние сопла от изделия, размер сопла и расход защитного газа. При чрезмерном приближении к изделию сопло сильно забрызгивается, а при удалении нарушается защита зоны сварки. При существующем оборудовании расстояние сопла от изделия выдерживают в пределах 5 – 40 мм.

К основным преимуществам сварки в среде защитных газов относят: а) отсутствие необходимости применения флюсов или покрытий, а следовательно, и очистки швов от шлака и неиспользованных остатков флюса после сварки; б) высокую производительность процесса сварки; в) высокую степень концентрации источника теплоты, что позволяет значительно сократить зону структурных превращений и уменьшить деформацию изделия в процессе сварки; г) низкую стоимость при использовании в качестве защитных газов СО2, N2 и паров воды; д) весьма незначительное взаимодействие металла шва с кислородом и азотом воздуха при использовании в качестве защитной среды инертных газов; е) возможность сварки различных металлов и сплавов толщиной от десятых долей миллиметра до десятков миллиметров; ж) простоту наблюдения за процессом сварки, так как дуга горит открыто; з) широкие возможности механизации и автоматизации процессов; и) возможность применения механизированной сварки в различных пространственных положениях.

Токарные станки. Токарно-затыловочный станок модели 1811

На универсальном токарно-затыловочном станке производят затылование червячных модульных фрез: правых, левых, праворежущих и леворежущих одно- и многозаходных фрез, а также гребенчатых, дисковых и фасонных фрез и инструменты с прямыми, косыми или торцовыми затылуемыми зубьями. На этом станке можно выполнять все токарные работы.

Отличительными особенностями станка являются: особое устройство суппорта, позволяющее осуществлять затыловочные движения; наличие кинематических цепей делительного движения и дополнительного вращения кулачка, отсутствующих у токарно-винторезных станков; кроме того, у станка 1811 имеются дополнительные устройства, обеспечивающие работу по полуавтоматическому циклу (гидропривод, панель управления, штанга управления и другие).

На станке 1811 можно производить затылование деталей с максимальными диаметрами: над станиной 520 мм и над нижней частью суппорта 240 мм. Наименьший и наибольший шаг нарезаемой и затылуемой резьб: метрической 0,5 – 240 мм, дюймовой 3/16 – 10¢¢, модульной 0,4π - 80π. Наибольшая глубина затылования 18 мм.

На станке выполняют разнообразные фрезерные работы, в том числе и фрезерование винтовых канавок.

Характеристики станка. Расстояние от оси шпинделя до стола – 450 мм; расстояние от оси шпинделя до хобота 155 мм; размер рабочей поверхности стола 320×1250 мм; наибольшее перемещение стола: продольное – 700 мм; поперечное – 250 мм; вертикальное – 450 мм. Число скоростей шпинделя 18. Число подач стола 18. Мощность электродвигателя привода подачи 1,7 квт, число оборотов в минуту 1440.

Станки для электрофизических и электрохимических методов обработки. Электроэрозионные станки.

Станки для электрофизических и электрохимических методов обработки широко используют для обработки заготовок из трудно обрабатываемых материалов: твердых сплавов, высоколегированных сталей, германия, кремния, и т. д. На них изготавливают пресс-формы, штампы, фильеры, а также детали, имеющие щели, отверстия и т. д., которые довольно трудно или вообще невозможно обработать механическим путем.

Работа электроэрозионных станков основана на разрушении материала обрабатываемой заготовки под воздействием электрических разрядов. К этой группе относятся станки для электроискровой, электроимпульсной, анодно-механической и электроконтактной обработки.

Электроискровые станки применяются для выполнения узких щелей, небольших отверстий и т. д. обрабатываемая заготовка погружена в жидкую среду (керосин, индустриальные масла и т. д.), не проводящую электрический ток. Инструмент перемещается возвратно-поступательно. Электрический ток от специального генератора под водится к заготовке – аноду и инструменту – катоду. В электрическую цепь подключен конденсатор, придающий разрядам импульсную форму, и сопротивление. Нужный искровой зазор между заготовкой и инструментом поддерживается автоматическим регулятором. Возникающий дуговой разряд создает температуру 4000 - 5000°С. При этом расплавляется металл на поверхности заготовки, который выбрасывается в межэлектродное пространство. Форма разрушения заготовки зависит от формы торцовой части инструмента.

Станки для электроимпульсной обработки значительно более производительны и служат для обработки крупных заготовок типа пресс-форм, штампов. Импульсные разряды создаются специальными импульсов. Инструмент – анод, заготовка – катод. Обработка ведется в жидкой среде. Инструмент – электрод изготовляют из меди, алюминия и его сплавов, графита.

Станки для электроимпульсной и электроискровой обработки образуют размерный ряд, в котором в качестве основного параметра выбран размер стола. К этому ряду относятся электроэрозионные копировально-прошивочные координатные станки высокой точности 4Д722АФ1, 4Е723 и др., электроимпульсный копировально-прошивочный станок 4726. Выпускают ряд станков для профильной вырезки проволочным электродом, в котором электродная проволока перематывается при определенном натяжении с подающей катушки на приемную, прорезая в результате электроэрозии обрабатываемую заготовку.

Станки для анодно-механической обработки применяют для безабразивной заточки твердосплавных инструментов, шлифования, хонингования, разрезки заготовок из труднообрабатываемых материалов. В пространстве между заготовкой и вращающимся инструментом по трубке подается электролит – водный раствор жидкого стекла, который под действием тока растворяет металл, образуя на его поверхности тонкую оксидную пленку. В месте, подлежащем обработке, пленка удаляется перемещающимся в сторону заготовки инструментом, но на этом участке вновь образуется пленка, которая опять же снимается инструментом и т. д. В качестве инструмента применяют заточные диски, токопроводящие круги, бруски и притиры.

Станки для электроконтактной обработки служат для снятия больших припусков на заготовках, для обдирки слитков и т. д. обработка ведется вращающимся диском в воздушной среде; между инструментом и заготовкой возникает дуга переменного тока большой силы. Размягченный от нагрева металл удаляется инструментом. Метод дает самую высокую скорость съема металла в сравнении с рассмотренными выше методами.

Промышленные роботы. Промышленный робот УМ 160 Ф2.81.01

Универсальный промышленный робот с ПУ предназначен для группового обслуживания оборудования, в основном металлорежущих станков с горизонтальной осью шпинделя или горизонтальным столом. ПР производит установку снятие деталей и их межстаночное транспортирование. ПР может обслуживать токарные, фрезерно – центровальные, шлифовальные, зубообрабатывающие и другие станки. ПР оснащен широкодиапазонными быстросменными захватами устройствами, возможна автоматическая смена захватных устройств.

Техническая характеристика. Грузоподъемность 160 кг; число захватных устройств 1, число обслуживаемых технологических единиц 4; число степеней подвижности 4; линейные перемещения Х (при скорости 1,2 м/с) 16 000 мм; угловые перемещения Ө1, Ө2, (при скорости 30°/с) 90°, α (при скорости 90°/с) 90 - 180°.

Система управления – позиционная типа УПМ 331. ОТ устройства ЧПУ управляются три координаты. Способ программирования – обучение. Погрешность позиционирования ±0,5 мм. Программоноситель – накопитель на магнитной ленте.

Основные механизмы, движения и кинематика. ПР имеет портальную конструкцию. Каретка перемещается по монорельсу, состоящему из трех секций длиной 6000 мм каждая, закрепленных на четырех колоннах. Ролики каретки катятся по двум направляющим прямоугольного сечения, прикрепленным к монорельсу.

Шарнирно – рычажный спрямительный механизм крепится к руке и служит для сохранения вертикально-го расположения шпинделя головки и соответственно

Автоматизированное производство. Назначение и классификация автоматических станочных систем

Современное машиностроение примерно на три четверти имеет среднесерийный и мелкосерийный характер производства. Быстро обновляется номенклатура машин, одновременно возрастает их сложность и точность, все это приводит к необходимости оперативной перестройки производства на предприятиях. Организационно-технические средства, эффективные для массового однономенклатурного уровня производства, становятся тормозом при обновлении продукции. Следовательно, необходимо создавать быстро переналаживаемые производство с высокой производительностью труда. Значительное место в таких производствах принадлежит промышленным роботам, которые на многих операциях заменяют ручной труд, что уменьшает число требуемых рабочих, способствует многостаночному обслуживанию. Повышению производительности труда способствует резкое повышение уровня автоматизации оборудования и надежности его работы. Высокоавтоматизированные станки, обслуживаемые промышленными роботами, окупаются в приемлемые сроки только при условии их работы в две – три смены.

Основные определения. Станочная система (ССт) – управляемая совокупность станков и вспомогательного оборудования, предназначенная для обработки одной, нескольких подобных заготовок или заготовок широкой номенклатуры на основе одного, нескольких или различных маршрутных технологических процессов.

Вся история техники представляет собой борьбу за постепенное освобождение человека от непосредственного участия в процессе производства.

Производственные функции, выполняемые человеком в процессе труда, распределяются на четыре основные группы: 1) энергетические (приложение усилий для выполнения работы); 2) технологические (использование орудий труда для изменения формы, состава, структуры предмета труда); 3) функции управления рабочей машиной и 4) контрольно-регулирующие (контроль, регулирование, программирование процесса). Первые три группы функций должны осуществляться человеком при каждом рабочем цикле, т. е. при изготовлении каждого изделия, а контрольно-регулирующие функции являются внецикловыми и могут осуществляться лишь периодически.

Замена непосредственных производственных функций человека техническими средствами – закон развития производительных сил. Каждый раз, когда происходит интенсивная замена тех или иных функций человека в процессе труда техническими средствами, наблюдаются коренные сдвиги в развитии производительных сил, что свидетельствует о технической революции.

В конце XVIII и начале XIX веков происходила техническая революция, суть которой состояла в широком внедрении машин, что дало возможность перейти от мануфактурного производства к машинно-фабричному. При этом человек освобождался от энергетических и технологических функций, но оставался прикованным к станку, так как должен был участвовать в каждом производственном цикле, управляя машиной и сохраняя за собой полностью контрольно-регулировочные функции.

Первоначально орудие труда – инструмент присоединялся к органам человеческого тела, делая их длиннее, сильнее и т.п., Промышленная революция, связанная с распространением машин, началась, как указывал К. Маркс, с исполнительного механизма, с момента, когда инструмент из рук рабочего перешел в рабочую часть машины. Рабочая машина “. заменяет рабочего, действующего одновременно только одним орудием, таким механизмом, который разом оперирует множеством одинаковых или однородных орудий и приводится в действие одной двигательной силой, какова бы ни была форма последней”. При этом также создается возможность использовать посторонний источник энергии (воду, пар или электричество) и значительно увеличить рабочее усилие, освободившись от энергетических функций.

На этом этапе человек еще участвует непосредственно в производственном процессе. Рабочие машины управляются человеком, а значит изделия изготовляются человеком при помощи машин, которые только облегчают труд и делают его более производительным.

Итак, первый этап применения рабочих машин, где операций управления, контроля, регулирования и программирования производственных процессов выполняются исключительно человеком, характеризуется механизацией производства.

В наше время вновь происходит техническая революция, выражающаяся переходом от машинно-фабричного к комплексно-автоматизированному производству, суть которого состоит в широком внедрении автоматических рабочих машин и их систем. При этом человек полностью освобождается от функций управления машиной при каждом рабочем цикле; он уже не прикован к машине, работающей известные периоды времени самостоятельно; Изделия изготовляются самой машиной, а за человеком остаются только функции контроля, наблюдения, регулирования и программирования процесса производства (внецикловые функции). Этот этап представляет уже начальную ступень автоматизации производства.

Новые машины и аппараты облегчают и заменяют физический труд человека, колоссально увеличивают силу его рук, неизмеримо повышают остроту его органов чувств. Однако до недавнего времени почти все, даже наиболее совершенные, механизмы и приборы предназначались для выполнения весьма разнообразных, но только исполнительных функций; Область умственной деятельности, психика, сфера логических функций человеческого мозга казались совершенно недоступными механизации.

Современный уровень развития радиоэлектроники позволяет ученым и инженерам ставить и разрешать задачи создания новых устройств, которые освобождают человека от необходимости следить за производственным процессом и направлять его, т. е. заменяют оператора, диспетчера. Появился новый класс машин – управляющие машины. Они могут выполнять самые разнообразные и часто довольно сложные задачи управления производственными процессами. Создание управляющих машин позволяет перейти от автоматизации отдельных станков и агрегатов к комплексной автоматизации конвейеров, цехов, целых заводов.

Автоматические рабочие машины и системы автоматических машин можно разделить на следующие виды.

Автомат – это такая машина, на которой все работы неоднократно осуществляются без участия человека, т. е. автоматически.

Если эта машина представляет собой металлорежущий станок, то на ней, как минимум, автоматически выполняются: 1) ввод заготовок в рабочую зону, ориентация их, установка и закрепление; 2) все операции по непосредственному воздействию на заготовку, т. е. обработка; 3) все вспомогательные движения рабочих органов (холостые перемещения суппортов, столов, салазок, бабок и т. п.); 4) снятие обработанных изделий и 5) удаление отходов (стружки) из зоны обработки. При этом человек осуществляет наладку автомата, заполнение заготовками и необходимыми материалами загрузочных устройств, периодический контроль обработки и подналадку, а также смену инструмента при его затуплении.

инструмента могут также выполняться автоматически.

Полуавтомат отличается от автомата тем, что он автоматически выполняет только один рабочий цикл и для его повторения требуется вмешательство рабочего. Например, металлорежущий полуавтомат не имеет обычно автоматической загрузки, и рабочий должен вначале каждого цикла вручную установить и закрепить заготовку, пустить станок в ход, а иногда и снять обработанное изделие.

Автоматическая линия представляет собой группу станков-автоматов, объединенных общими транспортными устройствами и общим механизмом управления, или одну машину с несколькими рабочими позициями, осуществляющих без участия человека в определенной технологической последовательности, т.е. с последовательным перемещением и перезакреплением полуфабриката на различных рабочих позициях, комплекс операций части производственного процесса, для которой автоматическая линия предназначена.

Здесь человек осуществляет только функции наладки, наблюдения и регулирования, в некоторых случаях (пока в большинстве) контроль обработки и подналадку, а также смену инструмента при его затуплении.

Глава1 Прокатные станы

Прокатный стан - это совокупность привода, шестеренной клети, одной или нескольких рабочих клетей. Прокатные станы классифицируют по трем основным признакам: по числу и расположению валков; по числу и расположению рабочих клетей; по их назначению.

Стан дуо имеет два валка, которые вращаются либо в одном направлении (нереверсивные станы), либо в разных направлениях (реверсивные станы). Последнее позволяет пропускать обрабатываемый материал в обе стороны.

Стан кватро имеет два рабочих и два опорных валка, расположенных один над другим. Приводными являются рабочие валки.

Много валковые станы: двенадцативалковые и двадцативалковые имеют также только два рабочих валка, а все остальные являются опорными. Валки приводятся через промежуточные опорные валки. Такие конструкции станов позволяют применять рабочие валки малого диаметра, благодаря чему увеличивается вытяжка и снижается давление металла на валки.

Универсальные станы, кроме горизонтальных валков, имеют также и вертикальные, расположенные с одной и обеих сторон горизонтальных валков.

По расположению рабочих клетей станы могут быть одноклетьевыми и многоклетьевыми с линейным и последовательным расположением клетей. У линейных станов клети расположены в одну или несколько линий; в каждой линии все валки связаны между собой и вращаются с одной скоростью. Последнее является существенным недостатком этих станов, так как препятствует значительному увеличению скорости прокатки по мере увеличения длины пркатываемой полосы. Поэтому в некоторых случаях для повышения производительности станов клети располагают в несколько линий с разной скоростью прокатки.

Производительность прокатки можно повысить последовательным расположением клетей в непрерывных станах. Привод рабочих клетей непрерывных станов может быть группой, когда несколько клетей приводятся в движение от одного двигателя, или индивидуальным, когда каждая клеть имеет свой двигатель. В обоих случаях окружная скорость каждой последующей пары валков должна быть больше скорости предыдущей на строго определенную величину. На непрерывных станах можно прокатывать полосу с натяжением, что позволяет увеличить обжатия. Внедрение непрерывности всего процесса прокатки - одно из основных направлений технического прогресса в прокатном производстве.

Прокатные станы по назначению подразделяются на станы для производства полупродукта и станы для выпуска готового проката. К первым станам относятся обжимные станы (блюменги и слябинги) для прокатки слитков в продукт крупного сечения для последующей прокатки на сортовой или листовой металл и заготовочные для получения полупродукта более мелкого сечения из блюмов или слитков небольшой массы.

Станы для выпуска готового проката характеризуются видом выпускаемой продукции: рельсобалочные. Сортовые, листопрокатные, трубопрокатные и станы для специальных видов проката. Размер блюмингов. Слябингов, заготовочных, рельсобалочных и сортовых станов обуславливается диаметром бочки валков; размер листовых станов - длиной бочки, а размер трубопрокатных станов - наружным диаметром прокатываемых труб(см рис).

Похожие страницы:

Машины и оборудование (2)

Машины и оборудование Роботы, предназначенные для выполнения . создавать на базе универсального оборудования роботизированные технологические комплексы, быстропереналаживаемые . механизма робота. Поэтому оборудование должно располагаться относительно такого .

Оценка стоимости машин и оборудования (1)

. 1. Теоретические основы оценки машин оборудования и транспортных средств 1.1 Машины, оборудование и транспортные средства как . Теоретические основы оценки стоимости машин, оборудования и транспортных средств Машины, оборудование и транспортные средства как .

Анализ и практика применения ТН ВЭД в России на примере электрических машин и оборудования, звук

. В данную группу включаются все электрические машины и оборудование, кроме: а) машин и оборудования, входящих в группу 84, которые . решения Приложение Б Электрические машины и оборудование выделены в 16 разделе «Электрические машины и оборудование, их части; .

Строительные машины и оборудование

по Оценке машин и оборудования транспортных средств

. это оборудование, а шахта лифта — это сооружение и к оборудованию не относится. С другой стороны, машины, оборудование и . ремонт, а функционального устаревания - модернизация машин и оборудования. Список используемых источников: 1Федеральный стандарт .

Читайте также: