Реферат магнитные свойства тканей организма

Обновлено: 04.07.2024

В статье рассматривается воздействие электромагнитного поля на здоровье человека. Спектр этих частот весьма широк – от гамма-излучения до низкочастотных электрических колебаний, поэтому вызванные ими изменения могут быть весьма разнообразными. На характер последствий влияет не только частота, но и интенсивность, а также время облучения. Некоторые частоты вызывают тепловое и информационное воздействие, другие оказывают разрушительное действие на клеточном уровне. При этом продукты распада могут вызывать отравление организма В ходе работы затронуты основные отрицательные стороны влияния бытовой техники и мобильных телефонов на человека. В работе приведены разнообразные примеры воздействия электромагнитного поля и побочные эффекты этих действий. При работе лазерных установок на организм человека могут воздействовать следующие вредные факторы: инфракрасное излучение, шум, вибрация. Опасно попадание лазерного луча на кожу человека, в результате чего могут возникнуть ожоги различной степени тяжести. В заключении даны рекомендации по уменьшению вреда электромагнитного излучения.


1. Основы безопасности жизнедеятельности: Учебник для общеобразовательных учреждений. 9 кл. / Министерство общего и профессионального образования РФ и др. – 3-е изд., перераб. – М.: АСТ, 1999. – 319 с.

2. Экология и безопасность жизнедеятельности: Учебное пособие для вузов/ Д.А. Кривошеин, Л.А. Муравей, Н.Н. Роева и др.; под ред. Л.А. Муравья. – М.: ЮНИТИ-ДАНА, 2000. – 447 с.

3. Безопасность жизнедеятельности: Учебник / под ред. С.В. Белова. 2–е изд., перераб. и доп. – М.: Высшая школа, 2002. – 358 с.

Электромагнитные поля пагубно влияют на здоровье человека. Но в нынешнем этапе развития человек уже не сможет без этого прожить. Ведь сейчас даже маленьких детей не отпускают на улицу без телефонов, а телефон первый в списке пагубных влиятелей на здоровье человека. Уровень биологического воздействия электромагнитных полей не зависит от длительности его воздействия. При воздействии электромагнитного поля у человека может наблюдаться повышенная утомляемость, вялость, изменение кровяного давления и пульса, возникновение болей в сердце, боли.

Влияние физических факторов на организм человека (на примере электромагнитных волн)

Люди подвергаются различным опасностям, под которыми обычно понимают явления, которые наносят ущерб здоровью человека, т.е. вызывают различные нежелательные последствия.

В настоящее время в быту, люди пользуются различными приборами- источниками электромагнитных волн, которые излучают энергию и тем самым оказывают значимое влияние на организм человека.

Источниками естественных электромагнитных полей являются атмосферное электричество, космические лучи, излучение солнца, а искусственные источники: различные генераторы, лазерные установки, линии электропередач, измерительные приборы, и др.

Жизнь на нашей планете возникла в тесном взаимодействии с электромагнитным полем Земли. К земному полю люди приспособились в процессе своего развития эволюции. Земное поле стало необходимым и важным фактором в жизни человека. Любое действие полей, как увеличенная, так и уменьшенная может повлиять на человека.

Электромагнитная сфера нашей планеты определяется в основном электрическим и магнитным полями, атмосферным электричеством, радиоизлучением, а также полями искусственных источников.

Перед грозой и во время грозы у человека появляется плохое самочувствие из-за усиления электрического поля, а одним из причин ДТП на дорогах являются магнитные бури, которые возникают из-за солнечной активности, которые так же ухудшают здоровье больных людей в пожилом возрасте.

В быту электрические поля пользуются большим спросом для производства домашних утварей, детских игрушек, мужских и женских одежд, обуви, для конструкции общественных точек и жилых домов, так же и строй материалов являющимися синтетическими полимерами.

Все промышленные и бытовые электро- и радиоустановки являются источниками искусственных полей разной силы.

По мере убывания длины волны в диапазон включаются инфракрасное излучение, видимый свет, ультрафиолетовое излучение, рентгеновское излучение и гамма- излучение.

Электростатические поля возникают при работе легко электризующимися материалами. В радиотехнике используются электромагниты с постоянным током и металлокерамические магниты- они и являются постоянными источниками магнитных полей.

Источниками электрических полей промышленной частоты являются: линии электропередачи, специальные устройства защиты, автоматики, измерительные приборы, высоковольтные установки промышленной частоты.

Источниками электромагнитных излучений радиочастот являются мощные радиостанции, антенны, генераторы, установки индукционного и диэлектрического устройства, высокочастотные приборы в медицине и в быту.

Источником повышенной опасности в быту являются микроволновые печи, телевизоры, мобильные телефоны. В настоящее время признаются источником риска электроплиты, электрические чайники, утюги, холодильники (при работающем компрессоре) и другие бытовые электроприборы.

Особым видом магнитного излучения является лазерное излучение, которое генерируется в лазере [1].

Воздействия электромагнитных волн на человека

Механизм воздействия электромагнитных волн на биологические объекты недостаточно изучен. В постоянном электрическом поле молекулы, из которых состоит тело человека, поляризуются.

Частоты электромагнитных излучений широки, и используются в телерадиовещании, радионавигации и др. При повышении частоты электростатические свойства живых тканей сильно изменяются. Электромагнитные поля оказывают на организм человека тепловое и биологическое воздействие. Переменное поле вызывает нагрев тканей человека. Энергия проникшего в организм многократно преломляется в многослойной структуре тела с разной толщиной слоев тканей [2].

Тепловая энергия, возникшая в тканях человека, увеличивает тепловыделение. Если механизм терморегуляции тела не сможет рассеять избыточное тепло, то неизбежно повышение температуры тела. Выделение теплоты может приводить к перенагреванию тканей и органов, которые недостаточно хорошо снабжены кровеносными сосудами. Например, хрусталик глаза, желчный пузырь.

gaiz1.tif

Такие органы как мозг, глаза, почки и ткани человека, которые обладают слабо выраженной терморегуляцией, более чувствительны к облучению. Перегревание тканей и органов ведет к их заболеваниям. Отрицательное воздействие электромагнитного поля может привести к торможению рефлексов, понижению кровяного давления, замедлению сокращений сердца, изменению состава крови, помутнению хрусталика глаза (катаракта) [3].

Воздействие сверхвысоких частот – излучения интенсивностью может привести к потере зрения. При длительном облучении умеренной интенсивности возможны нарушения со стороны эндокринной системы, так же изменение углеводного и жирового обмена, сопровождающееся похудением, повышением возбудимости.

При работе лазерных установок на организм человека могут воздействовать следующие вредные факторы: инфракрасное излучение, шум, вибрация. При воздействии лазерного излучения на организм человека возникают биологические эффекты. Всего различают первичные и вторичные эффекты. Первичные изменения происходят в тканях человека непосредственно под действием излучения (ожоги, кровоизлияния), а вторичные (побочные явления) вызываются различными нарушениями в человеческом организме, резвившимися вследствие облучения.

gaiz2.tif

Наиболее чувствителен к воздействию лазерного излучения глаз человека. Опасно попадание лазерного луча на кожу человека, в результате чего могут возникнуть ожоги различной степени тяжести. Лазерные лучи высокой интенсивности вызывают поражение различных внутренних тканей и органов человека, что выражается в виде кровоизлияний, отеков, а также свертывания крови. Все это указывает на неоднозначность реакций организма на воздействие электромагнитного поля.

Люди довольно часто подвергаются воздействию различных видов электромагнитного излучения. Для уменьшения воздействия излучения на организм человека существуют различные методы, например, рациональное размещение облучающих объектов, ослабляющее воздействие излучения на людей; ограничение времени нахождения человека в электромагнитном поле; использование поглощающих экранов или же применение средств индивидуальной защиты.

Для защиты глаз от воздействия электромагнитного излучения применяются специальные очки.

Название работы: МАГНИТНЫЕ СВОЙСТВА ЖИВЫХ ТКАНЕЙ

Предметная область: Биология и генетика

Описание: Магнитные свойства биологических тканей характеризуются довольно низкой величиной магнитной проницаемости близкой к 1 поскольку основные химические компоненты биосред белки углеводы липиды вода относятся к диамагнетикам. Их почти нулевая магнитная восприимчивость служит одной из причин недостаточного внимания к изучению магнитных процессов в организме. Предполагают что подобные ферромагнитные включения присутствуют в тканях пчел бабочек дельфинов обеспечивая их пространственную ориентацию.

Дата добавления: 2015-05-13

Размер файла: 44.3 KB

Работу скачали: 1 чел.

МАГНИТНЫЕ СВОЙСТВА ЖИВЫХ ТКАНЕЙ

Любая среда является одновременно электриком (проводником или диэлектриком) и магнитиком. Магнитные свойства биологических тканей характеризуются довольно низкой величиной магнитной проницаемости ( ) близкой к 1, поскольку основные химические компоненты биосред (белки, углеводы, липиды, вода) относятся к диамагнетикам. Их почти нулевая магнитная восприимчивость ( ) служит одной из причин недостаточного внимания к изучению магнитных процессов в организме. У человека обнаружены ферритинсодержащие включения (в надпочечниках). Их функции остаются не выясненными. Предполагают, что подобные ферромагнитные включения присутствуют в тканях пчел, бабочек, дельфинов, обеспечивая их пространственную ориентацию. Вопрос о ферромагнитных свойствах биологических систем далеко от его разрешения.

Вместе с тем в исследованиях биомагнетизма недостаточно учитывается важное положение электродинамики, согласно которому коэффициентом преобразования энергии ЭМП в магнитную энергию среды, подвергнутой его воздействию, является не сама по себе, а индуктивность, отображающая как собственно магнитные свойства, так и ее геометрические особенности. Даже диамагнетики способны осуществлять подобное преобразование довольно эффективно, если образуют структуры в форме катушек, по которым течет электрический ток, наведенный внешним полем. (Аналог магнитные поля катушек из медного провода) Для учета зависимости энергетических преобразований на индуктивности на частоте внешнего ЭМП введено понятие индуктивного сопротивления:

где - длина катушки, по которой течет ток; S - площадь каждого витка; n - число витков в катушке.

Оказалось, что 1 мембраны аксона кальмара толщиной примерно 10 нм имеет Гн. Такая индуктивность присуща медному проводу длиной в 1 милю (1600м), намотанный на железный сердечник массой в 1 фунт (~450гр). Это очень высокая индуктивность.

С.П. Боткин в 70 годах прошлого века утверждал, что магнит может создавать ощущение зуда, покалывания или боли, восстанавливать нарушенную чувствительность кожи, купировать судороги, вызывать общую слабость и сонливость. В зависимости от исходного состояния пациента магнит зачастую приводил к эффектам, противоположным тем, на которые рассчитывал врач, например вместо ослабления боли усиливал ее.

Ткани организма в значительной степени диамагнитны, подобно воде. Однако в организме имеются и парамагнитные вещества, молекулы и ионы. Железо в организме присутствует в таких соединениях, которые не являются ферромагнитными.

Магнетизм биологических объектов, т. е. их магнитные свойства и магнитные поля, создаваемые ими, получили название биомагнетизма.

Магнитные поля, создаваемые биологическими объектами, достаточно слабы и возникают от биотоков. В некоторых случаях магнитную индукцию таких полей удается измерить. Так, например, на основании регистрации временной зависимости индукции магнитного поля сердца (биотоков сердца) создан диагностический метод — магнитокардиография.

Так как магнитная индукция пропорциональна силе тока, а сила тока (биотока), согласно закону Ома, пропорциональна напряжению (биопотенциалу), то в целом магнитокардиограмма аналогична электрокардиограмме. Однако магнитокардиография в отличие от электрокардиографии является бесконтактным методом, ибо магнитное поле может регистрироваться и на некотором расстоянии от биологического объекта — источника поля. Развитие магнитокардиографии зависит от технических возможностей измерения достаточно слабых магнитных полей.

Магнитное поле оказывает воздействие на биологические системы, которые в нем находятся. Это воздействие изучает раздел биофизики, называемый магнитобиологией.

Имеются сведения о гибели дрозофилы в неоднородном магнитном поле, морфологических изменениях у животных и расте­ний после пребывания в постоянном магнитном поле, об ориента­ции растений в магнитном поле, влиянии магнитного поля на нервную систему, характеристики крови и т. д.

Естественно, что первичными во всех случаях являются физические или физико-химические процессы.

Такими процессами могут быть ориентация молекул, изменение концентрации молекул или ионов в неоднородном магнитном поле, силовое воздействие (сила Лоренца) на ионы, перемещаю­щиеся вместе с биологической жидкостью, эффект Холла, возникающий в магнитном поле при распространении электрического импульса возбуждения, и др.

В настоящее время физическая природа воздействия магнит­ного поля на биологические объекты еще не установлена. Этот важный вопрос находится в стадии исследования.

39. Свойства магнетиков и магнитные свойства тканей человека.

Молекулы парамагнетиков имеют отличные от нуля магнитные моменты. При отсутствии магнитного поля эти моменты расположены хаотически и их намагниченность равна нулю. Степень упорядоченности магнитных моментов зависит от двух противоположных факторов – магнитного поля и молекулярно-хаотиче-ского движения, поэтому намагниченность зависит как от магнитной индукции, так и от температуры.

В неоднородном магнитном поле в вакууме частицы парамагнитного вещества перемещаются в сторону большего значения магнитной индукции, как говорят, втягиваются в поле. К парамагнетикам относят алюминий, кислород, молибден и т. д.

Диамагнетизм присущ всем веществам. В парамагнетиках диамагнетизм перекрывается более сильным парамагнетизмом.

Если магнитный момент молекул равен нулю или настолько мал, что диамагнетизм преобладает над парамагнетизмом, то вещества, состоящие из таких молекул, относят к диамагнетикам. Намагниченность диамагнетиков направлена противоположно магнитной индукции, ее значение растет с возрастанием индукции. Частицы диамагнетика в вакууме в неоднородном магнитном поле будут выталкиваться из поля.

Ферромагнетики, подобно парамагнетикам, создают намагниченность, направленную на индукцию поля; их относительная магнитная проницаемость много больше единицы. Ферромагнитные свойства присущи не отдельным атомами или молекулам, а лишь некоторым веществам, находящимся в кристаллическом состоянии. К ферромагнетикам относят кристаллическое железо, никель, кобальт, многие сплавы этих элементов между собой и с другими неферромагнитными соединениями, а также сплавы и соединения хрома и марганца с неферромагнитными элементами. Намагниченность ферромагнетиков зависит не только от магнитной индукции, но и от их предыдущего состояния, от времени нахождения образца в магнитном поле. Хотя ферромагнетиков и не очень много в природе, в основном именно их используют как магнитные материалы в технике.

Ткани организма в значительной степени диамагнитны, подобно воде. Однако в организме имеются и парамагнитные вещества, молекулы и ионы. Ферромагнитных частиц в организме нет. Биотоки, возникающие в организме, являются источником слабых магнитных полей. В некоторых случаях индукцию таких полей удается измерить. Так, например, на основании регистрации временной зависимости индукции магнитного поля сердца (биотоков сердца) создан диагностический метод – магнитокардиография. Так как магнитная индукция пропорциональна силе тока, а сила тока (биоток) согласно закону Ома пропорциональна напряжению (биопотенциал), то в общем магнито-кардиограмма аналогична электрокардиограмме. Однако магнитокардиография в отличие от электрокардиографии является бесконтактным методом, ибо магнитное поле может регистрироваться и на некотором расстоянии от биологического объекта – источника поля.

Читайте также: