Реферат геологическая картина мира

Обновлено: 04.07.2024

Содержание работы

Введение…………………………………………………………………………..3
Ранние фазы эволюции Земли……………………………………………………4
Догеологический этап развития Земли. Архей(1800лет назад)………………..6
Протерозойская эра (2000 млн. лет назад)………………………………………8
Палеозойская эра (330 млн. лет назад)…………………………………………10
Мезозойская эра (165 млн. лет назад)…………………………………………..12
Кайнозойская эра (70 млн. лет назад)…………………………………………..13
Заключение……………………………………………………………………….14
Список литературы………………………………………………………………15

Файлы: 1 файл

геологическая история Земли.docx

Министерство образования и науки Российской Федерации

Федеральное государственное бюджетное образовательное учреждение

высшего профессионального образования

ИНСТИТУТ ПРАВА, ЭКОНОМИКИ И УПРАВЛЕНИЯ

Геологическая история Земли.

(реферат по дисциплине Современная научная картина мира)

Ранние фазы эволюции Земли……………………………………………………4

Догеологический этап развития Земли. Архей(1800лет назад)………………..6

Протерозойская эра (2000 млн. лет назад)………………………………………8

Палеозойская эра (330 млн. лет назад)…………………………………………10

Мезозойская эра (165 млн. лет назад)…………………………………………..12

Кайнозойская эра (70 млн. лет назад)…………………………………………..13

Появление и развитие жизни на Земле - это уникальное явление во всей Солнечной системе. Но оно не случайно, а было подготовлено сочетанием ряда благоприятных условий. Прежде всего, для зарождения жизни должен был сформироваться сложный комплекс активно взаимодействующих природных компонентов, которые в течение чрезвычайно длительного времени в относительно стабильных гидротермальных условиях испытали строго направленную эволюцию.

Планета Земля находится на третьем по порядку месте по удаленности от Солнца. Она относится к классу планет земного типа и является крупнейшей в этой группе. Было установлено, что возраст Земли составляет около 4,54 миллиарда лет. Образовалась она из космической пыли и газа – это были вещества, оставшиеся после того как сформировалось Солнце.

Ранние фазы эволюции Земли.

Земля, как и другие планеты, пережила ранние фазы эволюции - фазу аккреции ("рождения"), фазу расплавления внешней сферы земного шара и фазу первичной коры ("лунную фазу").

Фаза аккреции - это образование ее из хаотического роя твердых, преимущественно каменных, некрупных тел и пылевых частиц. Её надо представлять себе, как непрерывное выпадение на растущую Землю относительно все большего количества крупных тел, укрупняющихся в своем полете при соударениях между собой, и притяжением к себе более удаленных мелких частей материи. Вместе с крупными телами на Землю падали макрообъекты - планетезимали, неудавшиеся планеты. Они имели размеры астероидов или некрупных спутников больших планет.

В фазу аккреции Земля приобрела приблизительно 95% современной массы, на что потребовалось по разным оценкам от 17 млн. лет до 400 млн. лет, в период с 4,6 по 4,2 млрд. лет назад. Во время аккреции Земля долго оставалась холодным космическим телом, и только в конце этой фазы, когда началась предельно интенсивная бомбардировка ее крупными объектами, произошло сильное разогревание, а затем полное расплавление вещества внешней зоны планеты.

Фаза расплавления внешней сферы Земли устанавливается сообразно с ранней историей других планет, в первую очередь Луны, а также Меркурия, Марса. К этому же времени относят образование у Земли ядра, мантии и коры. Образование ядра создало условия для образования у Земли диполярного магнитного поля. Установление на Земле самых древнейших палеомагнитных пород с возрастом 3,7 млрд. лет - свидетельство существования в то время ядра, и естественно, мантии

На тот момент вся поверхность Земли представляла собой океан раскаленного тяжелого расплава с прорывающимися из него газами. В этот своеобразный океан продолжали стремительно врываться как малые, так и крупные космические тела, удары которых о жидкую поверхность вызывали образование всплесков, фонтанов и другие формы взлета и падения тяжелой жидкости. Над раскаленным океаном простиралось сплошь укутанное густыми тучами небо, с которого на поверхность не падало ни капли воды.

"Лунная фаза". Остывание расплавленного вещества внешней сферы Земли вследствие излучения тепла в космос и ослабления метеоритной бомбардировки, не могущей компенсировать потерю тепла, привело к образованию тонкой первичной коры базальтового состава. В раннюю историю Земли происходило и формирование гранитного слоя материковой коры. Самые древние из выявленных гранитных интрузий имеют возраст не менее 3,5 млрд. лет, т. е. они, безусловно, доархейские. В течение всей фазы формирования коры, поверхность которой имела температуру выше 100° С, продолжалось выпадение преимущественно крупных тел. На всей поверхности нашей планеты создавался типичный для всех других планет земной группы рельеф ударных кратеров. В лунную фазу существования Земля постепенно охлаждалась от температуры плавления базальтов (1000°- 800°) до 100° С. С преодолением температурного рубежа + 100° С связано все последующее преобразование природной среды и эволюция земной коры.

Определенный отрезок времени, отвечающий наиболее крупному этапу развития земной коры и органического мира, принято называть геологической эрой. Вся история развития Земли поделена на 5 эр. В свою очередь эры подразделяются на геологические периоды, название которых чаще всего связано с местностью, где впервые были найдены соответствующие отложения.

Догеологический этап развития Земли. Архей(1800лет назад) .

Рассматривать геологическую историю Земли мы начинают обычно с раннего архея, т.е. с того момента, с которого сохранились древнейшие горные породы.

В эту же эпоху грандиозной вулканической деятельности Земля подвергалась усиленной метеоритной бомбардировке. Земная кора становилась толще и прочнее, лавы изливались уже более сосредоточенно, вдоль крупных разломов.

Архейская эра ведет свое начало со времени, когда Земля сформировалась как планета – около 4 млрд. лет назад. Ее продолжительность составляет 1 млрд. лет. К концу раннего архея уже существовал, хотя. возможно и не повсеместно, гранитогнейсовый слой земной коры, который уже 3,0-3,3 млрд. лет назад подвергался раскалыванию с формированием зеленокаменных и гранулитовых поясов. Следы еще более ранней стадии развития практически исчезли. Первичная кора, образовавшаяся в результате охлаждения Земли, беспрерывно разрушалась паром и газом, которые выделяло раскаленное вещество. Извергаемая миллионами вулканов лава застывала на поверхности, образуя первичные горы и плоскогорья, материки и океанические впадины.

Мощная, плотная атмосфера также охлаждалась, в результате чего выпадали обильные дожди. На горячей земной поверхности они мгновенно превращались в пар. Сплошные облака обволакивали Землю, препятствуя прохождению солнечных лучей, согревающих ее поверхность. Твердая кора охладилась, океанические впадины заполнились водой.

Первичный океан, реки, атмосфера разрушали первичные горы и материки, образуя первые осадочные породы. На протяжении многих миллионов лет истории Земли эти породы, неоднократно подвергаясь воздействию раскаленного вещества, громадного давления и высокой температуры, сильно изменились. Ныне они твердые и плотные. С ними связано образование многих полезных ископаемых: строительного камня, слюды, никелевой руды, каолина, золота, молибдена, меди, кобальта, радиоактивных минералов, железа.

В архейскую эру в теплых водах первичного океана протекали различные химические реакции между солями, щелочами и кислотами. Им благоприятствовали солнечная радиация, плотная атмосфера, ионизация воды, вызываемая разрядами огромных молний.

В конце архейской эры в морях появляются комочки белкового вещества, положившие начало всему живому на Земле. Основой синтеза первичных белковых веществ, несомненно, являлись аминокислоты.

Результаты радиоастрономических исследований убедительно свидетельствуют о том, что в космосе имеется множество химических веществ, в состав которых входят элементы – органогены (водород, углерод, азот, сера, фосфор), производные мочевины и других органических соединений. Таким образом, сложные и разнообразные соединения углерода Земля, по определению академика А. И. Опарина, “получила в наследство от космоса”.

Абиогенные органические соединения характерны также для земной коры. Они образуют карбосферу, существующую и в современных условиях (например, в жерлах вулканов).Битумы и многие другие органические вещества были обнаружены в газожидкостных включениях древних минералов магматического происхождения.

Существование карбосферы земной коры, органические соединения космоса, солнечные лучи, радиация в конце концов послужили причиной образования первичных аминокислот.

Чрезвычайно благоприятствовала возникновению и развитию жизни на Земле относительно постоянная на протяжении последних 3 млрд. лет температура ее поверхности.

Геология – это целая отрасль науки. Она объединяет большое количество наук. Геология, не смотря на корень гео в названии, не ограничивается изучением Земли. Солнечная Система изучается такими разделами геологии: космохимия, космология, космическая геология и планетология.

Прикрепленные файлы: 1 файл

Реферат по КСЕ.doc

С конца XIX века - начала XX в. Геология расширила свои горизонты, в том числе и благодаря революционным идеям Владимира Ивановича Вернадского и Александра Евгеньевича Ферсмана, которые определили геологию, как науку о строении земли, её происхождении и развитии, которая основывается на изучении геологических процессов и земной коры в целом. По словам Вернадского, XX век, является периодом ломки коренных естественнонаучных представлений, когда история науки сама наталкивает человека на правильный путь решения многих актуальных проблем.

В.И. Вернадский (1863-1945) – выдающийся русский естествоиспытатель, минеролог и кристаллограф, основоположник геохимии и биогеохимии, организатор большого числа научных учреждений. Кафедра минералогии Московского университета, возглавляемая В.И. Вернадским, сыграла исключительную роль в развитии науки. В своих исследованиях и лекциях В.И. Вернадский выдвинул на первый план с одной стороны выяснение химической природы минералов, с другой вопросы их происхождения их изменений и преобразований в различных зонах земной коры. Прежнему описательному направлению минералогии он противопоставлял генетическую минералогию, или химию земной коры. Изучая минералы, как продукты химических процессов, протекающих в земной коре, Владимир Иванович естественным образом перешёл к истории отдельных химических элементов, или геохимии.

Геология является комплексной наукой, в ее состав входят многочисленные, зачастую разноплановые, дисциплины.

Химический состав Земли, процессы, концентрирующие и распыляющие химические элементы в различных сферах Земли, являются предметом геохимии. Земную кору – верхнюю твердую оболочку Земли слагают различные генетические типы горных пород (магматические, осадочные и метаморфические), состоящие из определенного сочетания минералов, в состав которых входят различные химические элементы. Изучая такую иерархию – химические элементы - минералы – горные породы, можно судить о строении земной коры в различных структурных зонах. Ниже перечислен состав земной коры.

2.Строение земной коры.

В строении земной коры участвуют все описанные типы горных пород - магматические, осадочные и метаморфические, залегающие выше границы Мохо. Как в пределах континентов, так и в пределах океанов выделяются подвижные пояса и относительно устойчивые площади земной коры. На континентах к устойчивым площадям относятся обширные равнинные пространства - платформы (Восточно-Европейская, Сибирская), в пределах которых располагаются наиболее устойчивые участки - щиты (Балтийский, Украинский), представляющие собой выходы древних кристаллических горных пород. К подвижным поясам относятся молодые горные сооружения, такие, как Альпы, Кавказ, Гималаи, Анды и др.

Рис. 3.1. Обобщенный профиль дна океана (по О. К. Леонтьеву)

Рис. 3.2. Схема строения различных типов земной коры.

На первых этапах геофизических исследований выделялись два основных типа земной коры: 1) континентальный и 2) океанский, резко отличающиеся друг от друга строением и мощностью слагающих пород. В последующем стали выделять два переходных типа: 1) субконтинентальный ;2) субокеанский.

Континентальный тип земной коры. Мощность континентальной земной коры изменяется от 35-40 (45) км в пределах платформ до 55-70 (75) км в молодых горных сооружениях. Континентальная кора продолжается и в подводные окраины материков. В области шельфа ее мощность уменьшается до 20-25 км, а на материковом склоне (на глубине около 2,0-2,5 км) выклинивается. Континентальная кора состоит из трех слоев. Первый - самый верхний слой представлен осадочными горными породами, мощностью от 0 до 5 (10) км в пределах платформ, до 15-20 км в тектонических прогибах горных сооружений. Скорость продольных сейсмических волн (Vp) меньше 5 км/с. Второй - традиционно называемый "гранитный" слой на 50% сложен гранитами, на 40% - гнейсами и другими в разной степени метаморфизованными породами. Исходя из этих данных, его часто называют гранитогнейсовым или гранитометаморфическим. Его средняя мощность составляет 15-20 км (иногда в горных сооружениях до 20- 25 км). Скорость сейсмических волн (Vp) - 5,5-6,0 (6,4) км/с. Третий, нижний слой называется "базальтовым". По среднему химическому составу и скорости сейсмических волн этот слой близок к базальтам.

Рис. 3.3. Скоростная модель земной коры континентов (по Н. И. Павленковой).

Однако высказывается предположение, что он сложен основными интрузивными породами типа габбро, а также метаморфическими породами амфиболитовой и гранулитовой фаций метаморфизма, не исключается наличие и ультраосновных пород. Правильнее называть этот слой гранулито-базитовым (базит - основная порода). Его мощность изменяется от 15-20 до 35 км. Скорость распространения волн (Vp) 6,5-6,7 (7,4) км/с. Граница между гранитометаморфическим и гранулито-базитовым слоями получила название сейсмического раздела Конрада. Долгое время господствовало представление о том, что граница Конрада существует в континентальной коре повсеместно. Однако последующие данные глубинного сейсмозондирования показали, что поверхность Конрада далеко не всюду выражена, а фиксируется лишь в отдельных местах. Естественно возникают новые интерпретации строения континентальной земной коры. Так, Н. И. Павленковой и другими предложена четырехслойная модель (рис. 3.3). В этой модели выделяется верхний осадочный слой с четкой скоростной границей, обозначенной Ко. Ниже расположенные части земной коры объединены в понятие кристаллический фундамент, или консолидированная кора, внутри которой выделяются три слоя: верхний, промежуточный и нижний, разделенные границами К1 и К2. Отмечается достаточная устойчивость границы К2 - между промежуточным и нижним этажами. Верхний этаж характеризуется вертикально-слоистой структурой и дифференцированностью отдельных блоков по составу и физическим параметрам. Для промежуточного этажа отмечается тонкая горизонтальная расслоенность и наличие отдельных пластин с пониженной скоростью сейсмических волн (Vp) - 6 км/с (при общей скорости в слое 6,4-6,7 км/с) и аномальной плотностью.

На основании этого делается вывод, что промежуточный слой может быть отнесен к ослабленному слою, по которому возможны горизонтальные подвижки вещества. В настоящее время и другие исследователи обращают внимание на наличие отдельных линз в континентальной коре с относительно (на 0,1-0,2 км/с) пониженными скоростями сейсмических волн на глубинах 10-20 км, при мощности линз 5-10 км. Предполагают, что эти зоны (или линзы) связаны с сильной трещиноватостью и обводненностью пород.

Данные С. Р. Тейлора указывают также, что в пределах континентальной коры нет единого слоя с пониженной скоростью, а отмечается прерывистая расслоенность. Все сказанное свидетельствует о большой сложности континентальной земной коры и неоднозначности его интерпретации. Достаточно убедительным доказательством этого являются данные, полученные при бурении сверхглубокой Кольской скважины, достигшей уже глубины свыше 12 км. По предварительным сейсмическим данным, в районе заложения скважины граница между "гранитным" и "базальтовым" слоями должна бы быть встречена на глубине около 7 км. В действительности никакого геофизического "базальтового" слоя не оказалось. На этой глубине под мощной метаморфизованной вулканогенно-осадочной толщей протерозойского возраста были вскрыты плагиоклазовые гнейсы, гранито-гнейсы, амфиболиты - породы среднетемпературной стадии метаморфизма, процентное содержание которых увеличивается с глубиной. Что же послужило причиной изменения скорости сейсмических волн (от 6,1 до 6,5-6,6 км/с) на глубине около 7 км, где предполагалось наличие геофизического "базальтового" слоя? Возможно, что это связано с амфиболитами и их ролью в изменении упругих свойств пород. Возможно также, что указанная ранее (до бурения скважины) граница связана не с изменением состава пород, а с увеличением поля напряжения, обусловленного интенсивными деформациями и неоднократными проявлениями метаморфизма.

Изучение вещественного состава литосферы, как и других процессов, производится различными методами. В первую очередь это прямые геологические методы – непосредственное изучение горных пород в естественных обнажениях на берегах рек, озер, морей, разрезов шахт, рудников, кернов буровых скважин. Все это ограничено относительно небольшими глубинами. Наиболее глубокая, пока единственная в мире, Кольская скважина достигла всего лишь 12,5 км. Но более глубокие горизонты земной коры и прилежащей части верхней мантии также доступны непосредственному изучению. Этому способствуют извержения вулканов, доносящие до нас обломки пород верхней мантии, заключенные в излившейся магме – лавовых потоках. Такая же картина наблюдается в алмазоносных трубках взрыва, глубина возникновения которых соответствует 150-200 км.

Помимо указанных прямых методов в изучении веществ литосферы широко применяются оптические методы и другие, физические и химические исследования – рентгеноструктурные, спектрографические и др. При этом широко используются математические методы на основе ЭВМ для оценки достоверности химических и спектральных анализов, построения рациональных классификаций горных пород и минералов и др. В последние десятилетия применяются, в том числе и с помощью ЭВМ, экспериментальные методы, позволяющие моделировать геологические процессы; искусственно получать различные минералы, горные породы; воссоздавать огромные давления и температуры и непосредственно наблюдать за поведением вещества в этих условиях; прогнозировать движение литосферных плит и даже, в какой-то степени, представить облик поверхности нашей планеты в будущие миллионы лет.

3. Назначение и сфера исследования геологических наук

Все геологические науки в той или иной степени имеет исторический характер, рассматривают существующие образования в историческом аспекте и занимаются в первую очередь выяснением истории формирования современных структур. Данные о последовательности важнейших событий в истории Земли обобщает историческая геология. История Земли делится на два крупнейших этапа – эона, по появлению организмов с твёрдыми частями, оставляющих следы в осадочных породах и позволяющих поданным палеонтологии определение относительного геологического возраста. С появлением ископаемых на Земле начался фанерозой – время открытой жизни, а до этого был криптозой или докембрий – время скрытой жизни. Геология до кембрия выделяется в особую дисциплину, так как занимается изучением специфических, часто сильно и многократно метаморфизованных комплексов и имеет особые методы исследования.

Палеонтология изучает древние формы жизни и занимается описанием ископаемых остатков, а также следов жизнедеятельности животных. Стратиграфия – наука об определении относительного геологического возраста осадочных горных пород, расчленении толщ пород и корреляции различных геологических образований. Одним из основных источников данных для стратиграфии является палеонтологические определения.

Различные отрасли геологии изучают принципы протекания геологических процессов. Геологические процессы видоизменяют земную кору и ее поверхность, приводя к разрушению и одновременно созданию горных пород. Экзогенные процессы обусловлены действием силы тяжести и солнечной энергии, а эндогенные – влиянием внутреннего тепла Земли и гравитации. Все процессы взаимосвязаны между собой, а их изучение позволяет использовать метод актуализма для познания геологических процессов далекого прошлого.

Геология полезных ископаемых изучает типы месторождений, методы их разведки и поиска. Отдельной наукой является геология горючих полезных ископаемых – нефти, горючего газа, угля.

В 1972 году на симпозиуме в США ученые многих стран впервые увидели на геофизических разрезах, как плита Наска движется под южно- американский континент и на ее изломе находятся очаги землетрясений, которые постоянно сотрясают Чили. Места, где плита погружается в мантию, зоны субдукции, очень опасны в сейсмическом отношении, но они также порождают крупные месторождения полезных ископаемых. Испанцы XVI века могли не заботиться о поиске золота, серебра и платины, они просто вывозили их из Центральной и Южной Америки галеонами, пока не кончилось все, что было на поверхности. Геолог XXI века действует иначе, он ищет древние зоны субдукции, потому что там возможны крупные месторождения драгоценных металлов. Руды Камчатки и Средней Азии именно такого происхождения.

Новые теории соединяют фундаментальные науки и геологию, увязывая между собой направления, прежде развивавшиеся каждое по своей внутренней логике: геохимию, геофизику и поисковую геологию. Теперь стало возможным создавать действительно глобальные концепции внутреннего строения Земли, этапов ее развития.

1. Географическая картина мира. История становления………………………….3

2. Геологическая картина мира. История становления 4

Список использованных источников и литературы 7

Выдержка из текста

В данной работе использовался комплекс методов, который включает в себя контент анализ, сравнительный анализ, синтез полученных данных, анализ полученных в результате выводов по итогам изучения немецких печатных и электронных изданий.

Считается, что термин картина мира ввели в научный оборот физики и философы в начале ХХ века. Эти трансформации в последние десятилетия характеризуются тенденцией к включению в структуру научной картины действительности смысложизненными-ценностного мира человека, в результате чего изначальное мировоззренческий вопрос о нашем месте и роли во Вселенной приобретает нового концептуального звучания.Цель работы – рассмотреть взаимоотношение, философской и научной картин мира, выявить особенности и черты каждой из них и нечто общее.

Со временем картина мира видоизменяется, дополняется представлениями обыденного, религиозного, философского и эстетического сознания. Возникает полифонический образ мира и каждый из людей старается увидеть в этой мозаике тот фундаментальный вселенский образ, который в большей степени соответствует потребностям его духа. Для верующего мир воплощение божественной гармонии, для ученого система логически взаимосвязанных законов, для философа первосущее .

Практическая значимость исследования заключается в том, что его результаты могут быть использованы при составлении лекционных курсов по культурологии, а также при подготовке пособий и чтении спецкурсов по стилистике английского и французского языка.

Практическая значимость исследования заключается в том, что его результаты могут быть использованы при составлении лекционных курсов по культурологии, а также при подготовке пособий и чтении спецкурсов по стилистике английского и французского языка.

Актуальность темы исследования можно подчеркнуть тем, что на сегодняшний день переводческие связи охватывают почти все сферы человеческой деятельности, и то, как переводчик сможет передать языковую картину мира другого народа, зависит понимание этой картины читателями.

Список источников информации

Список использованных источников и литературы:

1. Белоусов В.В. Очерки истории геологии. Москва, 2012.

2. Максаковский В. Географическая картина мира, ЮНИТИ – Дана, 2013.

3. Просандеева Н.В. Естествознание в прошлом и настоящем: факты, идеи, теории. – М., 2014.

Введение
1 Bстория развития геолонических концепций
2 Современная геологическая картина мира
Заключение
Список использованной литературы
.

Содержание

Введение 3
1 Bстория развития геолонических концепций 4
2 Современная геологическая картина мира 8
Заключение 16
Список использованной литературы 17

Введение

Фрагмент работы для ознакомления

Список литературы

1. Данилова В.С. Картины мира и методы их исследования / В.С. Данилова, Н.Н. Кожевников // Вестн. ЯГУ. - 2007. - Т 4, № 3. – С. 77-82.
2. Данилова В.С. Основные понятия геологической картины мира / В.С. Данилова, Н.Н. Кожевников // Вестн. Северо-восточного федерал. ун-та им. М.К. Амосова. – 2008. – Т. 5, № 3. – С. 88–92.
3. Короновский Н.В. Геология / Н.В. Короновский, Н.А. Ясманов. – М. : Академия, 2003. – 448 с.
4. Лебедев С.А. Философия естественных наук / С.А. Лебедев. – М. : Акад. проект, 2006. – 560 с.
5. Шуталева А.В. Синергетика и современная геологическая картина мира // Вестн. Бурят. гос. ун-та. Философия. Социология. Политология. Культурология. - Улан-Удэ, 2011. - Вып. 6. - С. 36-39.

Пожалуйста, внимательно изучайте содержание и фрагменты работы. Деньги за приобретённые готовые работы по причине несоответствия данной работы вашим требованиям или её уникальности не возвращаются.

* Категория работы носит оценочный характер в соответствии с качественными и количественными параметрами предоставляемого материала. Данный материал ни целиком, ни любая из его частей не является готовым научным трудом, выпускной квалификационной работой, научным докладом или иной работой, предусмотренной государственной системой научной аттестации или необходимой для прохождения промежуточной или итоговой аттестации. Данный материал представляет собой субъективный результат обработки, структурирования и форматирования собранной его автором информации и предназначен, прежде всего, для использования в качестве источника для самостоятельной подготовки работы указанной тематики.

Как наука в полном смысле слова геология рассматривается только в конце XVII — начале XIX вв. В этот период появляется возможность разделения слоёв земной коры по возрасту на основании сохранившихся в них остатков древней флоры и фауны. Этот процесс позволил: Осуществить обобщение и систематизацию разрозненных ранее минералогических и палеонтологических данных,. Теория расширяющейся планеты… Читать ещё >

Содержание

  • 1. Географическая картина мира. История становления
  • 2. Геологическая картина мира. История становления
  • Список использованных источников и литературы

Географическая и геологическая картины мира. История становления ( реферат , курсовая , диплом , контрольная )

В.Ломоносову, решающая роль в формировании геологической картины мира принадлежит глубинным силам, при этом он признаёт влияние на земную поверхность внешних факторов — ветра, дождя и др. Идеи М. В. Ломоносова о существовании синтеза внешних и внутренних сил, их влиянии на геологическое развитие земной поверхности опередили свою эпоху, и по сей день являясь основанием для современного понимания геологических процессов.

1. Современная геологическая картина мира.

Как наука в полном смысле слова геология рассматривается только в конце XVII — начале XIX вв. В этот период появляется возможность разделения слоёв земной коры по возрасту на основании сохранившихся в них остатков древней флоры и фауны. Этот процесс позволил:

1) осуществить обобщение и систематизацию разрозненных ранее минералогических и палеонтологических данных,.

2) построить геохронологическую шкалу,.

3) создать геологические реконструкции (10, "https://referat-bank.ru").

Для современной геологической картины мира характерным является ряд изменений и кардинальная ломка прежних представлений, касающихся как теоретической базы исследований, так и современных преобразований в методологическом базисе, поскольку геологическими исследованиями охвачены все континенты и океанические сегменты планеты, стали доступными данные о докембрийском этапе развития Земли, составляющем 7/8 всей геологической истории, появился принципиально новый фактический материал представленный космической геологией, сверхглубинным бурением и изучением верхней мантии Земли.

Для современно геологической картины мира характерно сосуществование ряда концепций, таких как.

1. теория геосинклинального развития литосферы;

2. мобилистская теория,;

3. теория расширяющейся планеты, которую в конце 50-х гг. XX в. предложили Б. Хазен, У. Керн, Е. Е. Милановский ;

4. эклектические теории;

5. концепция самоорганизации материи в геологии (синергетическая парадигма).

Список использованных источников и литературы

Белоусов В. В. Очерки истории геологии. Москва, 2012.

Максаковский В. Географическая картина мира, ЮНИТИ — Дана, 2013.

Просандеева Н. В. Естествознание в прошлом и настоящем: факты, идеи, теории. — М., 2014.

Читайте также: