Реферат лазер и его действие на живые ткани

Обновлено: 02.07.2024

Лазерное излучение представляет собой вид электромагнитного излучения, генерируемого в оптическом диапазоне длин волн 0,1…1000 мкм. Отличие его от других видов излучения заключается в монохромности, когерентности и высокой степени направленности. Благодаря малой расходимости луча лазера плотность потока мощности может достигать 10 16 …10 17 Вт/м 2 . Эффекты воздействия (тепловой, фотохимический, ударно - акустический и др.) определяются механизмом взаимодействия лазерного излучения с тканями и зависят от энергетических и временных параметров излучения, а также от биологических и физико-химических особенностей облучаемых тканей и органов.
Лазерное излучение представляет особую опасность для тканей, максимально поглощающих излучение. Сравнительно легкая уязвимость роговицы и хрусталика глаза, а также способность оптической системы глаза многократно увеличивать плотность энергии (мощность) излучения видимого и ближнего инфракрасного диапазона.
При повреждении появляется боль в глазах, спазм век, слезотечение, отек век и глазного яблока, помутнение сетчатки, кровоизлияние. Клетки сетчатки после повреждения не восстанавливаются. Ультрафиолетовое излучение вызывает фотокератит, средневолновое инфракрасное излучение (14006 нм) - ожог роговицы. Повреждение кожи может быть вызвано лазерным излучением любой длинны волны в спектральном диапазоне 180…100000 нм. Характер поражения кожи аналогичен термическим ожогам. Степень тяжести повреждения кожи, а в некоторых случаях и всего организма, зависит от энергии излучения, длительности воздействия, площади поражения, ее локализации, добавления вторичных источников воздействия (горение, тление). Минимальное повреждение кожи развивается при плотности энергии 1000…10000 Дж/м 2 .
При работе с лазерами уровни вредных производственных факторов не должны превышать установленных государственными стандартами и нормативно-технической документацией.

Лазеры IV класса следует размещать в отдельных помещениях, отвечающих определенным гигиеническим требованиям. Внутренняя отделка стен и потолка таких помещений должна иметь матовую поверхность. При эксплуатации лазеров III-IV классов двери помещений должны быть оборудованы блокировкой, внутренними замками, табло "Посторонним вход воспрещен" и знаком лазерной опасности.

При использовании лазеров II-III классов лазерно-опасную зону следует обязательно ограждать или экранировать пучок излучения. Запрещается работать с лазерными установками в затемненном помещении, поскольку при пониженной освещенности расширяется зрачок и увеличивается вероятность попадания в нее лазерного луча. Для защиты от воздействия лазерного излучения рук достаточно одеть хлопчатобумажные перчатки, для защиты глаз - очки из специального стекла, которые целесообразно монтировать в маску для защиты лица. Светофильтры защитных очков обеспечивают снижение интенсивности лазерного облучения глаз до допустимой.

Термин "лазер" является акронимом. Слово расшифровывается как "Light Amplification by Stimulated Emission of Radiation" (усиление светового излучения путем стимуляции его эмиссии). Следовательно, лазер представляет собой устройство, которое вырабатывает и усиливает световое излучение. Механизм его действия, т. е. стимуляция эмиссии, был открыт Эйнштейном в 1917 г. Лазеры различаются в зависимости от излучаемой мощности (от нескольких милливатт в гелий-неоновом лазере до тысяч ватт в углекислотном). Лазеры способны работать либо в постоянном, либо в импульсном режиме, генерируя миллионы ватт энергии при каждом импульсе.

1. Дивергентность. Свет, испускаемый лазером, практически не подвергается дивергенции (не отклоняется от осевой линии луча). В связи с этим энергия в луче не рассеивается. Дивергенция лазерного пучка света измеряется в миллирадианах, или 1 х 10-3 радиана. В круге имеется 2 радиана — следовательно, один миллирадиан соответствует примерно 3 мин на дуге. Типичный гелий-неоновый лазер имеет номинальную дивергенцию, равную 0,5—1,5 миллирадиан (мрад).

2. Монохроматичность. Свет лазера весьма близок к монохроматичности. Термин "монохроматичность" подразумевает присутствие света одного цвета или одной длины волны. На деле очень мало лазеров генерирует свет только одной длины волны. Обычный гелий-неоновый лазер испускает свет с длиной волны 632— 638 нм, соответствующий оранжево-красной части спектра и 1150—3390 нм, приближается к инфракрасной полосе и захватывает ее до середины. Гелий-неоновый лазер разработан для того, чтобы получать свет только одной длины волны из трех возможных, поэтому разброс в данной полосе длин волн незначителен.

3. Когерентность. Когерентность — это особое взаимоотношение между двумя волновыми процессами. Волны с одинаковой частотой, фазой, амплитудой и направлением распространения считаются пространственно когерентными. На сегодняшний день не известно ни одного источника света, который испускал бы строго когерентный свет, однако луч лазера настолько близок к когерентности, что во многих практических ситуациях его можно считать строго когерентным.

4. Высокая интенсивность. Свет лазера бывает очень интенсивным. Солнце на уровне своей поверхности испускает около 7 х 1010 BT/см2/Sr/um. Имеющиеся на сегодняшний день лазеры продуцируют более 1 х 1010 BT/cM2/Sr/um.

На рисунке ниже отмечено место лазерного излучения в электромагнитном спектре.

Спектр электромагнитных волн

а) Виды лазеров. К лазерам, генерирующим ультрафиолетовые лучи, относятся следующие: эксимер (возбужденный димер) и лазер на иттрий-аллюминиевом гранате с неодимом (Nd:YAG). Лазеры, испускающие видимый спектр, — аргоновый, криптоновый, цветовой лазер и лазер на иттрий-аллюминиевом гранате с неодимом. Лазеры, генерирующие инфракрасные лучи, — углекислотный лазер и лазер на иттрий-аллюминиевом гранате с неодимом.

б) Применение. Лазеры могут использоваться для разрушения микроскопических участков ткани, которые слишком малы и неразделимы с помощью лезвия. За счет изменения длины волны лазерный луч может быть адаптирован к конкретному виду ткани. Это необходимо, поскольку различные ткани поглощают свет определенного цвета. В медицине применяется 4 основных вида лазеров, вошедших в обиход 15—20 лет назад. Это углекислотный, аргоновый, не-одим/YAG и рубиновый лазеры. (В названии указано вещество, которое испускает свет и тем самым определяет длину волны лазерного луча.) На современном этапе уже разработаны устройства, позволяющие использовать луч света чуть ли не во всех сферах.

Фиброоптические волокна теперь могут проникать в такие места, которые раньше считались практически недосягаемыми, например в мелкие кровеносные сосуды. Лазеры коагулируют патологические сосудистые сплетения в желудочно-кишечном тракте, предотвращая потенциально смертельные кровотечения. Тепловая энергия лазера приводит к облитерации патологических сосудов. Лазерами дробят мочевые камни, причем лечение лазером дешевле, чем ударно-волновая литотрипсия. Оно может проводиться даже тогда, когда камни оказываются неуязвимыми для ударной ультразвуковой волны. Патологическое разрастание кровеносных сосудов в сетчатке глаза (частое осложнение сахарного диабета) можно устранять светом лазера; тот же лазерный луч способен проделывать каналы для оттока влаги из камер глаза при лечении глаукомы.

Самая новейшая сфера применения — воздействие на атеросклеротические бляшки в артериях. Цель состоит в иссечении бляшки путем подведения лазерного луча через оптоволоконный зонд. Проведение катетера, внутри которого проходит фиброоптика и лазерный канал, в коронарную артерию стало реальностью. Трудность состоит в том, чтобы точно атаковать непрерывно движущуюся цель, посылая пульсирующую с частотой в тысячи герц энергию и прослеживая отражение и флюоресценцию от каждого импульса. Еще предстоит научить лазер отличать нормальные ткани от патологических. Процесс может повторяться за 1 с много раз до тех пор, пока вся бляшка не отделится.

в) Риск при использовании лазера:

1. Излучение. Большинство лазеров требует подведения тока высокого напряжения, превышающего 15 000 В.

2. Пожароопасность. Импульсный лазер способен воспламенить спирт в краске. Луч углекислотного лазера может поджечь материал, из которого сделана простыня больного.

3. Взрывоопасность. Импульсный лазер. Конденсатор импульсного лазера. Возможен взрыв при воздействии на взрывоопасные пары.

4. Токсичные химические вещества. Органическая краска может оказывать токсическое действие. Инфракрасные красители обладают канцерогенными свойствами. В процессе резки, сварки и нагревания могут выделяться монооксид углерода, токсичные хлор- и фторсодержащие газы.

5. Нелазерное оптическое излучение (например, флюоресценция через боковые стенки трубки и b-аргонионный лазер, позволяющая интенсивному ультрафиолетовому излучению распространяться в стороны от излучателя) иногда вызывает "солнечные" ожоги.

6. Высокий уровень шума. Ряд лазеров издает звук в момент вспышки, а некоторые даже получили названия в соответствии с издаваемыми звуками, как, например, "Молотилка", "Реактивный самолет".

7. Разлет опухолевых клеток. Клетки злокачественных опухолей могут разлетаться в разные стороны из-за парообразования.

8. Удар электрического тока высокого напряжения:
а. Избавьтесь от всех токопроводящих предметов (личные жетоны и т. п.).
б. При операции должен присутствовать человек, обученный приемам сердечно-легочной реанимации.
в. Заготовьте доску или веревку, которой можно оттащить попавшего под высокое напряжение.
г. Используйте толстые резиновые напольные коврики.
д. Проконтролируйте исправность электрической подводки, прежде чем открывать помещение, где находится лазер.
е. Талоны могут явиться причиной воспламенения.

г) В условиях стационара. FDA считает своим долгом предупредить всех врачей, персонал операционных, администраторов больниц и других сотрудников об опасности развития газовой или воздушной эмболии в тех случаях, когда для охлаждения наконечника волоконного лазерного зонда или для инсуффляции при выполнении внутриматочных процедур используется газ или воздух. Эмболия возникает в той ситуации, когда под давлением начинают нагнетать газ в сосудистую систему. FDA настойчиво рекомендует не использовать газ или воздух в указанных целях. Жидкость в качестве раздувающей среды позволяет достичь достаточной визуализации и одновременно охлаждает наконечник.

д) Клиническая картина. Большинство несчастных случаев происходит во время настройки прибора и наведения луча, когда работники позволяют себе работать без защитных темных очков. Лазерное излучение может либо поглощаться биологическим субстратом, либо рассеиваться, либо отражаться от него. В большинстве случаев имеет место комбинация всех перечисленных физических явлений. Однако биологический эффект обусловлен только поглощением. При длине волны от 280 нм до 3,0 мкм в инфракрасном спектре отражение может превышать 10 %, и одновременно большое количество энергии способно проникнуть вглубь, поэтому рассеяние в данном случае определяет итоговое воздействие на ткань-мишень.

е) Глаза. Если говорить о видимой части спектра и инфракрасном излучении (ИКИ), то, как правило, именно на глаза лазерное излучение действует в первую очередь. Повреждение сетчатки в области желтого пятна, самой чувствительной зоны, немедленно дает о себе знать, проявляясь тяжелой симптоматикой. Воздействие на близлежащие ткани или по периферии сетчатки может лишь в минимальной мере сказаться на зрении, а во многих случаях остается совсем не замеченным пострадавшим. Иногда после необширного ожога желтого пятна можно рассчитывать на ограниченное восстановление зрения, но это происходит л ишь через несколько месяцев после экспозиции.

Инфракрасный свет с длиной волны более 1,4 мкм способен вызвать термический ожог роговицы и конъюнктивы. Влияние ультрафиолетового лазерного излучения на биологический субстрат такое же, как при воздействии некогерентного ультрафиолета. Его следствием являются светобоязнь, слезотечение, конъюнктивальные выделения, поверхностная эксфолиация и смазанность стромального рисунка. Роговичный эпителий, по всей видимости, травмируется в результате фотохимической денатурации белков. Облучение роговицы светом в полосе УФ С (100-280 нм) и УФ В (280-315 нм) чревато развитием фотокератита. Эта патология обычно проявляется после латентного периода, который длится от 80 мин до 20 ч, в зависимости от мощности светового воздействия. Признаки поражения — ощущение песка в глазах на фоне более или менее выраженых фотофобии, слезотечения и блефароспазма.

В полосе УФИ—А (315—400 нм) фотокератит возникает при многократном повторении эпизодов облучения большой интенсивности.

ж) Кожа. Понятно, что последствия облучения кожи лазером менее тяжелы, чем поражение глаз, так как кожа способна достаточно быстро восстанавливаться. Тем не менее воздействие интенсивного света видимой части спектра вызывает депигментацию кожи, тяжелые ожоги, которые могут даже сопровождаться патологией внутренних органов. Апертура прибора, используемого для измерения воздействия лучей на кожу, из соображений максимального ограничения площади захватываемых тканей не расширяется более чем на 1 мм.

Облучение ультрафиолетовым лазером вызывает такие же изменения в коже, что и воздействие обычного УФИ, т. е. проявляется либо эритемой сразу после облучения, либо преждевременным старением и зарождением рака кожи при хроническом воздействии. Наши познания, касающиеся дозозависимых влияний УФИ на человека, в настоящее время недостаточны, особенно ощущается недостаток в эпидемиологических исследованиях по канцерогенезу, обусловленному УФИ.

з) Применение лазерного оружия. Лазеры, используемые против человека под названием "ослепляющее оружие", дают временную потерю зрения за счет ослепления или обесцвечивания фотопигментов, не влекущую за собой развития стойкого поражения глаз. В дневное время вряд ли возможно обратимое ослепление без стойких последствий. Эта мысль дала повод предложить аналогичный лазер для вооруженных сил. Примером могут служить Royal Navy Laser Dazzle Gun и противопехотные ружья, разработанные в Министерстве обороны США в рамках осуществления программ "Dazer" и "Cobra".

Редактор: Искандер Милевски. Дата обновления публикации: 18.3.2021

ВВЕДЕНИЕ 3
1 Применение лазеров в промышленности 4
2 Применение лазеров в медицине 7
3 Применение лазеров в военном деле 9
4 Применение лазеров в быту и науке 13
ЗАКЛЮЧЕНИЕ 15
СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ 17

Актуальность данной темы определяется следующими факторами.
Во-первых, лазер представляет собой высокотехнологичной
оптическое устройство, имеющее достаточно простое строение и принцип
действия и очень широкое потенциальное применение в различных
областях науки, техники и быта. Поэтому актуально исследование,
направленное на изучение принципа устройства и возможностей
применения лазерной техники.
Во-вторых, несмотря на простоту действия и общего принципа
устройства лазера, в техническом плане создание лазерной техники
требует применения высокоточных технологий, тщательного определения
различных групп параметров лазера, подбора параметров компонентов
лазера в зависимости от вида применения лазера. В связи с этим актуально
исследование теоретических и практических основ определения
параметров лазера.
Степень изученности. В разработке данной темы были использованы
работы таких авторов как: Белов Г.В., Бондарев Б.В., Квасников И.А.,
Кудинов В.А., Кузнецов С.И., Лабскер Л.Г., Мирам А.О., Морачевский
А.Г., Сивухин Д.В., Хохрин С.Н. и др.
Таким образом, объект исследования: лазерная техника.
Предмет исследования: особенности применения и определения
параметров лазерной техники.
Цель исследования: выявить основные особенности применения и
определения параметров лазерной техники.
Задачи исследования: выявить возможности применения лазерной
техники в различных областях быта, хозяйства, науки и техники;
Структура работы определяется задачами, стоящими перед
исследованием.

1 Применение лазеров в промышленности

ультрафиолетовому, инженеры уменьшают ширину линии рисунка, т. е.
сокращают размеры интегральных схем.
Дж. Дж. Макклеланд со своими коллегами из Национального
института стандартов и технологии (США) применил этот метод, чтобы
изготовить решетку из хромированных точек на маленькой кремниевой
пластине. Размер точки - всего 80 нм - значительно меньше разрешающей
способности, обеспечиваемой ультрафиолетовыми лучами. Физики
уверены, что с дальнейшим развитием этой технологии можно будет на
площади в 1 см 2 всего за несколько минут разместить 2 млрд.
интегральных схем [11].
Секрет заключается в использовании в качестве линзы лазерного
луча. Плотный узкий пучок атомов хрома, получаемый при нагревании
навески хрома в СВЧ-печи, пропускают сквозь пучок лазерного излучения,
частота которого близка к частоте собственных колебаний атомов хрома. В
результате атомы теряют энергию, т. е. охлаждаются. Непосредственно
перед кремниевой подложкой эти атомы попадают в еще один лазерный
пучок - примерно той же частоты, что и первый. Будучи отраженным от
зеркала, этот пучок образует стоячую волну, т. е. волну, пучности и узлы
которой фиксированы в пространстве.
Натолкнувшись на такую стоячую волну, атомы хрома вынуждены
двигаться либо вверх, к гребню волны, либо вниз, к узлу между гребнями.
Таким образом, волна играет роль линзы, отклоняя проходящие сквозь нее
атомы от прямой траектории на половину длины волны и выстраивая их в
аккуратные линии на поверхности кремниевой пластины. Если пластину
осветить двумя взаимноперпендикулярными лазерными пучками, как это
сделал Макклеланд, линии превратятся в правильную совокупность точек -
решетку. Следующий шаг - сканирование лазером поверхности для
создания произвольного рисунка интегральных наносхем.
В технологии позиционирования атомов фокусированным лазерным
лучом - такое название физики закрепили за новой технологией -

предстоит разрешить немало проблем, прежде чем она появится в
заводских цехах. Например, не все атомы фокусируются. Вероятно, будет
невозможно стравливать материал, не разрушая рисунка соединений. Но,
поскольку теоретически при помощи этой технологии можно создавать
схемы с шириной линии рисунка в 10 раз меньшей, чем сегодняшние, она,
в конце концов, получит дальнейшее развитие [4].

2 Применение лазеров в медицине

эффективными методиками и аппаратурой, которая обеспечивает их
реализацию. Современные методики требуют возможность выбора
различных параметров воздействия (режим излучения, длина волны,
мощность) в широком диапазоне. Аппарат лазерной терапии (АЛТ) должен
обеспечивать эти параметры, их достоверный контроль и отображение и
вместе с тем быть простым и удобным в управлении [7].

3 Применение лазеров в военном деле

Военное применение лазеров включает как их использование для
обнаружения целей и связи, так и применение в качестве оружия.
Лучами мощных химических и эксимерных лазеров наземного или
орбитального базирования планируется разрушать или выводить из строя
боевые спутники и самолеты противника. Созданы образцы лазерных
пистолетов для вооружения экипажей орбитальных станций военного
назначения [2].
К настоящему времени сложилась основные направления, по
которым идет внедрение лазерной техники в военное дело. Этими
направлениями являются:
1. Лазерная локация (наземная, бортовая, подводная).
2. Лазерная связь.
3. Лазерные навигационные системы.

Сейчас, получены такие параметры излучения лазеров, которые
способны существенно повысить тактико-технические данные различных
образцов военной аппаратуры (стабильность частоты порядка 10 -14 ,
пиковая мощность 10 -12 Вт, мощность непрерывного излучения 10 4 Вт,
угловой раствор луча 10 -6 рад, t = 10 -12 с, длина волны 0,2. 20 мкм.
Лазерной локацией называют область оптикоэлектроники,
занимающегося обнаружением и определением местоположения
различных объектов при помощи электромагнитных волн оптического
диапазона, излучаемого лазерами. Объектами лазерной локации могут
быть танки, корабли, ракеты, спутники, промышленные и военные
сооружения. Принципиально лазерная локация осуществляется активным
методом. Нам уже известно, что лазерное излучение отличается от
температурного тем, что оно является узконаправленным,
монохраматичным, имеет большую импульсивную мощность и высокую
спектральную яркость. Все это делает оптическую локацию
конкурентноспособной в сравнении с радиолокаций, особенно при ее
использовании в космосе (где нет поглощающего воздействия
атмосферы) и под водой (где для ряда волн оптического диапазона
существуют окна прозрачности).
В основе лазерной локации, так же как и радиолокации, лежат три
основных свойства электромагнитных волн [10]:
1. Способность отражаться от объектов. Цель и фон, на котором
она расположена, по-разному отражают упавшее на них излучение.
Лазерное излучение отражается от всех предметов: металлических и
неметаллических, от леса, пашни, воды. Более того, оно отражается от
любых объектов, размеры которых меньше длины волны, лучше, чем
радиоволны. Это хорошо известно из основной закономерности
отражения, по которой следует, что чем короче длина волны, тем лучше
она отражается. Мощность отраженного в этом случае излучения обратно
пропорциональна длине волны в четвертой степени. Лазерному локатору

принципиально присуща и большая обнаружительная способность, чем
радиолокатору - чем, короче волна, тем она выше. Поэтому-то
проявлялась по мере развития радиолокации тенденция перехода от
длинных волн к более коротким.
Создание лазеров открыло новые перспективы в технике локации.
2. Способность распространяться прямолинейно. Использование
узконаправленного лазерного луча, которым производиться просмотр
пространства, позволяет определить направление на объект (пеленг
цели).
Это направление находят по расположению оси оптической
системы, формирующей лазерное излучение (в радиолокации - по
направлению антенны). Чем уже луч, тем с большей точностью может
быть определен пеленг.
Угловой раствор луча лазера, изготовленного с использованием
твердотельного активного вещества, как известно, составляет всего 1,0 -
1,5 градуса и при этом без дополнительных оптических фокусирующих
систем (антенн). Следовательно, габариты лазерного локатора могут быть
значительно меньше, чем аналогического радиолокатора. Использование
же незначительных по габаритам оптических систем позволит сузить луч
лазера до нескольких угловых минут, если в этом возникнет
необходимость.
3. Способность лазерного излучения распространяться с постоянной
скоростью дает возможность определять дальность до объекта.
Потенциальная точность измерения дальности определяется
точностью измерения времени прохождения импульса энергии до
объекта и обратно. Совершенно ясно, что чем, короче импульс, тем
лучше (при наличии хорошей полосы пропускания, как говорят радисты).
Но нам уже известно, что самой физикой лазерного излучения заложена
возможность получения импульсов с длительностью 10 -7 -10 -8 с. Это
обеспечивает хорошие данные лазерному локатору.

Рассмотрим параметры лазерного локатора.
Прежде всего зона действия. Под ней понимают область
пространства, в которой ведется наблюдение. Ее границы обусловлены
максимальной и минимальной дальности действия и пределами обзора по
углу места и азимуту. Эти размеры определяются назначением военного
лазерного локатора.
Другим параметром локатора является время обзора. Под ним
понимается время, в течение которого лазерный луч приводит
однократный обзор заданного объема пространства.
Следующим параметром локатора являются определяемые
координаты, которые зависят от назначения локатора. Если он
предназначен для определения местонахождения наземных и надводных
объектов, то достаточно измерять две координаты: дальность и азимут.
При наблюдении за воздушными объектами нужны три координаты. Эти
координаты следует определять с заданной точностью, которая зависит
от систематических и случайных ошибок [6].
Под разрешающей способностью понимается возможность
раздельного определения координат близко расположенных целей.
Каждой координате соответствует своя разрешающая способность. Кроме
того, используется такая характеристика, как помехозащищенность. Это
способность лазерного локатора работать в условиях естественных
(Солнце, Луна) и искусственных помех [9].
И еще одной важной характеристикой локатора является
надежность. Это свойство локатора сохранять свои характеристики и
установленных пределах в заданных условиях эксплуатации.

4 Применение лазеров в быту и науке

Появление лазеров произвело переворот в технике связи и записи
информации. Существует простая закономерность: чем выше несущая
частота (меньше длина волны) канала связи, тем больше его пропускная
способность. Именно поэтому радиосвязь, вначале освоившая диапазон
длинных волн, постепенно переходила на все более короткие длины
волн. Но свет – такая же электромагнитная волна, как и радиоволны,
только в десятки тысяч раз короче, поэтому по лазерному лучу можно
передать в десятки тысяч раз больше информации, чем по
высокочастотному радиоканалу. Лазерная связь осуществляется по
оптическому волокну – тонким стеклянным нитям, свет в которых за
счет полного внутреннего отражения распространяется практически без
потерь на многие сотни километров. Лазерным лучом записывают и
воспроизводят изображение (в том числе движущееся) и звук на компакт-
дисках.
Лазеры активно применяются в научных исследованиях.
Чрезвычайно высокая температура излучения и высокая плотность его

энергии дает возможность исследовать вещество в экстремальном
состоянии, существующем только в недрах горячих звезд. Делаются
попытки осуществить термоядерную реакцию, сжимая ампулу со смесью
дейтерия с тритием системой лазерных лучей (т.н. инерционный
термоядерный синтез). В генной инженерии и нанотехнологии
(технологии, имеющей дело с объектами с характерными размерами 10 –9
м) лазерными лучами разрезают, передвигают и соединяют фрагменты
генов, биологических молекул и детали размером порядка миллионной
доли миллиметра (10 –9 м). Лазерные локаторы (лидары) применяются для
исследования атмосферы [8].
Лазеры применяются в голографии для создания самих голограмм и
получения гологафического объёмного изображения. Некоторые лазеры,
например, лазеры на красителях, способны генерировать
монохроматический свет практически любой длины волны, при этом
импульсы излучения могут достигать 10−16 с, а следовательно и
огромных мощностей (так называемые гигантские импульсы). Эти
свойства используются в спектроскопии, а также при изучении
нелинейных оптических эффектов. С использованием лазера удалось
измерить расстояние до Луны с точностью до нескольких сантиметров.
Лазерная локация космических объектов уточнила значение
астрономической постоянной и способствовала уточнению систем
космической навигации, расширила представления о строении атмосферы
и поверхности планет Солнечной системы. В астрономических
телескопах, снабженных адаптивной оптической системой коррекции
атмосферных искажений, лазер применяют для создания искусственных
опорных звезд в верхних слоях атмосферы.
Сверхкороткие импульсы лазерного излучения используются в
лазерной химии для запуска и анализа химических реакций. Здесь
лазерное излучение позволяет обеспечить точную локализацию,
дозированность, абсолютную стерильность и высокую скорость ввода
энергии в систему. В настоящее время разрабатываются различные
системы лазерного охлаждения, рассматриваются возможности
осуществления с помощью лазеров управляемого термоядерного

синтеза(самым подходящим лазером для исследований в области
термоядерных реакций, был бы лазер, использующий длины волн,
лежащие в голубой части видимого спектра). Лазеры используются и в
военных целях, например, в качестве средств наведения и прицеливания.
Рассматриваются варианты создания на основе мощных лазеров боевых
систем защиты воздушного, морского и наземного базирования [8].
ЗАКЛЮЧЕНИЕ

лечения заболеваний с помощью лазерного луча продолжает
стремительно увеличиваться. Фотодинамическая и фототермическая
терапия, коррекция зрения, косметологические и пластические операции,
термопластика хрящевых тканей, диагностика капиллярного кровотока —
только немногие примеры новых лазерных технологий в медицине.
Японские специалисты прогнозируют, что к 2005 году каждая третья
медицинская процедура будет проводиться с использованием лазера.
Перечень областей применений лазерного луча в наши дни был бы
не полон, если бы мы не вспомнили полиграфию с ее лазерными
принтерами и настольными печатными машинами, экологический
мониторинг с помощью лидаров и диодных спектроанализаторов,
навигацию, использующую лазерные гироскопы, маяки и локаторы. На
службе пауки примеры использования лазеров просто не сосчитать:
лазерный луч и препарирует клетку, и создает экстремально плотную
плазму, и измеряет скорость дрейфа материков. Вот почему объем
производства лазерной техники в мире стабильно увеличивается на
15—20% в год.
К сожалению, сегодня в России лазерные технологии используются
недостаточно. Сегодня отечественные лазерщики предлагают более трех
тысяч моделей лазерного оборудования, в России производятся лазерные
источники излучения, приборы и установки практически всех известных
в мире типов. Российский лазерный экспорт составляет, по разным
оценкам, от 30 до 50 миллионов долларов в год и постоянно растет. А
вот внутренний спрос очень невелик. Внедрение лазерных технологий не
отвечает ни нашим реальным потребностям, ни реальным возможностям.
Не последнюю роль здесь играет слабая информированность
пользователей. Очень многие из них уверены, что хорошая лазерная
техника производится только за рубежом.

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

1. Белов Г.В. Термодинамика в 2 ч. Часть 2: Учебник и практикум для
академического бакалавриата / Г.В. Белов. - Люберцы: Юрайт, 2016. -
248 c.
2. Бондарев Б.В. Курс общей физики. Книга 3: Термодинамика,
статистическая физика, строение вещества: Учебник для бакалавров /
Б.В. Бондарев, Н.П. Калашников, Г.Г. Спирин. - Люберцы: Юрайт, 2016.
- 369 c.
3. Квасников И.А. Термодинамика и статистическая физика. Т.2: Теория
равновесных систем: Статистическая физика / И.А. Квасников. - М.:
УРСС, 2016. - 432 c.
4. Кудинов В.А. Техническая термодинамика и теплопередача: Учебник
для академического бакалавриата / В.А. Кудинов, Э.М. Карташов, Е.В.
Стефанюк. - Люберцы: Юрайт, 2016. - 442 c.
5. Кузнецов С.И. Курс физики с примерами решения задач. Часть I.
Механика. Молекулярная физика. Термодинамика / С.И. Кузнецов. -
СПб.: Лань, 2014. - 464 c.
6. Лабскер Л.Г. Основы физики. Молекулярная физика. Термодинамика:
Учебное пособие / Л.Г. Лабскер. - М.: КноРус, 2013. - 192 c.
7. Мирам А.О. Техническая термодинамика. Тепломассообмен: Учебное
издание / А.О. Мирам, В.А. Павленко. - М.: АСВ, 2016. - 352 c.
8. Морачевский А.Г. Физическая химия. Термодинамика химических
реакций: Учебное пособие / А.Г. Морачевский, Е.Г. Фирсова. - СПб.:
Лань, 2015. - 112 c.
9. Сивухин Д.В. Общий курс физики. В 5 т. Т. 2. Термодинамика и
молекулярная физика / Д.В. Сивухин. - М.: Физматлит, 2014. - 544 c.
10. Тельцов Л.П. Термодинамика: Учебное пособие / Л.П. Тельцов, О.Т.
Муллакаев, В.В. Яглов. - СПб.: Лань П, 2016. - 592 c.

11. Хохрин С.Н. Физическая химия. Термодинамика химических реакций:
Учебное пособие / С.Н. Хохрин, К.А. Рожков, И.В. Лунегова. - СПб.:
Лань, 2015. - 112 c.

Основные принципы и биологические механизмы воздействия лазерного излучения на кожу

Отсчет эпохи лазерной медицины начался более полу века назад, когда в 1960 г., Теодор Мэйман впервые использовал в клинике рубиновый лазер.

За рубиновым последовали другие лазеры: 1961 г. – лазер на иттриево-алюминиевом гранате с неодимом (Nd:YAG); 1962 г. – аргоновый; 1964 г. – лазер на диоксиде углерода (СО2).

В 1965 г. Леон Голдман сообщил об использовании рубинового лазера для удаления татуировок. В дальнейшем, вплоть до 1983 г., предпринимались различные попытки использования неодимового и аргонового лазеров для лечения сосудистых патологий кожи. Но их применение было ограничено высоким риском образования рубцов.

В 1983 г. в журнале Science Рокс Андерсон и Джон Пэрриш опубликовали разработанную ими концепцию селективного фототермолиза (СФТ), что привело к революционным изменениям в лазерной медицине и дерматологии [5]. Данная концепция позволила лучше понять процессы взаимодействия лазерного излучения с тканью. Это, в свою очередь, облегчило разработку и производство лазеров для медицинского применения.

Особенности лазерного излучения

Три свойства, присущие лазерному излучению делают его уникальным:

  1. Когерентность. Пики и спады волн располагаются параллельно и совпадают по фазе во времени и пространстве.
  2. Монохромность. Световые волны, излучаемые лазером, имеют одинаковую длину, именно ту, которая предусмотрена используемой в лазере средой.
  3. Коллимация. Волны в луче света сохраняют параллельность, не расходятся, и луч переносит энергию практически без потерь.

Способы взаимодействия лазерного излучения с кожей

sheptij-1.jpg

Методы лазерной хирургии применяются для манипуляций на коже намного чаще, чем на любых других тканях. Это объясняется, во-первых, исключительным разнообразием и распространенностью кожной патологии и различных косметических дефектов, а во-вторых, относительной простотой выполнения лазерных процедур, что связано с поверхностным расположением объектов, требующих лечения. В основе взаимодействия лазерного света с тканями лежат оптические свойства тканей и физические свойства лазерного излучения. Распределение света, попавшего на кожу, можно разделить на четыре взаимосвязанных процесса.

Отражение. Около 5—7% света отражаются на уровне рогового слоя.

Поглощение (абсорбция). Описывается законом Бугера — Ламберта — Бера. Поглощение света, проходящего сквозь ткань, зависит от его исходной интенсивности, толщины слоя вещества, через которое проходит свет, длины волны поглощаемого света и коэффициента поглощения. Если свет не поглощается, никакого его воздействия на ткани не происходит. Когда фотон поглощается молекулой-мишенью (хромофором), вся его энергия передается этой молекуле. Важнейшими эндогенными хромофорами являются меланин, гемоглобин, вода и коллаген [1, 7]. К экзогенным хромофорам относятся красители для татуировок, а также частицы грязи, импрегнированные при травме.

Рассеивание. Этот процесс обусловлен главным образом коллагеном дермы. Важность явления рассеивания состоит в том, что оно быстро уменьшает плотность потока энергии, доступной для поглощения хромофором-мишенью, а, следовательно, и клиническое воздействие на ткани. Рассеивание снижается с увеличением длины волны, делая более длинные волны идеальным средством доставки энергии в глубокие кожные структуры.

Проникновение. Глубина проникновения света в подкожные структуры, как и интенсивность рассеивания, зависит от длины волны. Короткие волны (300—400 нм) интенсивно рассеиваются и не проникают глубже 100 мкм.А волны большей длины проникают глубже, так как рассеиваются меньше.

Основными физическими параметрами лазера, определяющими воздействие квантовой энергии на ту или иную биологическую мишень, являются длина генерируемой волны и плотность потока энергии и время воздействия.

Длина генерируемой волны. Длина волны излучения лазера сопоставима со спектром поглощения самых важных тканевых хромофоров (рис. 2). При выборе этого параметра обязательно следует учитывать глубину расположения структуры-мишени (хромофора), поскольку рассеивание света в дерме существенно зависит от длины волны (рис. 3). Это означает, что длинные волны поглощаются слабее, чем короткие; соответственно, их проникновение в ткани глубже. Необходимо также учитывать и неоднородность спектрального поглощения тканевых хромофоров:

  • Меланин в норме содержится в эпидермисе и волосяных фолликулах. Спектр его поглощения лежит в ультрафиолетовом (до 400 нм) и видимом (400 - 760 нм) диапазонах спектра. Поглощение меланином лазерного излучения постепенно уменьшается по мере увеличения длины волны света. Ослабление поглощения наступает в ближней инфракрасной области спектра от 900 нм.
  • Гемоглобин содержится в эритроцитах. Он имеет множество различных пиков поглощения. Максимумы спектра поглощения гемоглобина лежат в области УФ-А (320—400 нм), фиолетовом (400 нм), зеленом (541 нм) и желтом (577 нм) диапазонах.
  • Коллаген составляет основу дермы. Спектр поглощения коллагена находится в видимом диапазоне от 400 нм до 760 нм и ближней инфракрасной области спектра от 760 до 2500нм.
  • Вода составляет до 70% дермы. Спектр поглощения воды лежит в средней (2500 - 5000 нм) и дальней (5000 - 10064 нм) инфракрасной областях спектра.

Плотность потока энергии. Если длина волны света влияет на глубину, на которой происходит его поглощение тем или иным хромофором, то для непосредственного повреждения структуры-мишени важны величина энергии лазерного излучения и мощность, определяющая скорость поступления этой энергии. Энергия измеряется в джоулях (Дж), мощность – в ваттах (Вт, или Дж/с). На практике эти параметры излучения обычно используются в перерасчете на единицу площади – плотность потока энергии (Дж/см 2 ) и скорость потока энергии (Вт/см 2 ), или плотность мощности [1, 3] .

sheptij-2.jpg
sheptij-3.jpg

Виды лазерных вмешательств в дерматологии

Все виды лазерных вмешательств в дерматологии могут быть условно подразделены на два типа:

  • I тип. Операции, в ходе которых проводят абляцию участка пораженной кожи, включая эпидермис.
  • II тип. Операции, нацеленные на избирательное удаление патологических структур без нарушения целостности эпидермиса.

Энергетические характеристики и производительность абляции определяются свойствами облучаемого объекта, характеристиками излучения и параметрами, неразрывно связывающими свойства объекта и лазерного луча, — коэффициентами отражения, поглощения и рассеивания данного вида излучения в данном виде ткани или ее отдельных составляющих. К свойствам облучаемого объекта относятся: соотношение жидкого и плотного компонентов, их химические и физические свойства, характер внутри- и межмолекулярных связей, термическая чувствительность клеток и макромолекул, кровоснабжение ткани и т. д. Характеристиками излучения – это длина волны, режим облучения (непрерывный или импульсный), мощность, энергия в импульсе, суммарная поглощенная энергия и т. д.

sheptij-4.jpg

Наиболее детально механизм абляции исследован при использовании СО2 лазера (l = 10,6 мкм). Его излучение при плотности мощности ³ 50 кВт/см 2 интенсивно поглощается молекулами тканевой воды. При таких условиях происходит быстрый разогрев воды, а от нее и неводных компонентов ткани. Следствием этого является стремительное (взрывное) испарение тканевой воды (эффект вапоризации) и извержение водяных паров вместе с фрагментами клеточных и тканевых структур за пределы ткани с формированием абляционного кратера. Вместе с перегретым материалом из ткани удаляется и бόльшая часть тепловой энергии. Вдоль стенок кратера остается узкая полоска разогретого расплава, от которого тепло передается на окружающие интактные ткани (рис. 4). При низкой плотности энергии (рис. 5, А) выброс продуктов абляции относительно невелик, поэтому значительная часть тепла от массивного слоя расплава передается в ткань. При более высокой плотности (рис. 5, Б) наблюдается обратная картина. При этом незначительные термические повреждения сопровождаются механической травмой ткани за счет ударной волны. Часть разогретого материала в виде расплава остается вдоль стенок абляционного кратера, причем именно этот слой является резервуаром тепла, передаваемого в ткань за пределы кратера. Толщина этого слоя одинакова по всему контуру кратера. С повышением плотности мощности она уменьшается, а с понижением растет, что сопровождается соответственно уменьшением или увеличением зоны термических повреждений. Таким образом, повышая мощность излучения, мы добиваемся увеличения скорости удаления ткани, снижая при этом глубину термического повреждения [6].

Область применения СО2-лазера очень обширна. В фокусированном режиме он используется для иссечения тканей с одновременной коагуляцией сосудов. В дефокусированном режиме за счет уменьшения плотности мощности производится послойное удаление (вапоризация) патологической ткани. Именно таким способом ликвидируют поверхностные злокачественные и потенциально злокачественные опухоли (базальноклеточная карцинома, актинический хейлит, эритроплазия Кейра), ряд доброкачественных новообразований кожных покровов (ангиофиброма, трихлеммома, сирингома, трихоэпителиома и др.), крупные послеожоговые струпы, воспалительные кожные заболевания (гранулемы, узелковый хондродерматит ушной раковины), кисты, инфекционные поражения кожи (бородавки, рецидивирующие кондиломы, глубокие микозы), сосудистые поражения (пиогенная гранулема, ангиокератома, кольцевидная лимфангиома), образования, обусловливающие косметические дефекты (ринофима, глубокие постугревые рубцы, эпидермальные родимые пятна, лентиго, ксантелазма) и др.

Дефокусированный луч СО2-лазера используют и в сугубо косметической процедуре — так называемой лазерной дермабразии, то есть послойном удалении поверхностных слоев кожи с целью омоложения облика пациента [6]. В импульсном режиме с длительностью импульса менее 1 мс за один проход селективно вапоризируется 25—50 мкм ткани; при этом образуется тонкая зона резидуального термического некроза в пределах 40—120 мкм. Размеры этой зоны достаточны для временной изоляции дермальных кровеносных и лимфатических сосудов, что в свою очередь позволяет снизить риск формирования рубца.

Обновление кожи после лазерной дермабразии обусловлено несколькими причинами. Абляция уменьшает выраженность морщин и текстурных аномалий за счет поверхностного испарения ткани, тепловой коагуляции клеток в дерме и денатурации экстрацеллюлярных матричных белков. Во время процедуры происходит мгновенная видимая контракция кожи в пределах 20—25% как результат усадки (сжатия) ткани из-за дегидратации и сжатия коллагеновых волокон. Наступление отсроченного, но более продолжительного результата обновления кожи достигается за счет процессов, связанных с реакцией тканей на травму. После воздействия лазером в области сформировавшейся раны развивается асептическое воспаление. Это стимулирует посттравматическое высвобождение факторов роста и инфильтрацию фибробластами. Наступающая реакция автоматически сопровождается всплеском активности, что неизбежно ведет к тому, что фибробласты начинают производить больше коллагена и эластина. В результате вапоризации происходит активация процессов обновления и кинетики пролиферации эпидермальных клеток. В дерме запускаются процессы регенерации коллагена и эластина с последующим их расположением в параллельной конфигурации.

sheptij-affirm.jpg

Аналогичные события происходят при использовании импульсных лазеров, излучающих в ближней и средней инфракрасной области спектра (1,54—2,94 мкм): эрбиевого с диодной накачкой (l = 1,54 мкм), тулиевого (l = 1,927 мкм), Ho:YSSG (l = 2,09 мкм), Er:YSSG (l = 2,79 мкм), Er:YAG (l = 2,94 мкм). Для перечисленных лазеров характерны очень высокие коэффициенты поглощения водой. Например, излучение Er:YAG-лазера поглощается водосодержащими тканями в 12—18 раз активнее, чем излучение СО2-лазера. Как и в случае СО2-лазера, вдоль стенок абляционного кратера в ткани, облученной Er:YAG-лазером, образуется слой расплава. Следует иметь в виду, что при работе на биоткани с этим лазером существенное значение для характера тканевых изменений имеет энергетическая характеристика импульса, в первую очередь его пиковая мощность. Это означает, что даже при минимальной мощности излучения, но более длительном импульсе резко возрастает глубина термонекроза. В таких условиях масса удаленных перегретых продуктов абляции относительно меньше массы оставшихся. Это обусловливает глубокие термические повреждения вокруг абляционного кратера. В то же время при мощном импульсе ситуация иная — минимальные термические повреждения вокруг кратера при высокоэффективной абляции. Правда, в этом случае положительный эффект достигается ценой обширных механических повреждений ткани ударной волной. За один проход эрбиевым лазером происходит абляция ткани на глубину 25—50 мкм с минимальным резидуальным термическим повреждением. Вследствие этого процесс реэпителизации кожи значительно короче, чем после воздействия СО2-лазера.

II тип. Селективное воздействие.
К операциям этого типа относятся процедуры, в ходе которых добиваются лазерного повреждения определенных внутридермальных и подкожных образований без нарушения целостности кожного покрова. Эта цель достигается подбором характеристик лазера: длины волны и режима облучения. Они должны обеспечить поглощение лазерного света хромофором (окрашенной структурой-мишенью), что приведет к его разрушению или обесцвечиванию за счет превращения энергии излучения в тепловую (фототермолиз), а в некоторых случаях и в механическую энергию. Мишенью лазерного воздействия могут быть: гемоглобин эритроцитов, находящихся в многочисленных расширенных дермальных сосудах при винных пятнах (PWS); пигмент меланин различных кожных образований; угольные, а также другие, по-разному окрашенные инородные частицы, вводимые под эпидермис при татуировке или попадающие туда в результате иных воздействий.

Соблюдение всех этих условий применительно к конкретной мишени приведет к ее максимальному повреждению (разогреву или распаду) при минимальном перегреве или механической травме соседних структур.

sheptij-laser.jpg

Так, для облучения патологических сосудов винного пятна (PWS) наиболее рациональным является использование лазера с самой большой длиной волны, соответствующей пикам светопоглощения гемоглобина (l = 540, 577, 585 и 595 нм), при длительности импульсов порядка миллисекунд, поскольку при этом поглощение излучения меланином будет незначительным (положение 1 теории селективного фототермолиза). Относительно большая длина волны эффективно обеспечит глубинный прогрев ткани (положение 2), а сравнительно продолжительный импульс будет соответствовать весьма крупным размерам мишени (сосуды с эритроцитами; положение 3).

Если же целью процедуры является ликвидация частиц татуировки, то помимо подбора длины волны излучения, соответствующей цвету этих частиц, потребуется установить продолжительность импульса, которая значительно меньше, чем в случае винных пятен, чтобы добиться механического разрушения частиц при минимальном термическом повреждении других структур (положение 4).

Разумеется, соблюдение всех этих условий не обеспечивает абсолютную защиту эпидермиса, однако исключает слишком грубое его повреждение, которое привело бы впоследствии к стойкому косметическому дефекту из-за чрезмерного рубцевания.

Реакции ткани на лазерное воздействие

При взаимодействии лазерного света с тканью происходят следующие реакции.

Фотостимуляция. Для фотостимуляции используются низкоинтенсивные терапевтические лазеры. Терапевтический лазер по энергетическим параметрам оказывает действие, не повреждающее биосистему, но в то же время этой энергии достаточно для активации процессов жизнедеятельности организма , например ускорения заживления ран.

Фотодинамическая реакция. В основе принципа – воздействие светом определенной длины волны на фотосенсибилизатор (естественный или искусственно введенный), обеспечивающее цитотоксический эффект на патологическую ткань. В дерматологии фотодинамическое воздействие используется для лечения вульгарных угрей, псориаза, красного плоского лишая, витилиго, пигментной крапивницы и др.

Фототермолиз и фотомеханические реакции- при поглощении излучения происходит преобразование энергии лазерного луча в тепло на том участке кожи, который содержит хромофор. При достаточной мощности лазерного луча это приводит к тепловому разрушению мишени.Селективный фототермолиз можно применить для удаления пороков развития поверхностно расположенных сосудов, некоторых пигментных образований кожи, волос, татуировок.

Читайте также: