Развитие компьютерной техники и телекоммуникаций реферат

Обновлено: 18.05.2024

Телекоммуникационные технологии развиваются столь стремительно, что неизбежно вторгаются во все области современной жизни. ХХI век можно смело назвать веком “информационного сообщества”.Ключевую роль в формировании информационного общества играют телекоммуникационные технологии, которые определяют темпы и качество его построения. Понятие “телекоммуникационные технологии построения сетей передачи информации” возникло лишь в середине XX века, но уже к концу его мы наблюдаем проникновение этих технологий во все сферы человеческой деятельности.

Содержание

Введение 3
1 Этапы развития телекоммуникационных технологий 4
2 Интернет 6
2.1 World Wide Web 8
3 Технологии беспроводного доступа 12
3.1 1G. 13
3.2 2G . 14
3.3 2.5G. 14
3.4 3G, WiMAX и Wi-Fi. 15
Заключение 18
Список используемой литературы 19

Вложенные файлы: 1 файл

Документ Microsoft Office Word.docx

1 Этапы развития телекоммуникационных технологий 4

2.1 World Wide Web 8

3 Технологии беспроводного доступа 12

3.4 3G, WiMAX и Wi-Fi. 15

Список используемой литературы 19

Введение

Телекоммуникационные технологии развиваются столь стремительно, что неизбежно вторгаются во все области современной жизни. ХХI век можно смело назвать веком “информационного сообщества”.Ключевую роль в формировании информационного общества играют телекоммуникационные технологии, которые определяют темпы и качество его построения. Понятие “телекоммуникационные технологии построения сетей передачи информации” возникло лишь в середине XX века, но уже к концу его мы наблюдаем проникновение этих технологий во все сферы человеческой деятельности. Сети передачи информации совершили колоссальный скачок от телеграфных и телефонных сетей первой трети ХХ века к интегральным цифровым сетям передачи всех видов информации (речь, данные, видео). К факторам, определившим прогресс в этой сфере, в первую очередь следует отнести развитие микроэлектронной индустрии и вычислительной техники, а также последние успехи в технологии световодных систем. Телекоммуникационные технологии развивались параллельно и взаимоувязано с возможностями каналов связи (от аналоговых к высокоскоростным цифровым волоконно-оптическим линиям связи) и компьютеризацией общества.

1 Этапы развития телекоммуникационных технологий

В числе основных этапов развития телекоммуникационных технологий следует назвать:

  • телеграфные и телефонные сети (докомпьютерная эпоха);
  • передача данных между отдельными абонентами по выделенным и коммутируемым каналам с использованием модемов;
  • сети передачи данных с коммутацией пакетов: дейтаграммные или использующие виртуальные соединения (типа Х.25);
  • локальные вычислительные сети (наиболее распространенные — Ethernet, Token Ring);
  • цифровые сети интегрального обслуживания (ISDN) — узкополосные, а затем широкополосные;
  • высокоскоростные локальные сети — Fast Ethernet, FDDI, FDDI II (развитие FDDI для синхронной передачи речевой и видеоинформации);
  • высокоскоростные распределенные сети Frame Relay, SMDS, АТМ;
  • информационные супермагистрали.

По мере эволюции вычислительных систем сформировались следующие разновидности архитектуры компьютерных сетей:

При одноранговой архитектуре все ресурсы вычислительной системы, включая информацию, сконцентрированы в центральной ЭВМ, называемой еще мэйнфреймом (mainframe - центральный блок ЭВМ). В качестве основных средств доступа к информационным ресурсам использовались однотипные алфавитно-цифровые терминалы, соединяемые с центральной ЭВМ кабелем. При этом не требовалось никаких специальных действий со стороны пользователя по настройке и конфигурированию программного обеспечения.

Любое программное приложение можно представить в виде структуры из трех компонентов:

  • компонет представления, реализующий интерфейс с пользователем;
  • прикладной компонент, обеспечивающий выполнение прикладных функций;
  • компонент доступа к информационным ресурсам, или менеджер ресурсов, выполняющий накопление информации и управление данными.

Модель доступа к удаленным данным при которой на сервере расположены только данные, имеет следующие особенности:

  • невысокая производительность, так как вся информация обрабатывается на рабочих станциях;
  • снижение общей скорости обмена при передаче больших объемов информации для обработки с сервера на рабочие станции.

При использовании модели сервера управления данными кроме самой информации на сервере располагается менеджер информационных ресурсов (например, система управления базами данных). Компонент представления и прикладной компонент совмещены и выполняются на компьютере-клиенте, который поддерживает как функции ввода и отображения данных, так и чисто прикладные функции. Доступ к информационным ресурсам обеспечивается либо операторами специального языка (например, SQL в случае использования базы данных), либо вызовами функций специализированных программных библиотек. Запросы к информационным ресурсам направляются по сети менеджеру ресурсов (например, серверу базы данных), который обрабатывает запросы и возвращает клиенту блоки данных. Наиболее существенные особенности данной модели:

  • уменьшение объемов информации, передаваемых по сети, так как выборка необходимых информационных элементов осуществляется на сервере, а не на рабочих станциях;
  • унификация и широкий выбор средств создания приложений;
  • отсутствие четкого разграничения между компонентом представления и прикладным компонентом, что затрудняет совершенствование вычислительной системы.

Модель сервера управления данными целесообразно использовать в случае обработки умеренных, не увеличивающихся со временем объемов информации. При этом сложность прикладного компонента должна быть невысокой.

Модель комплексного сервера строится в предположении, что процесс, выполняемый на компьютере-клиенте, ограничивается функциями представления, а собственно прикладные функции и функции доступа к данным выполняются сервером. Преимущества модели комплексного сервера:

  • высокая производительность;
  • централизованное администрирование;
  • экономия ресурсов сети.

Модель комплексного сервера является оптимальной для крупных сетей, ориентированных на обработку больших и увеличивающихся со временем объемов информации.

2 Интернет

Наиболее ярко современные тенденции телекоммуникационных технологий проявились в Интернете. В соответствии с Web-технологией на сервере размещаются так называемые Web-документы, которые визуализируются и интерпретируются программой навигации (Web-навигатор, Web-броузер), функционирующей на рабочей станции. Логически Web-документ представляет собой гипермедийный документ, объединяющий ссылками различные Web-страницы. В отличие от бумажной Web-страница может быть связана с компьютерными программами и содержать ссылки на другие объекты. В Web-технологии существует система гиперссылок, включающая ссылки на следующие объекты:

  • другую часть Web-документа;
  • другой Web-документ или документ другого формата (например, документ Word или Excel), размещаемый на любом компьютере сети;
  • мультимедийный объект (рисунок, звук, видео);
  • программу, которая при переходе на нее по ссылке, будет передана с сервера на рабочую станцию для интерпретации или запуска на выполнение навигатором;
  • любой другой сервис - электронную почту, копирование файлов с другого компьютера сети, поиск информации и т.д.

Передачу с сервера на рабочую станцию документов и других объектов по запросам, поступающим от навигатора, обеспечивает функционирующая на сервере программа, называемая Web-сервером. Когда Web-навигатору необходимо получить документы или другие объекты от Web-сервера, он отправляет серверу соответствующий запрос. При достаточных правах доступа между сервером и навигатором устанавливается логическое соединение. Далее сервер обрабатывает запрос, передает Web-навигатору результаты обработки и разрывает установленное соединение. Таким образом, Web-сервер выступает в качестве информационного концентратора, который доставляет информацию из разных источников, а потом в однородном виде предоставляет ее пользователю.

Интернет - бурно разросшаяся совокупность компьютерных сетей, опутывающих земной шар, связывающих правительственные, военные, образовательные и коммерческие институты, а также отдельных граждан.

Финансовая основа Интернета заключается в том, что каждый платит за свою часть. Представители отдельных сетей собираются и решают, как соединяться и как финансировать эти взаимные соединения. Учебное заведение или коммерческое объединение платит за подключение к региональной сети, которая, в свою очередь, платит за доступ к Интернету поставщику на уровне государства. Таким образом, каждое подключение к Интернету кем-то оплачивается.

Компьютеры появились в жизни человека не так уж давно, но почти любой
человек может с твердой уверенностью сказать, что будущее - за
компьютерными технологиями.
На заре своего появления компьютеры представляли собой громоздкие
устройства, работающие на лампах и занимающие настолько много места, что
для их размещения требовалась не одна комната.

Содержание

Введение
1.Компьютерные сети
2. Причины использования компьютерных сетей
3. Виды компьютерных сетей
4. Топологии компьютерных сетей
5. Обзор сетевых операционных систем
6. Телекоммуникации
7. Телекоммуникационная вычислительная сеть
8. Телекоммуникационные услуги
9. Internet
9.1 Преимущества
9.2 Недостатки
Заключение
Список использованной литературы

Прикрепленные файлы: 1 файл

Информатика.docx

МИНИСТЕРСТВО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ

ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

студентка группы 1150

очной формы обучения

2. Причины использования компьютерных сетей

3. Виды компьютерных сетей

4. Топологии компьютерных сетей

5. Обзор сетевых операционных систем

7. Телекоммуникационная вычислительная сеть

8. Телекоммуникационные услуги

Список использованной литературы

Компьютеры появились в жизни человека не так уж давно, но почти любой

человек может с твердой уверенностью сказать, что будущее - за

На заре своего появления компьютеры представляли собой громоздкие

устройства, работающие на лампах и занимающие настолько много места, что

для их размещения требовалась не одна комната. При всем этом

производительность таких машин, по сравнению с современными, была

Время шло. Постепенно научная мысль и возможности ученых развились

настолько, что производство меньших по размеру, но более производительных

компьютеров стало реальностью.

Процесс развития персонального компьютера движется с постоянно

увеличивающимся ускорением, в связи с чем в ближайшем будущем компьютеры станут обязательным и незаменимым атрибутом любого предприятия, офиса и большинства квартир.

Причиной столь интенсивного развития информационных технологий является

все возрастающая потребность в быстрой и качественной обработки информации,

потоки которой с развитием общества растут как снежный ком.

Одной из наиболее перспективных на данный момент областей исследования

является разработка так называемых нейрокомпьютеров, основанных на

молекулах ДНК определенного вида водорослей, и способных хранить громадные объёмы информации относительно современного ПК при минимальных размерах

самих носителей информации.

Большой успех в последнее время получили так называемые виртуальные

технологии, которые позволяют с большой точностью моделировать физические

явления, процессы, предметы, а так же их взаимодействие в совокупности.

Такие технологии используются в различных областях деятельности человека.

Компьютерная сеть (вычислительная сеть, сеть передачи данных) — система связи компьютеров или вычислительного оборудования (серверы, маршрутизаторы и другое оборудование). Для передачи данных могут быть использованы различные физические явления, как правило — различные виды электрических сигналов, световых сигналов или электромагнитного излучения.

2. Причины использования компьютерных сетей

Компьютеры уже прочно вошли в современный мир, во все сферы человеческой деятельности и науки, тем самым создавая необходимость в обеспечении их различным программным обеспечением. Конечно, в первую очередь это связано с развитием электронной вычислительной техники и с её быстрым совершенствованием и внедрением в различные сферы человеческой деятельности.

Объединение компьютеров в сети позволило значительно повысить

производительность труда. Компьютеры используются как для производственных (или офисных) нужд, так и для обучения.

3. Виды компьютерных сетей

Существует три основных вида компьютерных сетей:

Локальные компьютерные сети (LAN – Local Area Network) – это сети, которые объединяют между собой компьютеры, находящиеся географически в одном месте. В локальную сеть объединяют компьютеры, расположенные физически близко друг от друга (в одном помещении или одном здании).

Региональные компьютерные сети (MAN – Metropolitan Area Network) – это сети, которые объединяют между собой несколько локальных компьютерных сетей, расположенных в пределах одной территории (города, области или региона, например, Дальнего Востока).

Глобальные вычислительные сети (WAN – Wide Area Network) – это сети, которые объединяют множество локальных, региональных сетей и компьютеров отдельных пользователей, расположенные на любом расстоянии друг от друга (Internet, FIDO).

Кроме того, каждая из перечисленных сетей может быть:

- Односерверной – сеть обслуживается одним файл-сервером (ФС);

- Многосерверной – сеть обслуживается несколькими ФС;

- Распределенной - Две или более локальных сетей, соединенных

внутренним или внешним мостами (мост или межсетевое соединение

управляет процессом обмена пакетами данных из одной кабельной

системы в другую). Пользователи распределенной сети могут

использовать резервы (такие как: файлы, принтеры или дисковые

драйвы) всех соединенных локальных сетей;

- Многосерверной локальной – когда локальная сеть обслуживается более

чем одним файл-сервером;

Также ЛВС могут быть одноранговыми (все компьютеры в сети

равноправны, т.е. нет ФС, Любая рабочая станция может получить доступ к

любой другой рабочей станции) и с централизованным управлением (выделенным

Локальная сеть - это группа компьютеров, которые могут

связываться друг с другом, совместно использовать периферийное

оборудование (например, жесткие диски, принтеры и т.д.) и обращаться к

удаленным центральным ЭВМ или другим локальным сетям. Локальная сеть

может состоять из одного или более

файл-серверов, рабочих станций и периферийных устройств. Пользователи сети

могут совместно использовать одни и те же файлы (как файлы данных, так и

станциями и защищать файлы с помощью мощной системы защиты.

Основными видами локальных вычислительных сетей являются Ethernet и

ARCNET. Причем Ethernet может иметь несколько типов кабеля:

- тонкий кабель Ethernet – иначе называется “Thinnet”. Имеет ряд

преимуществ, таких как использование более дешевого кабеля по

сравнению с системой толстого кабеля Ethernet и использование

аппаратуры, которую проще устанавливать;

- толстый кабель Ethernet (также известная как “Thicknet”) получила

свое название благодаря используемому в ней стандартному, или

толстому кабелю Ethernet. Толстый кабель позволяет включать в

систему большее количество компьютеров и увеличивать расстояние

между компьютерами. Однако этот кабель дороже, а его установка

сложнее по сравнению с тонким кабелем Ethernet;

- витая пара Ethernet. Преимущество системы Ethernet на витой паре в

том, что кабель дешевле по сравнению с перечисленными выше

кабелями, а его установка проще.

Наравне с приведенными выше способами подключения встречается способ

Token-ring. Одним из преимуществ системы является прогнозируемость: одна

часть системы может испортиться, но все-таки не остановится. Также, система

поддерживается программным обеспечением для больших ЭВМ фирмы IBM, что

может в некоторых ситуациях принести выгоду. Слабые стороны системы в

сравнении с другими системами заключаются в дороговизне и усложненности

кабелей. К тому же, в некоторых случаях трудно вести поиск неисправностей.

Региональная сеть – это города, объединенные в сеть посредством

расположенных в них компьютерах.

К глобальной вычислительной сети следует отнести Internet. На данный

момент это единственная сеть, объединяющая целые государства. На данный

момент американскими компаниями ведутся разработки по созданию

альтернативной глобальной сети.

4. Топологии компьютерных сетей

Физическое расположение компонентов сети (кабели, станции, шлюзы,

разветвители и т.д.).

Имеется три основных топологии: звезда, кольцо и

В сетях с топологией "звезда" рабочие станции подключаются непосредственно к файл-серверу, но не соединены друг с другом.

В сети с топологией "шина" все рабочие станции и файл-сервер подключаются к центральному кабелю, называемому шиной.

5. Обзор сетевых операционных систем

В мире существует очень большое количество сетевых операционных систем.

Среди наиболее удачных из них хотелось бы отметить Unix, Novell NetWare и

Windows NT Server. Все эти системы позволяют организовывать файл-серверы,

вести картотеку пользователей, ограничивать права клиентов файл-сервера,

выделять ресурсы рабочим станциям. Каждая из этих систем удовлетворяет

критериям надежности, отказоустойчивости и что самое главное –

Помимо систем, главной функцией которых является организация файл-

сервера, существуют системы, обеспечивающие работу пользователя в сети. К

числу таких операционных систем следует отнести (в хронологическом порядке)

Novell DOS, Windows for Workgroups, Windows95-98, Windows NT Workstation.

Причем последние операционные системы содержат не только утилиты,

позволяющие осуществлять доступ к локальным сетям, но и утилиты доступа к

7. Телекоммуникационная вычислительная сеть

Телекоммуникационная вычислительная сеть (ТВС) - это сеть обмена и распределённой обработки информации, образуемая множеством взаимосвязанные абонентские систем и средствами связи. Средство передачи и обработки информации ориентированы в ней на коллективное использование общесетевых ресурсов, аппаратных, информационных, программных.

Абонентская система – это совокупность ЭВМ программного обеспечения периферийного оборудования, средств связи с коммуникационной подсетью вычислительной сети выполняющих прикладные процессы.

Коммуникационная подсеть или телекоммуникационная система – представляет собой совокупность физической среды передачи информации аппаратурных и программных средств обеспечивающие взаимодействие абонентской системы.

Прикладной процесс – это различные процедуры ввода хранения, обработки и выдачи информации выполняемые в интересах пользователей и описываемые прикладными программами.

Умножаемые двоичные числа наиболее просто реализуются в прямом коде. Произведение получатся путём сложения частных произведений представляющих собой разряды множимого сдвинуться влево в соответствии с позициями разрядов множителя. Частные произведения формируются путём сложения знаковых разрядов сомножителей. Возможные переносы из знакового разряда игнорируются.

Операции деления, как и в десятичной арифметике являются обратной операцией умножения.

Классификация ТВС также наиболее характерны функциональные информационные структурные признаки.

1.По степени территориальной рассредоточенности элементов в сети (абонентских систем, узлов связи) различают глобальные (государственные), региональные и локальные вычислительные сети (ГВС, РВС, ЛВС).

2.По характеру реализуемых функций делятся на вычислительные (обработка информации), информационные (для получения справочных данных по вопросам пользователей), информационно-вычислительные (смешанные), в которых в определённом непостоянном соотношении выполняются вычислительные и информационные функции.

Компьютерная сеть - объединение нескольких ЭВМ для совместного решения информационных, вычислительных, учебных и других задач.

Одна из первых возникших при развитии вычислительной техники задач, потребовавшая создания сети хотя бы из двух ЭВМ - обеспечение многократно большей, чем могла дать в то время одна машина, надежности при управлении ответственным процессом в режиме реального времени. Так, при запуске космического аппарата необходимые темпы реакции на внешние события превосходят возможности человека, и выход из строя управляющего компьютера грозит непоправимыми последствиями. В простейшей схеме работу этого компьютера дублирует второй такой же, и при сбое активной машины содержимое ее процессора и ОЗУ очень быстро перебрасывается на вторую, которая подхватывает управление (в реальных системах все, конечно, происходит существенно сложнее).

Сети ЭВМ породили существенно новые технологии обработки информации - сетевые технологии. В простейшем случае сетевые технологии позволяют совместно использовать ресурсы - накопители большой емкости, печатающие устройства, доступ в Internet, базы и банки данных. Наиболее современные и перспективные подходы к сетям связаны с использованием коллективного разделения труда при совместной работе с информацией - разработке различных документов и проектов, управлении учреждением или предприятием и т.д.

Компьютерные сети и сетевые технологии обработки информации стали основой для построения современных информационных систем. Компьютер ныне следует рассматривать не как отдельное устройство обработки, а как "окно" в компьютерные сети, средство коммуникаций с сетевыми ресурсами и другими пользователями сетей.

1. Аппаратные средства компьютерных сетей

Локальные сети (ЛС ЭВМ) объединяют относительно небольшое число компьютеров (обычно от 10 до 100, хотя изредка встречаются и гораздо больше) в пределах одного помещения (учебный компьютерный класс), здания или учреждении (например, университета). Традиционное название - локальная вычислительная сеть (ЛВС) - скорее дань тем временам, когда сети в основном использовались для решения вычислительных задач; сегодня же в 99% случаев речь идет исключительно об обмене информацией в виде текстов, графических и видео-образов, числовых массивов. Полезность ЛС объясняется тем, что от 60% до 90% необходимой учреждению информации циркулирует внутри него, не нуждаясь в выходе наружу.

Большое влияние на развитие ЛС оказало создание автоматизированных систем управления предприятиями (АСУ). АСУ включают несколько автоматизированных рабочих мест (АРМ), измерительных комплексов, пунктов управления. Другое важнейшее поле деятельности, в котором ЛС доказали свою эффективность - создание классов учебной вычислительной техники (КУВТ).

Благодаря относительно небольшим длинам линий связи (как правило, не более 300 метров), по ЛC можно передавать информацию в цифровом виде с высокой скоростью передачи. На больших расстояниях такой способ передачи неприемлем из-за неизбежного затухания высокочастотных сигналов, в этих случаях приходится прибегать к дополнительным техническим (цифро-аналоговым преобразованиям) и программным (протоколам коррекции ошибок и др.) решениям.

Характерная особенность ЛС - наличие связывающего всех абонентов высокоскоростного канала связи для передачи информации в цифровом виде. Существуют проводные и беспроводные каналы. Каждый из них характеризуется определенными значениями существенных с точки зрения организации ЛС параметров:

Цель работы: изучить историю развития компьютерной техники. Задачи: 1. Изучить и систематизировать имеющийся материал по теме. 2. Оформить и представить работу (развивать практические умения использования офисных программ в учебной деятельности, а именно использование программ для работы с текстом, для подготовки презентаций выполненных работ. Параллельно решается задача обучения проектной деятельности с использованием офисных программ).

МОУ – СОШ с. Журавлевка

учитель Ворожейкина Т.Е.

Начало эпохи ЭВМ .. 5

Первое поколение ЭВМ .. 6

Второе поколение ЭВМ. 7

Третье поколение ЭВМ. 8

Четвертое поколение ЭВМ …………………………………………………… 9-10

Пятое поколение ЭВМ ………………. 11-12

Список литературы. 14

Актуальность темы: Человек XXI века активно стремиться использовать все научные разработки цивилизации - компьютер и Интернет. В наше время трудно представить себе, что без компьютеров можно обойтись. Сегодня компьютерами пользуются все и везде. Компьютер не просто изобретение - это результат длительной технической эволюции, продукт творческой деятельности множества людей.

Цель работы: изучить историю развития компьютерной техники.

1. Изучить и систематизировать имеющийся материал по теме.

2. Оформить и представить работу ( развивать практические умения использования офисных программ в учебной деятельности, а именно использование программ для работы с текстом, для подготовки презентаций выполненных работ. Параллельно решается задача обучения проектной деятельности с использованием офисных программ).

Методы исследования:

- теоретический ( изучение литературы, обобщение );

- практический ( оформление и представление работы с использованием офисных программ)

Человеческое общество по мере своего развития овладевало не только веществом и энергией, но и информацией. С появлением и массовым распространение компьютеров человек получил мощное средство для эффективного использования информационных ресурсов, для усиления своей интеллектуальной деятельности. С этого момента (середина XX века) начался переход от индустриального общества к обществу информационному, в котором главным ресурсом становится информация.

Возможность использования членами общества полной, своевременной и достоверной информации в значительной мере зависит от степени развития и освоения новых информационных технологий, основой которых являются компьютеры. Рассмотрим основные вехи в истории их развития.

Первая ЭВМ [1] ENIAC была создана в конце 1945 г. в США.

Основные идеи, по которым долгие годы развивалась вычислительная техника, были сформулированы в 1946 г. американским математиком Джоном фон Нейманом. Они получили название архитектуры фон Неймана.

В 1949 году была построена первая ЭВМ с архитектурой фон Неймана – английская машина EDSAC . Годом позже появилась американская ЭВМ EDVAC .

В нашей стране первая ЭВМ была создана в 1951 году. Называлась она МЭСМ — малая электронная счетная машина. Конструктором МЭСМ был Сергей Алексеевич Лебедев.

http://kolomna-school7-ict.narod.ru/DATA/p15112.jpg

Сергей Алексеевич Лебедев (1902 – 1974).

Родился в Нижнем Новгороде. В 1921 году он экстерном сдал экзамены за среднюю школу и поступил в МВТУ на электротехнический факультет. Велика его роль в разработке математического обеспечения для всех отечественных ЭВМ.

Серийное производство ЭВМ началось в 50-х годах XX века.

Электронно-вычислительную технику принято делить на поколения, связанные со сменой элементной базы. Кроме того, машины разных поколений различаются логической архитектурой и программным обеспечением, быстро действием, оперативной памятью, способом ввода

ЭВМ первого поколения появились в 1946 году. Они были сделаны на основе электронных ламп, что делало их ненадежными - лампы приходилось часто менять.

Скорость счета самых быстрых машин первого поколения доходила до 20 тысяч операций в секунду. Для ввода программ и данных использовались перфоленты и перфокарты. Поскольку внутренняя память этих машин была невелика (могла вместить в себя несколько тысяч чисел и команд программы), то они, главным образом, использовались для инженерных и научных расчетов, не связанных с переработкой больших объемов данных. Это были довольно громоздкие сооружения, содержавшие в себе тысячи ламп, занимавшие иногда сотни квадратных метров, потреблявшие электроэнергию в сотни киловатт. Программы для таких машин составлялись на языках машинных команд, поэтому программирование в те времена было доступно немногим.


http://kolomna-school7-ict.narod.ru/DATA/p15114.jpg

В 1949 году в США был создан первый полупроводниковый прибор, заменяющий электронную лампу. Он получил название транзистор. В 60-х годах транзисторы стали элементной базой для ЭВМ второго поколения. Переход на полупроводниковые элементы улучшил качество ЭВМ по всем параметрам: они стали компактнее, надежнее, менее энергоемкими. Быстродействие большинства машин достигло десятков и сотен тысяч операций в секунду. Объем внутренней памяти возрос в сотни раз по сравнению с ЭВМ первого поколения. Большое развитие получили устройства внешней (магнитной) памяти: магнитные барабаны, накопители на магнитных лентах. Благодаря этому появилась возможность создавать на ЭВМ информационно-справочные, поисковые системы (это связано с необходимостью длительно хранить на магнитных носителях большие объемы информации). Во времена второго поколения активно стали развиваться языки программирования высокого уровня. Первыми из них были ФОРТРАН, АЛГОЛ, КОБОЛ. Программирование как элемент грамотности стало широко распространяться, главным образом среди людей с высшим образованием.


Третье поколение ЭВМ создавалось на новой элементной базе — интегральных схемах: на маленькой пластине из полупроводникового материала, площадью менее 1 см 2 монтировались сложные электронные схемы. Их назвали интегральными схемами (ИС). Первые ИС содержали в себе десятки, затем — сотни элементов (транзисторов, сопротивлений и др.). Когда степень интеграции (количество элементов) приблизилась к тысяче, их стали называть большими интегральными схемами — БИС; затем появились сверхбольшие интегральные схемы — СБИС. ЭВМ третьего поколения начали производиться во второй половине 60-х годов, когда американская фирма IBM приступила к выпуску системы машин IBM -360. В Советском Союзе в 70-х годах начался выпуск машин серии ЕС ЭВМ (Единая Система ЭВМ). Переход к третьему поколению связан с существенными изменениями архитектуры ЭВМ. Появилась возможность выполнять одновременно несколько программ на одной машине. Такой режим работы называется мультипрограммным (многопрограммным) режимом. Скорость работы наиболее мощных моделей ЭВМ достигла нескольких миллионов операций в секунду. На машинах третьего поколения появился новый тип внешних запоминающих устройств — магнитные диски. Широко используются новые типы устройств ввода-вывода: дисплеи, графопостроители. В этот период существенно расширились области применения ЭВМ. Стали создаваться базы данных, первые системы искусственного интеллекта, системы автоматизированного проектирования (САПР) и управления (АСУ). В 70-е годы получила мощное развитие линия малых (мини) ЭВМ.

http://kolomna-school7-ict.narod.ru/DATA/p15116.jpg

Миникомпьютер на интегральных схемах

* Данная работа не является научным трудом, не является выпускной квалификационной работой и представляет собой результат обработки, структурирования и форматирования собранной информации, предназначенной для использования в качестве источника материала при самостоятельной подготовки учебных работ.

Институт государственного и муниципального управления

Реферат по курсу

”Концепция современного естествознания”

Выполнил: слушатель группы З-21 Копылов О.В.

Проверил: к.х.н., доцент

Будний Игорь Владимирович

Перспективы развития компьютерной техники

Компьютеры на основе ДНК

Проблема — не в новых идеях, а в том,

чтобы избавиться от старых,

которые врастают в тех, кого воспитывали,

как воспитывали большинство из нас,

в каждый уголок наших умов.

В свое время люди верили, что самолет никогда не сможет преодолеть звуковой барьер, так как это должно его разрушить. Но октябрьским утром 1947 г. мир впервые услышал столь привычный сейчас любому летчику хлопок — Чак Инджер на экспериментальном истребителе сумел обогнать звук. Скромного калужского учителя физики Циолковского, разработавшего в начале века проект полета в космос с помощью реактивного двигателя, все считали в лучшем случае наивным мечтателем (а чаще просто сумасшедшим). Но прошло всего полвека, и первые ракеты взмыли в небо, доказав, что скепсис в отношении творческих возможностей человечества совершенно неуместен.

В этом реферате мне хотелось бы описать те перспективы, которые открывает перед нами дальнейшее развитие технологии на имеющейся теоретической базе. Из множества футуристических направлений я опишу всего несколько, но наиболее многообещающих и интересных. Мы увидим, каким ярким и необычным может оказаться наше будущее даже с учетом все тех же объективных пределов. И не стоит это воспринимать просто как занимательную сказку: сравните наши достижения в начале XIX и XX вв. — вы поймете, что самые смелые прогнозы (если они не противоречат фундаментальным законам природы) рано или поздно становятся реальностью.

Однако выход из тупика имеется, причем обеспеченный именно тем, из-за чего мы в нем оказались, — квантовой природой вещества. Исторический призыв Ричарда Фейнмана ответить на вопрос, какие преимущества могут дать вычислительные системы на квантовых элементах, привлек в эту область множество талантливых ученых, что обеспечило ее быстрый прогресс. На сегодняшний день для построения квантового компьютера сделано так много, что можно смело прогнозировать начало его промышленного выпуска уже в первой четверти наступившего века.

Вопреки досужему мнению, при решении большинства задач квантовый компьютер не будет работать быстрее традиционного. Более того, на выполнение одного рабочего хода (понятие тактовой частоты к нему неприменимо) ему понадобится существенно больше времени. Однако для квантового бита (кубита) характерно понятие суперпозиции: кубит в одну единицу времени равен и 0, и 1, а классический бит — либо 0, либо 1. Подобное свойство квантовых частиц одновременно находиться в нескольких состояниях обеспечивает параллелизм квантовых вычислений, что делает их в ряде задач эффективнее используемых сейчас технологий. Например, если квантовая память состоит из двух кубитов, то мы потенциально можем одновременно (!) работать со всеми ее состояниями: 00, 01, 10, 11. Таким образом, если в полупроводниковом процессоре одна операция может изменить до L переменных, то в квантовом регистре преобразуется до 2-1 переменных. А из этого следует, что в случае задачи, идеально использующей его специфику, квантовый компьютер будет в 2 LL /L раз быстрее, чем классический.

На данном этапе известно всего несколько задач, решение которых облегчится с появлением квантового компьютера. Но так как они исключительно важны, их стоит упомянуть.

Исторически первым квантовым алгоритмом стал разработанный в 1995 г. американским математиком Питером Шором из Bell Labs (из ее стен вышло 12 нобелевских лауреатов по физике) алгоритм быстрой факторизации больших чисел. Его появление немало напугало банкиров и генералов от спецслужб, и вот почему. Все современные криптографические системы строятся исходя из предположения, что разложить на простые множители достаточно длинное число невозможно. Для того чтобы решить подобную задачу для N-битового двоичного числа, современным компьютерам требуется 2 N единиц времени. А квантовый компьютер, использующий алгоритм Шора, справится с ней за время N 3 . Так, на поиск ключа к шифру на основе разбиения на простые множители 300-разрядного числа мощнейшая из существующих ЭВМ затратила бы около миллиона лет, а на подобную работу для 1000-разрядного числа ей понадобится 10 25 лет (это время в миллиарды раз превосходит возраст нашей Вселенной). Квантовому же компьютеру на то, чтобы просчитать эту задачу, достаточно всего нескольких часов.

Значительный эффект от параллелизма вычислений квантового компьютера возможен и в такой важной задаче, как организация поиска в несортированной базе данных. Созданный Ловом Гровером, коллегой Шора из Bell Labs, алгоритм в наихудшем случае для нахождения нужного объекта потребует N 1/2 запросов, где N — число записей в базе. То есть если классическому компьютеру для анализа 1000 записей понадобится 1000 же логических шагов, то квантовому вычислительному устройству хватит и 30. Таким образом, количество запросов окажется значительно меньше, чем будет проанализировано переменных. Фантастично, не правда ли?

Р. Фейнман указал на возможность использования квантового компьютера для расчета параметров квантовых систем. Квантовая система — это некоторый объект, свойства и особенности которого описываются квантовыми закономерностями. Типичная задача из этой области — расчет распределения электронной плотности в молекуле. Решить ее при помощи обычного компьютера невозможно из-за экспоненциального возрастания числа состояний системы с увеличением количества частиц. Квантовые же вычислительные устройства, используя возможность одновременной обработки большого числа переменных, будут справляться с ней с легкостью. А это позволит нам, например, моделировать молекулы лекарств, что поможет победить неизлечимые сейчас заболевания.

Вот, в общем-то, и все. Как видите, квантовому компьютеру пока уготована исключительно узкая специализация. Однако вытеснить своего полупроводникового собрата у него все-таки есть шанс. Мы можем рассчитывать на широкое применение квантовых компьютеров в связи с тем, что математики умеют весьма ловко сводить алгоритмы одних типов к другим, равносложным. Так что решение проблемы искусственного интеллекта, новый уровень работы с графикой и видео, прорыв в математическом моделировании — все это может быть обеспечено появлением квантовых вычислительных систем.

Первый практический успех по построению квантового компьютера был достигнут в 1998 г. компанией IBM, сотрудники которой сумели создать двухкубитовую машину из молекулы хлороформа. Продолженные исследования позволили им объявить в 2001 г. о серьезной вехе на пути развития информационных технологий: созданный ими семикубитовый квантовый компьютер решил задачу о факторизации числа 15 при помощи алгоритма Шора, разложив его на 3 и 5.

На сегодняшний день в десятках научно-исследовательских центров по всему миру ведутся работы по реализации квантового компьютера на базе органических молекул и сверхпроводящих колец, на атомах фосфора, встроенных в кремниевую пластину, и квантовом эффекте Холла, джозефсоновском контакте и мессбауэровских ядрах. И хотя пока успехи впечатляют лишь специалистов, вера людей в победу и их целеустремленность заставляют надеяться — будущее будет выиграно нами!

Нанотехнологии и молетроника

Любой из известных нам предметов — всего лишь скопление атомов в пространстве. И будет ли это алмаз или горстка пепла, булыжник или чип компьютера, труха или спелый плод, определяется только способом их упорядочивания. Расположение атомов друг относительно друга порождает такие понятия, как дешевое и драгоценное, обычное и уникальное, здоровое и больное. Наше умение упорядочивать атомы лежит в основе любой технологии. В процессе развития цивилизации люди учились управлять все меньшими и меньшими группами атомов. Мы прошли долгий путь от каменных наконечников для стрел до процессоров, умещающихся в игольном ушке. Но наши технологии все еще грубы, и пока мы вынуждены оперировать большими, плохо управляемыми группами атомов. По этой причине наши компьютеры глупы, машины непрерывно ломаются, молекулы в наших клетках неизбежно приходят в беспорядок, уносящий сначала здоровье, а затем и жизнь. Настоящий же прорыв в эволюции науки произойдет только тогда, когда мы научимся управлять отдельными атомами.

Когда говорят о нанотехнологиях, подразумевается несколько достаточно разрозненных по целям и планируемому времени реализации научных направлений. Одно из них, работающее над качественным переходом традиционной полупроводниковой электроники с микро- на наноуровень, хорошо освещено в периодической литературе. Успехи этих работ значительны уже сегодня, но, ввиду неразрешимости ряда проблем, связанных с размерными эффектами, неизбежно возникающими при достижении транзисторами величины 30—40 нм, очевидна необходимость поиска альтернативной технологии. Одним из вариантов является молекулярная электроника, или молетроника.

Компьютеры на основе ДНК.

Основная идея, которая используется при создании ДНК-компьютеров, следующая: для каждой из переменных (определяющих, например, путь) синтезируется уникальная последовательность оснований; затем, будучи смешаны в достаточном количестве (триллионы молекул), эти переменные соединяются в варианты. Исходя из правила больших чисел, всех вариантов будет приблизительно поровну. Остается только определить, в каком из них переменные не повторяются. Это самая сложная проблема, решаемая при помощи многоступенчатой экстракции, хроматографии и других химических методов.

Преимущество у ДНК-компьютера такое же, как и у квантового: параллелизм вычислений. То есть многие из не решаемых современными вычислительными устройствами проблем (по причине экспоненциальной сложности) будут для него полиномиально сложными, а значит, вполне доступными. В будущем проектировать и создавать ДНК-компьютеры начнут непосредственно в живых клетках, что позволит выполнять в них цифровые программы, взаимодействующие с естественными биохимическими процессами.

Хотя все сказанное похоже на отрывок из фантастического романа, многое из этого уже почти реальность. Первые молекулярные схемы уже существуют, и в текущем десятилетии должно начаться их серийное производство. Первый же полноценный молекулярный компьютер появится, по прогнозам экспертов, в 2015—2020 гг.

В далеких 40-х Джон фон Нейман 4 , создатель концепции современного компьютера, был абсолютно уверен, что повышение тактовой частоты до мегагерц позволит машинам мыслить не хуже человека. Однако шли годы, мощности ЭВМ все возрастали, над проблемой искусственного интеллекта билось все больше народу, создавались специальные языки (Lisp и Prolog) и машинные архитектуры, соответствующие специальности появились во всех университетах, — но научить компьютеры думать так и не удалось.

Правда ИИ нашел свои области применения, став важным повседневным инструментом для решения некоторых типов задач. Что же нужно, чтобы научить компьютер думать?

Читайте также: