Развитие астрономии в эру космонавтики реферат

Обновлено: 05.07.2024

Мы живем в период, когда в мире происходит научно-техническая революция, обусловленная гигантским скачком в достижениях науки и техники, в жизни всего общества. Космические исследования — это не только новый этап в развитии науки о космосе, это эпоха в развитии науки вообще, эпоха значительных успехов многих областей науки и техники.

Содержание

Введение
Глава 1. Космонавтика
1.1. Польза космонавтики
1.2. Значимые полеты в космос
Глава 2. Роль космонавтики в жизни человека
2.1. Космонавтика в науке
2.2. Спутники
Заключение
Список использованных источников

Введение

Мы живем в период, когда в мире происходит научно-техническая революция, обусловленная гигантским скачком в достижениях науки и техники, в жизни всего общества. Космические исследования — это не только новый этап в развитии науки о космосе, это эпоха в развитии науки вообще, эпоха значительных успехов многих областей науки и техники.

Невозможно перечислить всех, чьи труды легли в основу современной космонавтики. Среди них Николай Коперник, давший представление о гелиоцентрической системе; Джордано Бруно, выдвинувший идею множественности обитаемых миров; Галилео Галилей, Иоганн Кеплер, открывший законы движения планет, по которым сейчас обращаются не только естественные небесные тела; Исаак Ньютон, открывший закон всемирного тяготения — основу основ небесной механики; Михаил Ломоносов, уже в 18 веке обнаруживший атмосферу на Венере и тем самым давший людям начальные сведения о новой науке, название которой — физика планет.

Космос всегда интересовал людей, притягивал их своей загадочностью и непостижимостью. Но только за последний век мы смогли хотя бы немного приблизиться к космическому пространству. Несмотря на все развитие технологии для нашего времени мы собираем сведения о вселенной и космическом пространстве по каплям, приближаясь мелкими шажками к таинственным секретам вселенной.

Глава 1. Космонавтика

1.1. Польза космонавтики

Благодаря космонавтике, в последние десятилетия, околоземное космическое пространство, Луна и планеты становились сферой активной деятельности человека. Освоение космоса ставит перед человечеством много насущных научно–технических, народнохозяйственных и мировоззренческих проблем.

Нужна помощь в написании реферата?

Мы - биржа профессиональных авторов (преподавателей и доцентов вузов). Наша система гарантирует сдачу работы к сроку без плагиата. Правки вносим бесплатно.

Глобальные философские и мировоззренческие проблемы освоения космоса столь тесно связаны друг с другом, что грань между ними во многих случаях проводится весьма условно.

Космонавтика – отрасль науки, которая занимается освоением космического пространства в мирных целях. Этому служат проводимые в космосе научные исследования и технические эксперименты. Участие в космических исследованиях способствует приобщению к передовой технологии и международному сотрудничеству.

Космонавтика призвана содействовать решению современных проблем земной цивилизации, глобальным экологическим контролем и охраной окружающей среды.

Масштабной задачей индустриализации космоса является разработка в перспективе природных ресурсов Луны. Условия на Лунной поверхности (вакуум, небольшая сила тяжести) позволяют организовать на базе радикально новые технологии: производство различных металлов, композиционных материалов, металлокерамики и др. Опыт создания лунных станций может стать неоценимым вкладом в программу исследования и освоения Марса.

Существует несколько вариантов полета на Марс, обусловленных конкретными задачами экспедиции, выбранной схемой полета, применяемым типом двигательно-энергетической установки.

Кроме этого успешное развитие и широта использования космических методов в геологии позволяют говорить о становлении нового научного направления — космогеологии. Космические снимки вместе с материалами традиционных методов изучения Земли дают космогеологии надежные данные для построения геологических моделей исследуемых территорий.

Оценка состояния и прогноз изменения геологической среды имеют важнейшее значение для выявления угрозы нарушения экологического равновесия в природе, а также большое народнохозяйственное значение. Прежде всего, для обеспечения полного, безопасного и рационального освоения полезных ископаемых, для оптимального использования и инженерной защиты осваиваемых территорий, для рационального землепользования и мелиорации сельскохозяйственных земельных угодий.

1.2. Значимые полеты в космос

Первый искусственный спутник Земли был запущен СССР на орбиту 4 октября 1957 года. В 1967 году эта дата была утверждена как день начала космической эры. Второй космический аппарат, запущенный на орбиту Земли 3 ноября 1957,впервые вывел в космос живое существо — собаку Лайку.

Нужна помощь в написании реферата?

Мы - биржа профессиональных авторов (преподавателей и доцентов вузов). Наша система гарантирует сдачу работы к сроку без плагиата. Правки вносим бесплатно.

Белка и Стрелка — собаки, запущенные в космос на советском корабле Спутник-5, и находились там с 19 по 20 августа 1960 года. Впервые в мире живые существа, побывав в Космосе, возвратились на Землю после орбитального полёта. Целью эксперимента по запуску животных в космос была проверка эффективности систем жизнеобеспечения в космосе и исследование космического излучения на живые организмы, для изучения различного рода биологических процессов, эффектов микрогравитации и других целей.

Наряду с Россией и США космические исследования получили практическое развитие в целом ряде стран: Индии, Австралии, Японии, Канаде, Франции, Англии, Китае и других. Каждая страна, выполняя свою национальную космическую программу или сотрудничая с другими странами, вносит в той или иной мере свой определенный вклад в дело развития мировой космонавтики.

Сейчас нельзя не вспомнить наиболее значительные этапы в истории развития мировой космонавтики:

Более поздние отправки в космос:

Несомненно, каждое такое событие – это крупная историческая веха на пути освоения космического пространства, большой вклад в науку, в развитие космической техники. Наряду с этим великими достижениями космонавтики и в решении хозяйственных (прикладных) задач, таких, как связь, метеорология, навигация, геодезия, исследование природных ресурсов и др.

Здесь также необходимо отметить интенсивность работ по изучению и освоению космоса. Если в первом космическом десятилетии в Советском Союзе было осуществлено менее 250 запусков космических аппаратов, то во втором их число увеличилось примерно в четыре раза.

Всего в мире к настоящему времени запущено более 2 тысяч автоматических аппаратов и пилотируемых кораблей.

Глава 2. Роль космонавтики в жизни человека

2.1. Космонавтика в науке

Окрестности земного шара и районы дальнего космоса сегодня стали гигантской научной лабораторией, где работают посланцы Земли — автоматические аппараты или пилотируемые космические корабли.

Нужна помощь в написании реферата?

Мы - биржа профессиональных авторов (преподавателей и доцентов вузов). Наша система гарантирует сдачу работы к сроку без плагиата. Правки вносим бесплатно.

Развитие ракетно-космической техники, космические исследования и освоение космического пространства — одно из характерных проявлений современной научно-технической революции, а сама космонавтика выступает сегодня как своеобразный синтез того, что достигнуто сейчас в мире наукой и техникой. Разработка и создание ракетно-космических систем, годами работающих в космосе, искусственных спутников Земли, пилотируемых космических кораблей и станций и межпланетных автоматических станций ускорили развитие многих научно-технических областей, которые не связаны непосредственно с космосом. Космонавтика с ее небывало высокими требованиями к точности, надежности систем и аппаратуры побуждает сегодня многие отрасли промышленности использовать новейшие достижения науки и техники, улучшать и модернизировать производство.

Космические исследования все глубже входят в жизнь всего человечества, начинают играть все большую роль в экономике, оказывают большое влияние на повышение благосостояния народов всех стран.

Начало изучения космоса стало началом новой эры в науке. До этого времени в ряде областей науки о космосе доминировали очень смелые, но экспериментально не подтвержденные теории. Многие дисциплины получили возможность перейти к новым методам исследований, которые раньше были просто невозможны или казались нереальными.

За короткое время возникли и получили теоретическое и практическое развитие космическая физика, космическая химия, космическая медицина, космическая геология и т. д.

Космические исследования обогащают нас новыми открытиями и новыми научными результатами, дают богатейший экспериментальный материал о структуре околоземного космического пространства, о Луне и ближайших планетах, о процессах, протекающих в атмосфере Земли, об активности Солнца, о строении вещества. Эти новые факты уточняют, а иногда и коренным образом изменяют представления об окружающем нас материальном мире. Например, ученые до запуска межпланетных станций не подозревали об отсутствии постоянного дипольного магнитного поля у Луны, о высоком давлении на Венере, об особенностях поверхности Луны и Марса.

Сам космос — гигантская, неисчерпаемая, бесконечно разнообразная лаборатория, созданная природой. Все в большей степени нуждаются в сведениях из космоса физика, химия, астрономия и многие другие науки, от которых зависит рост производительных сил общества, его прогресс.

Например, изучение космических лучей имеет огромное значение для развития ядерной физики. Поиски элементарных частиц, получение ядерных реакций и особенно изучение частиц высоких и сверхвысоких энергий связаны с исследованиями космических лучей. Трудно переоценить также значение астрофизических и радиофизических исследований для решения многих кардинальных проблем современности. Большой вклад внесли спутники и орбитальные станции в изучение квазаров и пульсаров — этих мощных источников радиоизлучений.

Нужна помощь в написании реферата?

Мы - биржа профессиональных авторов (преподавателей и доцентов вузов). Наша система гарантирует сдачу работы к сроку без плагиата. Правки вносим бесплатно.

Космонавтика ставит ряд сложных проблем перед прикладными науками, обеспечивающими прогресс в самых различных отраслях техники. Сюда относятся: технология металлов, материаловедение, энергетика, аэродинамика, автоматическое управление и многое другое. Причем космонавтика наряду с постановкой перед этими научно-техническими дисциплинами ряда требований резко стимулирует их развитие и позволяет постепенно распространять эти нормы и в других отраслях.

2.2. Спутники

Но уже в первом десятилетии космической эры были созданы некоторые эксплуатационные спутниковые системы. Во втором десятилетии эти системы приобрели важное хозяйственное значение, вследствие чего сейчас все большее внимание уделяется рентабельности спутниковых систем и их практическому использованию.

Космические метеоспутники с помощью телевизионной аппаратуры позволяют наблюдать за самыми различными погодными явлениями: облачными образованиями, вихрями, циклонами, грозами, тепловыми и холодными фронтами и т.д.

Помимо телеснимков, полученных на освещенной стороне Земли, спутники передают изображения атмосферных процессов и с ночного полушария нашей планеты.

Спутниковая метеорологическая информация содержит пока что лишь сведения о полях облачности и уходящем излучении. Поэтому для получения наиболее полных данных в труднодоступных районах разрабатываются системы, позволяющие сочетать обычные автоматические измерения на наземных станциях, шарах-зондах и морских буях со сбором и передачей этих данных при помощи спутников в наземные центры обработки и анализа информации. Со спутников может осуществляться отслеживание перемещений шаров-зондов и буев с целью определения скорости и направления ветра, а также морских течений.

Нужна помощь в написании реферата?

Мы - биржа профессиональных авторов (преподавателей и доцентов вузов). Наша система гарантирует сдачу работы к сроку без плагиата. Правки вносим бесплатно.

Процессы в атмосфере носят глобальный характер. Поэтому человечество объединяется для изучения воздушного океана. При Организации Объединенных Наций создана Всемирная метеорологическая организация. Создается Всемирная служба погоды. Уже функционируют три ее главных мировых центра: в Москве, Вашингтоне и Мельбурне. В них собирается обширная информация от спутников, наземных измерительных средств, воздушных шаров, зондирующих ракет и даже от наблюдателей с кораблей и самолетов. Она приходит сюда уже в предварительно обработанном виде, но все же объем ее настолько велик, что потребовалось коренное изменение способов обработки этой метеорологической информации. Громадный объем данных, получаемых со спутников, сделал необходимой полную автоматизацию их обработки с помощью быстродействующих электронных вычислительных машин, начиная от стадии регистрации сигналов спутников до построения синоптических карт и реализации численных прогнозов погоды. Эта информация сосредоточивается в мировых метеорологических центрах, затем рассылается в различные страны и становится достоянием всего человечества.

Заключение

В целом к настоящему времени в мировой практике космических исследований можно достаточно уверенно выделить три основные области использования космических аппаратов:
— околоземное космическое пространство (ближний космос);
— Луна и окололунное космическое пространство;
— межпланетное космическое пространство (дальний космос) и планеты Венера и Марс.

Основной и наиболее важной областью исследований сегодня является околоземное космическое пространство. Вслед за первыми искусственными спутниками были созданы и выведены на орбиты вокруг Земли сотни других, имеющих, как уже отмечалось, самое разнообразное назначение и применение.

Свыше одиннадцати лет осваивают околоземное пространство и космонавты с помощью пилотируемых космических кораблей и станций. Космонавты все активнее участвуют в решении чисто практических земных задач. Они выполняют метеорологические наблюдения, предупреждая земные службы о движении ураганов, извещают о лесных пожарах, изучают облачный покров, фотографируют интересные с геологической точки зрения участки земной поверхности и т.д.

Околоземный космос в первую очередь должен и будет служить человеку. Важная роль в этом отношении будет, несомненно, принадлежать орбитальным многоцелевым научным станциям с продолжительным сроком функционирования. Первые практические шаги на этом магистральном пути советской космонавтики уже сделаны.

Луна и окололунное космическое пространство также занимают важное место в современных космических исследованиях. Что вполне понятно и оправданно. Луна — ближайшее к нашей планете небесное тело Солнечной системы. Естественно, что Луна и явилась первоначальным объектом изучения с помощью средств космической, техники, так как далеко не все ее тайны возможно познать одними наземными способами наблюдений и исследований.

Изучая с помощью космических аппаратов естественный спутник Луну, мы получаем информацию, сопоставляя которую с данными о нашей планете, можно решить много чисто земных проблем. Кроме того, Луна является сегодня своеобразным полигоном, где в специфичных условиях (резкий перепад температур, вакуум, более низкий уровень гравитации и интенсивное облучение различными излучениями космического характера) проходят всестороннюю проверку на функционирование различные по своему конструктивному решению космические аппараты. Стационарные и передвижные автоматические аппараты, успешно работающие на поверхности Луны и в окололунном космическом пространстве, позволят ученым и инженерам уже сегодня накопить необходимые экспериментальные данные для создания новых автоматов, которые завтра придут на смену сегодняшним и будут использоваться для изучения самых удаленных районов Вселенной.

Нельзя переоценить вклад космонавтики в исследование и познание солнечной системы в современном мире.

Нужна помощь в написании реферата?

Мы - биржа профессиональных авторов (преподавателей и доцентов вузов). Наша система гарантирует сдачу работы к сроку без плагиата. Правки вносим бесплатно.

Список использованных источников

Изучение и исследование космоса становится одной из самых актуальных тем в наше время. Во многих странах ведутся работы и создаются краткосрочные и долгосрочные программы. В них подробно и на много лет вперед расписаны планируемые мероприятия, прогнозируются ожидаемые результаты.Чтобы оценить вклад того или иного человека в развитие какой-то области знаний, надо проследить историю развития этой области и попытаться усмотреть прямое или косвенное влияние идей и трудов этого человека на процесс достижения новых знаний и новых успехов. Рассмотрим историю развития астрономии и космонавтики.

Файлы: 1 файл

реферат развитие косманавтики и астрономии.doc

Изучение и исследование космоса становится одной из самых актуальных тем в наше время. Во многих странах ведутся работы и создаются краткосрочные и долгосрочные программы. В них подробно и на много лет вперед расписаны планируемые мероприятия, прогнозируются ожидаемые результаты.Чтобы оценить вклад того или иного человека в развитие какой-то области знаний, надо проследить историю развития этой области и попытаться усмотреть прямое или косвенное влияние идей и трудов этого человека на процесс достижения новых знаний и новых успехов. Рассмотрим историю развития астрономии и космонавтики.

Астрономия - наука о Вселенной, изучающая движение, строение, происхождение и развитие небесных тел и их систем.

Астрономия изучает Солнце и звезды, планеты и их спутники, кометы и метеорные тела, туманности, звездные системы и материю, заполняющую пространство между звездами и планетами, в каком бы состоянии эта материя ни находилась. Изучая строение и развитие небесных тел, их положение и движение в пространстве, астрономия в конечном итоге дает нам представление о строении и развитии Вселенной в целом. Слово "астрономия" происходит от двух греческих слов: "астрон" - звезда, светило и "номос" - закон.

Современная астрономия подразделяется на ряд отдельных разделов, которые тесно связаны между собой, и такое разделение астрономии, в известном смысле, условно. Главнейшими разделами астрономии являются:

1. Астрометрия - наука об измерении пространства и времени.

2. Теоретическая астрономия дает методы для определения орбит небесных тел по их видимым положениям.

3. Небесная механика изучает законы движений небесных тел под действием сил всемирного тяготения, определяет массы и форму небесных тел и устойчивость их систем.

4. Астрофизика- наука,которая изучает строение, физические свойства и химический состав небесных объектов.

5. Звездная астрономия изучает закономерности пространственного распределения и движения звезд, звездных систем и межзвездной материи с учетом их физических особенностей.

6. Космогония рассматривает вопросы происхождения и эволюции небесных тел, в том числе и нашей Земли.

7. Космология изучает общие закономерности строения и развития Вселенной.

Основные этапы развития астрономии

Астрономия является одной из древнейших наук. Первые записи астрономических наблюдений, подлинность которых несомненна, относятся к VIII в. до н.э. Однако известно, что еще за 3 тысячи лет до н. э. египетские жрецы подметили, что разливы Нила, регулировавшие экономическую жизнь страны, наступали вскоре после того, как перед восходом Солнца на востоке появлялась самая яркая из звезд, Сириус, скрывавшаяся до этого около двух месяцев в лучах Солнца. Из этих наблюдений египетские жрецы довольно точно определили продолжительность тропического года.

В Древнем Китае за 2 тысячи лет до н.э. видимые движения Солнца и Луны были настолько хорошо изучены, что китайские астрономы могли предсказывать наступление солнечных и лунных затмений.

Астрономия, как и все другие науки, возникла из практических потребностей человека. Кочевым племенам первобытного общества нужно было ориентироваться при своих странствиях, и они научились это делать по Солнцу, Луне и звездам. Первобытный земледелец должен был при полевых работах учитывать наступление различных сезонов года, и он заметил, что смена времен года связана с полуденной высотой Солнца, с появлением па ночном небе определенных звезд. Дальнейшее развитие человеческого общества вызвало потребность в измерении времени и в летосчислении (составлении календарей).

Все это могли дать и давали наблюдения над движением небесных светил, которые велись в начале без всяких инструментов, были не очень точными, но вполне удовлетворяли практические нужды того времени. Из таких наблюдений и возникла паука о небесных телах - астрономия.

С развитием человеческого общества перед астрономией выдвигались все новые и новые задачи, для решения которых нужны были более совершенные способы наблюдений и более точные методы расчетов. Постепенно стали создаваться простейшие астрономические инструменты и разрабатываться математические методы обработки наблюдений.

В Древней Греции астрономия была уже одной из наиболее развитых наук. Для объяснения видимых движений планет греческие астрономы, крупнейший из них Гиппарх (II в. до н.э.), создали геометрическую теорию эпициклов, которая легла в основу геоцентрической системы мира Птолемея (II в. н.э.). Будучи принципиально неверной, система Птолемея тем не менее позволяла предвычислять приближенные положения планет на небе и потому удовлетворяла, до известной степени, практическим запросам в течение нескольких веков.

Системой мира Птолемея завершается этап развития древнегреческой астрономии. Развитие феодализма и распространение христианской религии повлекли за собой значительный упадок естественных наук, и развитие астрономии в Европе затормозилось на многие столетия. В эпоху мрачного средневековья астрономы занимались лишь наблюдениями видимых движений планет и согласованием этих наблюдений с принятой геоцентрической системой Птолемея.

Рациональное развитие в этот период астрономия получила лишь у арабов и народов Средней Азии и Кавказа, в трудах выдающихся астрономов того времени - Аль-Баттани (850-929 гг.), Бируни (973-1048 гг.), Улугбека (1394-1449 гг.) и др. В период возникновения и становления капитализма в Европе, который пришел на смену феодальному обществу, началось дальнейшее развитие астрономии. Особенно быстро она развивалась в эпоху великих географических открытий (XV-XVI вв.). Нарождавшийся новый класс буржуазии был заинтересован в эксплуатации новых земель и снаряжал многочисленные экспедиции для их открытия. Но далекие путешествия через океан требовали более точных и более простых методов ориентировки и исчисления времени, чем те, которые могла обеспечить система Птолемея. Развитие торговли и мореплавания настоятельно требовало совершенствования астрономических знаний и, в частности, теории движения планет. Развитие производительных сил и требования практики, с одной стороны, и накопленный наблюдательный материал, - с другой, подготовили почву для революции в астрономии, которую и произвел великий польский ученый Николай Коперник (1473-1543), разработавший свою гелиоцентрическую систему мира, опубликованную в год его смерти.

Учение Коперника явилось началом нового этапа в развитии астрономии. Кеплером в 1609-1618 гг. были открыты законы движений планет, а в 1687 г. Ньютон опубликовал закон всемирного тяготения.

Новая астрономия получила возможность изучать не только видимые, но и действительные движения небесных тел. Ее многочисленные и блестящие успехи в этой области увенчались в середине XIX в. открытием планеты Нептун, а в наше время - расчетом орбит искусственных небесных тел.

Следующий, очень важный этап в развитии астрономии начался сравнительно недавно, с середины XIX в., когда возник спектральный анализ и стала применяться фотография в астрономии. Эти методы дали возможность астрономам начать изучение физической природы небесных тел и значительно расширить границы исследуемого пространства. Возникла астрофизика, получившая особенно большое развитие в XX в. и продолжающая бурно развиваться в наши дни. В 40-х гг. XX в. стала развиваться радиоастрономия, а в 1957 г. было положено начало качественно новым методам исследований, основанным на использовании искусственных небесных тел, что в дальнейшем привело к возникновению фактически нового раздела астрофизики - рентгеновской астрономии.

Значение этих достижений астрономии трудно переоценить. Запуск искусственных спутников Земли. (1957 г., СССР), космических станций (1959 г., СССР), первые полеты человека в космос (1961 г., СССР), первая высадка людей на Луну (1969 г., США), - эпохальные события для всего человечества. За ними последовали доставка на Землю лунного грунта, посадка спускаемых аппаратов на поверхности Венеры и Марса, посылка автоматических межпланетных станций к более далеким планетам Солнечной системы.

Астрономия и ее методы имеют большое значение в жизни современного общества. Вопросы, связанные с измерением времени и обеспечением человечества знанием точного времени, решаются теперь специальными лабораториями - службами времени, организованными, как правило, при астрономических учреждениях.

Астрономия имеет исключительно большое значение в борьбе против идеализма, религии, мистики и поповщины.

История астрономии показывает, что она была и остается ареной ожесточенной борьбы материалистического и идеалистического мировоззрений. В настоящее время многие простые вопросы и явления уже не определяют и не вызывают борьбы этих двух основных мировоззрений.

  • Для учеников 1-11 классов и дошкольников
  • Бесплатные сертификаты учителям и участникам

Роль космонавтики в развитии астрономии

Научный руководитель:
Медведева Нурия Мансуровна

Выдающиеся достижения в области ракетно-космической техники, такие, как запуск первого искусственного спутника Земли, позволили значительно расширить диапазон исследований и осуществить постановку совершенно новых задач для ряда наук и научных направлений. Весь фронт научных исследований в космосе сформировался за довольно короткий срок — всего лишь 20 лет.

Изучение физических и физико-химических процессов в космосе стало одним из главных разделов этой области.

Основными целями программы были:

испытание элементов совместимой системы сближения на орбите;

исследование химического состава атмосферы;

проверка техники и оборудования для обеспечения перехода космонавтов из корабля в корабль;

накопление опыта в проведении совместных полётов космических кораблей СССР и США.

Согласно полученным данным, строение атмосферы выглядит следующим образом. На высоте 100-120 км начинается диффузионное разделение газов. Происходит оно за счет того, что убывание с высотой доли различных составляющих атмосферы происходит по-разному. На высоте до 200 - 250 км главным компонентом атмосферы остается молекулярный азот, но при этом возрастает и относительная концентрация атомарного кислорода. На высоте 250-300 км основным компонентом атмосферы становится атомарный кислород. С увеличением высоты основными компонентами атмосферы становятся гелий и водород.

Искусственные спутники Земли внесли важный вклад в изучение Земли: их появление позволило получить новые важные данные об ионосфере, особенно о ее внешней части, состоящей из атомарного водорода.

Эксперименты дали сведения о том, что ионосфера Земли простирается, по крайней мере, до 4-5 радиусов Земли, а распределение заряженных частиц выше главного максимума ионизации существенно зависит от солнечной активности: в годы спокойного Солнца спад концентрации резко усиливается.

Искусственные спутники также позволили более детально изучить собственное магнитное поле Земли. В результате современных исследований, в 2015 году ученые выяснили, что магнитное поле Земли сформировалось на 700 млн лет раньше, чем предполагалось ранее, и способствовало зарождению жизни на нашей планете.

Важнейшим направлением в проблеме солнечно-земных связей оказывается исследование коротковолнового излучения Солнца с помощью ракетно-космической техники. Одновременно эти исследования дают сведения и о хромосфере, и о короне Солнца. Коротковолновое излучение Солнца в то же время контролирует состояние земной термосферы и нагревает ее, что, в свою очередь, влияет на тепловой баланс нижних слоев атмосферы. Это же излучение также отвечает за состояние земной ионосферы.

По комплексу научных задач спутники этой серии можно разбить на три основные группы:

для изучения Солнца;

для ионосферных исследований;

для изучения магнитосферы Земли.

Именно эти спутники позволили получить данные, относящиеся к размерам, структуре и локализации рентгеновских вспышек.

Вероятно, нагрев области вспышек до температур в несколько десятков миллионов градусов осуществляется быстрыми электронами. Электроны, ускоряясь в короне до энергий 105 эВ и двигаясь вдоль магнитных линий, вторгаются в низкие, более плотные, слои короны или хромосферу, отдавая путем соударений свою энергию более холодным электронам, которые затем нагревают ионы.

С помощью этих спутников были также получены экспериментальные сведения о существовании поляризации рентгеновского излучения в начальной стадии вспышек.

При помощи ионных ловушек и счётчиков частиц были осуществлены первые прямые измерения параметров солнечного ветра;

Был успешно выполнен эксперимент по созданию искусственной кометы. 3 января в 3:56:20 по московскому времени, на расстоянии в 119500 км от Земли из станции было выпущено облако паров натрия (1 кг); рассеиваясь в вакууме, облако светилось оранжевым светом в течение нескольких минут и наблюдалось с Земли как слабая звезда 6-й величины;

Было установлено отсутствие у Луны значительного магнитного поля.

Но на исследовании Земли и Луны изучение космоса не заканчивается. Следующим этапом освоения космоса стали полеты космических аппаратов, давшие ученым новые представления о Венере и Марсе.

С помощью этой информации ученые установили, что основная составляющая атмосферы Венеры — углекислый газ. Согласно результатам измерений его объемное процентное содержание составляет 97%, суммарный предел содержания азота и инертных газов не превышает 2%, кислорода — 0,1 %, водяного пара (на высоте примерно 20-40 км) — 0,01%.

Спускаемые отсеки двух последних аппаратов совершили мягкую посадку на поверхность планеты и передали на Землю первые панорамные снимки.

В результате данных научных исследований были получены сведения о температуре поверхности и грунте Марса, его рельефе, составе и строении атмосферы. Кроме температуры, определялась диэлектрическая постоянная грунта — величина, которая зависит главным образом от его плотности. Измерения показали, что изменения температуры грунта и диэлектрической постоянной находятся в прямой зависимости: когда значения диэлектрической постоянной велики, материал грунта находится в раздробленном состоянии.

Стоит отметить, что космические исследования затронули не только две ближайшие к Земле планеты, но и другие, расположенные гораздо дальше.

Выход в космос неизмеримо расширил наблюдательный диапазон современной астрономии, сделав доступными также рентгеновскую, ультрафиолетовую, инфракрасную, субмиллиметровую и радиочастотную (с длиной волны больше 30 м) области спектра. Это позволило получить за последнее время такие крупные результаты, как обнаружение около 200 рентгеновских источников, отождествляемых с активными ядрами галактик, нейтронными звездами и, вероятно, с черными дырами.

Что касается перспектив внеатмосферной астрономии, то, прежде всего, они связаны с выведением больших телескопов на орбиты спутников Земли. Но создать астрономическую обсерваторию на орбите не так просто. Одной из трудностей является ориентация и стабилизация платформы, несущей астрономические приборы. Платформа и телескоп должны быть способными обеспечивать точность порядка сотых долей секунды дуги. Создание таких систем ориентации и стабилизации, безусловно, требует совершенно новых технических принципов и технологических решений.

Появление больших орбитальных обсерваторий приведет к дальнейшим успехам астрофизики, которая в последнее десятилетие переживает бурный расцвет, сравнимый по своей значимости с эпохой стремительного развития физики элементарных частиц после появления ускорителей.

Астрономические наблюдения позволяют исследовать свойства вещества, находящегося в экстремальном, недостижимом в лабораторных условиях состоянии. В таких экстремальных условиях при грандиозных катаклизмах во Вселенной могут рождаться космические лучи столь высоких энергий, которые вряд ли когда-либо будут достижимы на ускорителях.

Однако, несмотря на всю грандиозность достижений современной техники, масштабы созданных человеком установок все же очень малы по сравнению с масштабами космоса. Даже если учесть ежегодный прогресс в освоении последнего, пока что получено слишком мало информации. Именно по этой причине основными целью и задачей космонавтики является расширение знаний человечества о планетах, галактиках, звездах и многих других неотъемлемых составляющих космоса. Работа космонавтов всегда будет востребована и актуальна, а вклад в науку оценен по достоинству.


Астрономия является одной из старейших естественных наук, ещё в глубокой древности люди интересовались движением светил по небосводу. Древние астрономические наблюдения делались в Египте, Вавилоне, Греции, Риме. В Средние века большое развитие получила астрология, из которой в XVIII веке выделилась собственно астрономия.

Возникновение и основные этапы развития астрономии

Астрономия является одной из древнейших наук. Первые записи астрономических наблюдений, подлинность которых несомненна, относятся к VIII в. до н. э. Однако известно, что еще за 3 тысячи лет до н. э. египетские жрецы подметили, что разливы Нила, регулировавшие экономическую жизнь страны, наступали вскоре после того, как перед восходом Солнца на востоке появлялась самая яркая из звезд, Сириус, скрывавшаяся до этого около двух месяцев в лучах Солнца. Из этих наблюдений египетские жрецы довольно точно определили продолжительность тропического года.

В Древнем Китае за 2 тысячи лет до н. э. видимые движения Солнца и Луны были настолько хорошо изучены, что китайские астрономы могли предсказывать наступление солнечных и лунных затмений.

Астрономия, как и все другие науки, возникла из практических потребностей человека. Кочевым племенам первобытного общества нужно было ориентироваться при своих странствиях, и они научились это делать по Солнцу, Луне и звездам. Первобытный земледелец должен был при полевых работах учитывать наступление различных сезонов года, и он заметил, что смена времен года связана с полуденной высотой Солнца, с появлением на ночном небе определенных звезд. Дальнейшее развитие человеческого общества вызвало потребность в измерении времени и в летосчислении (составлении календарей).

Все это могли дать и давали наблюдения над движением небесных светил, которые велись в начале без всяких инструментов, были не очень точными, но вполне удовлетворяли практические нужды того времени. Из таких наблюдений и возникла наука о небесных телах — астрономия.

С развитием человеческого общества перед астрономией выдвигались все новые и новые задачи, для решения которых нужны были более совершенные способы наблюдений и более точные методы расчетов. Постепенно стали создаваться простейшие астрономические инструменты и разрабатываться математические методы обработки наблюдений.

В Древней Греции астрономия была уже одной из наиболее развитых наук. Для объяснения видимых движений планет греческие астрономы, крупнейший из них Гиппарх (II в. до н. э.), создали геометрическую теорию эпициклов, которая легла в основу геоцентрической системы мира Птолемея (II в. н. э.). Будучи принципиально неверной, система Птолемея, тем не менее, позволяла предвычислять приближенные положения планет на небе и потому удовлетворяла, до известной степени, практическим запросам в течение нескольких веков.

Системой мира Птолемея завершается этап развития древнегреческой астрономии. Развитие феодализма и распространение христианской религии повлекли за собой значительный упадок естественных наук, и развитие астрономии в Европе затормозилось на многие столетия. В эпоху мрачного средневековья астрономы занимались лишь наблюдениями видимых движений планет и согласованием этих наблюдений с принятой геоцентрической системой Птолемея.

Рациональное развитие в этот период астрономия получила лишь у арабов и народов Средней Азии и Кавказа, в трудах выдающихся астрономов того времени — Аль-Батани (850—929 гг.), Бируни (973—1048 гг.), Улугбека (1394—1449 гг.) и др.

В период возникновения и становления капитализма в Европе, который пришел на смену феодальному обществу, началось дальнейшее развитие астрономии. Особенно быстро она развивалась в эпоху великих географических открытий (XV—XVI вв.). Нарождавшийся новый класс буржуазии был заинтересован в эксплуатации новых земель и снаряжал многочисленные экспедиции для их открытия. Но далекие путешествия через океан требовали более точных и более простых методов ориентировки и исчисления времени, чем те, которые могла обеспечить система Птолемея. Развитие торговли и мореплавания настоятельно требовало совершенствования астрономических знаний и, в частности, теории движения планет. Развитие производительных сил и требования практики, с одной стороны, и накопленный наблюдательный материал, — с другой, подготовили почву для революции в астрономии, которую и произвел великий польский ученый Николай Коперник (1473—1543), разработавший свою гелиоцентрическую систему мира, опубликованную в год его смерти.

Учение Коперника явилось началом нового этапа в развитии астрономии. Кеплером в 1609—1618 гг. были открыты законы движений планет, а в 1687 г. Ньютон опубликовал закон всемирного тяготения.

Новая астрономия получила возможность изучать не только видимые, но и действительные движения небесных тел. Ее многочисленные и блестящие успехи в этой области увенчались в середине XIX в. открытием планеты Нептун, а в наше время — расчетом орбит искусственных небесных тел.

Следующий, очень важный этап в развитии астрономии начался сравнительно недавно, с середины XIX в., когда возник спектральный анализ, и стала применяться фотография в астрономии. Эти методы дали возможность астрономам начать изучение физической природы небесных тел и значительно расширить границы исследуемого пространства. Возникла астрофизика, получившая особенно большое развитие в XX в. и продолжающая бурно развиваться в наши дни. В 40-х гг. XX в. стала развиваться радиоастрономия, а в 1957 г. было положено начало качественно новым методам исследований, основанным на использовании искусственных небесных тел, что в дальнейшем привело к возникновению фактически нового раздела астрофизики — рентгеновской астрономии.

Значение этих достижений астрономии трудно переоценить. Запуск искусственных спутников Земли. (1957 г., СССР), космических станций (1959 г., СССР), первые полеты человека в космос (1961 г., СССР), первая высадка людей на Луну (1969 г., США), — эпохальные события для всего человечества. За ними последовали доставка на Землю лунного грунта, посадка спускаемых аппаратов на поверхности Венеры и Марса, посылка автоматических межпланетных станций к более далеким планетам Солнечной системы.

Подписывайтесь на наш Telegram-канал. Будьте в курсе всех событий!
Мы работаем для Вас!

Во второй половине XX в. человечество ступило на порог Вселенной - вышло в космическое пространство. Дорогу в космос открыла наша Родина. Первый искусственный спутник Земли, открывший космическую эру, запущен бывшим Советским Союзом, первый космонавт мира - гражданин бывшего СССР.

Космонавтика - это громадный катализатор современной науки и техники, ставший за невиданно короткий срок одним из главный рычагов современного мирового процесса. Она стимулирует развитие электроники, машиностроения, материаловедения, вычислительной техники, энергетики и многих других областей народного хозяйства.

В научном плане человечество стремится найти в космосе ответ на такие принципиальные вопросы, как строение и эволюция Вселенной, образование Солнечной системы, происхождение и пути развития жизни. От гипотез о природе планет и строении космоса, люди перешли к всестороннему и непосредственному изучению небесных тел и межпланетного пространства с помощью ракетно-космической техники.

В освоении космоса человечеству предстоит изучит различные области космического пространства: Луну, другие планеты и межпланетное пространство.

Современный уровень космической техники и прогноз её развития показывают, что основной целью научных исследований с помощью космических средств, по-видимому, в ближайшем будущем будет наша Солнечная система. Главными при этом будут задачи изучения солнечно-земных связей и пространства Земля - Луна, а так же Меркурия, Венеры, Марса, Юпитера, Сатурна и других планет, астрономические исследования , медико-биологические исследования с целью оценки влияния продолжительности полётов на организм человека и его работоспособность.

Ракетная техника - далеко не новое понятие. К созданию мощных современных ракет-носителей человек шёл через тысячелетия мечтаний , фантазий, ошибок, поисков в различных областях науки и техники, накопления опыта и знаний.

Принцип действия ракеты заключается в её движении под действием силы отдачи, реакции потока частиц, отбрасываемых от ракеты. В ракете. т.е. аппарате, снабжённом ракетным двигателем, истекающие газы образуются за счёт реакции окислителя и горючего, хранящихся в самой ракете. Это обстоятельство делает работу ракетного двигателя независимой от наличия или отсутствия газовой среды. Таким образом, ракета представляет из себя удивительную конструкцию, способную перемещаться в безвоздушном пространстве, т.е. не опорном, космическом пространстве.

Но т.к. Кибальчича посадили в тюрьму за покушение на Царя Александра II, то проект его летательного аппарата был обнаружен только в 1917 году в архиве департамента полиции.

Итак, к концу прошлого века идея применения для полётов реактивных приборов получила в России большие масштабы. И первым кто решил продолжить исследования был наш великий соотечественник Константин Эдуардович Циолковский(1857-1935). Реактивным принципом движения он начал интересоваться очень рано. Уже в 1883 г. он дал описание корабля с реактивным двигателем. Уже в 1903 году Циолковский впервые в мире дал возможность конструировать схему жидкостной ракеты. Идеи Циолковского получили всеобщее признание ещё в 1920-е годы. И блестящий продолжатель его дела С. П. Королёв за месяц до запуска первого искусственного спутника Земли говорил что идеи и труды Константина Эдуардовича будут всё больше и больше привлекать к себе внимание по мере развития ракетной техники, в чём оказался абсолютно прав!

Начало космической эры

И так через 40 лет после того как был найден проект летательного аппарата, созданный Кибальчичем, 4 октября 1957 г. бывший СССР произвел запуск первого в мире искусственного спутника Земли. Первый советский спутник позволил впервые измерить плотность верхней атмосферы, получить данные о распространении радиосигналов в ионосфере, отработать вопросы выведения на орбиту, тепловой режим и др. Спутник представлял собой алюминиевую сферу диаметром 58 см и массой 83,6 кг с четырьмя штыревыми антеннами длинной 2,4-2,9 м. В герметичном корпусе спутника размещались аппаратура и источники электропитания. Начальные параметры орбиты составляли: высота перигея 228 км, высота апогея 947 км, наклонение 65,1 гр. 3 ноября Советский Союз сообщил о выведении на орбиту второго советского спутника. В отдельной герметической кабине находились собака Лайка и телеметрическая система для регистрации ее поведении в невесомости. Спутник был также снабжен научными приборами для исследования излучения Солнца и космических лучей.

массе он не был кандидатом в рекордсмены. Будучи длинной менее 1 м и диаметром только ~15,2 см, он имел массу всего лишь 4,8 кг.

Важный научный результат полета спутника состоял в открытии окружающих Земля радиационных поясов. Счетчик Гейгера-Мюллера прекратил счет, когда аппарат находился в апогее на высоте 2530 км, высота перигея составляла 360 км.

В период с декабря 1957 г. по сентябрь 1959 г. было предпринято одиннадцать попыток вывести на орбиту «Авангард

Человек в космосе

Через четыре недели после полета Гагарина 5 мая 1961 г. капитан 3-го ранга Алан Шепард стал первым американским астронавтом.

Он состоял только из одного модуля - пилотируемой капсулы в форме усеченного конуса длинной 2,9 м и диаметром основания 1,89 м. Его герметичная оболочка из никелевого сплава имела обшивку из титана для защиты от нагрева при входе в атмосферу.

Нужно заметить, что в естественнонаучном и производительном планах мир стоит перед рядом глобальных проблем, решение которых требует объединённых усилий всех народов. Это проблемы сырьевых ресурсов, энергетики, контроля за состоянием окружающей среды и сохранения биосферы и другие. Огромную роль в кардинальном их решении будут играть космические исследования - одно из важнейших направлений научно-технической революции.

Космонавтика ярко демонстрирует всему миру плодотворность мирного созидательного труда, выгоды объединения усилий разных стран в решении научных и народнохозяйственных задач.

С какими же проблемами сталкивается космонавтика и сами космонавты?

Начнём с жизнеобеспечения. Что такое жизнеобеспечение? Жизнеобеспечение в космическом полёте - это создание и поддержание в течении всего полёта в жилых и рабочих отсеках К.К. таких условий, которые обеспечили бы экипажу работоспособность, достаточную для выполнения поставленной задачи, и минимальную вероятность возникновения патологических изменений в организме человека. Как это сделать? Необходимо существенно уменьшить степень воздействия на человека неблагоприятных внешних факторов космического полёта - вакуума, метеорических тел, проникающей радиации, невесомости, перегрузок; снабдить экипаж веществами и энергией без которых не возможна нормальная жизнедеятельность человека, - пищей, водой, кислородом и сетом; удалить продукты жизнедеятельности организма и вредные для здоровья вещества, выделяемые при работе систем и оборудования космического корабля; обеспечить потребности человека в движении, отдыхе, внешней информации и нормальных условиях труда; организовать медицинский контроль за состоянием здоровья экипажа и поддержание его на необходимом уровне. Пища и вода доставляются в космос в соответствующей упаковке, а кислород - в химически связанном виде. Если не проводить восстановление продуктов жизнедеятельности, то для экипажа из трёх человек на один год потребуется 11 тонн вышеперечисленных продуктов, что, согласитесь, составляет немалый вес, объём, да и как это всё будет хранится в течении года?!

В ближайшем будущем системы регенерации позволят почти полностью воспроизводить кислород и вод на борту станции. Уже давно начали использовать вода после умывания и душа, очищенную в системе регенерации. Выдыхаемая влага конденсируется в холодильно-сушильном агрегате, а затем регенерируется. Кислород для дыхания извлекается из очищенной воды электролизом, а газообразный водород, реагируя с углекислым газом, поступающим из концентратора, образует воду, которая питает электролизер. Использование такой системы позволяет уменьшить в рассмотренном примере массу запасаемых веществ с 11 до 2т. В последнее время практикуется выращивание разнообразных видов растений прямо на борту корабля, что позволяет сократить запас пищи который необходимо брать в космос, об этом упоминал ещё в своих трудах Циолковский.

Космос науке

Освоение космоса во многом помогает в развитии наук:

18 декабря 1980 года было установлено явление стока частиц радиационных поясов Земли под отрицательными магнитными аномалиями.

Наибольшая интенсивность радиации в поясах наблюдается на высотах в несколько тысяч км. Теоретические оценки показывали, что ниже 500 км. Не должно быть повышенной радиации. Поэтому совершенно неожиданным было обнаружение во время полётов первых К.К. областей интенсивной радиации на высотах до 200-300 км. Оказалось, что это связано с аномальными зонами магнитного поля Земли.

Распространилось исследование природных ресурсов Земли космическими методами, что во многом посодействовало развитию народного хозяйства.

Первая проблема которая стояла в 1980 году перед космическими исследователями представляла перед собой комплекс научных исследований, включающих большинство важнейших направлений космического природоведения. Их целью являлись разработка методов тематического дешифрирования многозональной видеоинформации и их использование при решении задач наук о Земле и хозяйственных отраслей. К таким задачам относятся: изучение глобальных и локальных структур земной коры для познания истории её развития.

Вторая проблема является одной из основополагающих физико-технических проблем дистанционного зондирования и имеет своей целью создание каталогов радиационных характеристик земных объектов и моделей их трансформации, которые позволят выполнять анализ состояния природных образований на время съемки и прогнозировать их на динамику.

Отличительной особенностью третей проблемы является ориентация на излучение радиационных характеристик крупных регионов вплоть до планеты в целом с привлечением данных о параметрах и аномалиях гравитационного и геомагнитного полей Земли.

Изучение Земли из космоса

Неоценима помощь космонавтов в создании крупнейшего картографического произведения - Атласа снежно-ледовых ресурсов мира.

Также с помощью спутников находят нефтяные загрязнения, загрязнения воздуха, полезные ископаемые.

Наука о космосе

В течении небольшого периода времени с начала космической эры человек не только послал автоматические космические станции к другим планетам и ступил на поверхность Луны, но также произвел революцию в науке о космосе, равной которой не было за всю историю человечества. Наряду с большими техническими достижениями, вызванными развитием космонавтики, были получены новые знания о планете Земля и соседних мирах. Одним из первых важных открытий, сделанных не традиционным визуальным, а иным методом наблюдения, было установление факта резкого увеличения с высотой, начиная с некоторой пороговой высоты интенсивности считавшихся ранее изотропными космических лучей. Это открытие принадлежит австрийцу В. Ф. Хессу, запустившему в 1946 г.газовый шар-зонд с аппаратурой на большие высоты.

В 1952 и 1953 гг. д-р Джеймс Ван Аллен проводил исследования низко энергетических космических лучей при запусках в районе северного магнитного полюса Земли небольших ракет на высоту 19-24 км и высотных шаров - баллонов. Проанализировав результаты проведенных экспериментов, Ван Аллен предложил разместить на борту первых американских искусственных спутников Земли достаточно простые по конструкции детекторы космических лучей.

Чёрные дыры

О чёрных дырах узнали в 1960-х годах. Оказалось, что если бы наши глаза могли видеть только рентгеновское излучение, то звёздное небо над нами выглядело бы совсем иначе. Правда, рентгеновские лучи, испускаемые Солнцем, удалось обнаружить ещё до рождения космонавтики, но о других источниках в звёздном небе и не подозревали. На них наткнулись случайно.

К этому времени кое-что уже начало проясняться. Объекты, испускающие рентгеновские лучи, сумели связать с еле видимыми звёздами, обладающими необычными свойствами. Это были компактные сгустки плазмы ничтожных, конечно по космическим меркам, размеров и масс, раскалённые до нескольких десятков миллионов градусов. При весьма скромной наружности эти объекты обладали колоссальной мощностью рентгеновского излучения, в несколько тысяч раз превышающей полную совместимость Солнца.

С помощью запущенных спутников исследователи обнаружили строго периодические изменения потоков излучения некоторых из них. Был определён и период этих вариаций - обычно он не превышал нескольких суток. Так могли вести себя лишь две вращающиеся вокруг себя звезды, из которых одна периодически затмевала другую. Это было доказано при наблюдении в телескопы.

Откуда же черпают рентгеновские источники колоссальную энергию излучения, Основным условием превращения нормальной звезды в нейтронную считается полное затухание в ней ядерной реакции. Поэтому ядерная энергия исключается. Тогда , может быть, это кинетическая энергия быстро вращающегося массивного тела? Действительно она у нейтронных звёзд велика. Но и её хватает лишь ненадолго.

Большинство нейтронных звёзд существует не по одиночке, а в паре с огромной звездой. В их взаимодействии, полагают теоретики, и скрыт источник могучей силы космического рентгена. Она образует вокруг нейтронной звезды газовый диск. У магнитных полюсов нейтронного шара вещество диска выпадает на его поверхность, а приобретённая при этом газом энергия превращается в рентгеновское излучение.

Заслуга Кларка заключалась в том, что он определил орбиту, на которой спутник неподвижен относительно Земли. Такая орбита называется геостационарной или орбитой Кларка. При движении по круговой орбите высотой 35880 км один виток совершается за 24 часа, т.е. за период суточного вращения Земли. Спутник, движущийся по такой орбите, будет постоянно находиться над определенной точкой поверхности Земли.

Большое будущее связывают с размещением на геостационарной орбите антенных комплексов.

17 июня 1991 года, был выведен на орбиту геодезический спутник ERS-1. Главной задачей спутников должны были стать наблюдения за океанами и покрытыми льдом частями суши, чтобы представить климатологам, океанографам и организациям по охране окружающей среды данные об этих малоисследованных регионах. Спутник был оснащен самой современной микроволновой аппаратурой, благодаря которой он готов к любой погоде: "глаза" его радиолокационных приборов проникают сквозь туман и облака и дают ясное изображение поверхности Земли, через воду, через сушу, - и через лед. ERS-1 был нацелен на разработку ледовых карт, которые в последствии помогли бы избежать множество катастроф, связанных со столкновением кораблей с айсбергами и т.д.

При всем том, разработка судоходных маршрутов это, говоря об- разным языком, только верхушка айсберга, если только вспомнить о расшифровке данных ERS об океанах и покрытых льдом пространствах Земли. Нам известны тревожные прогнозы общего потепления Земли, которые приведут к тому, что растают полярные шапки и повысится уровень моря. Затоплены будут все прибрежные зоны, пострадают миллионы людей.

Но нам неизвестно, насколько правильны эти предсказания. Продолжительные наблюдения за полярными областями при помощи ERS-1 и последовавшего за ним в конце осени 1994 года спутника ERS-2 представляют данные, на основании которых можно сделать выводы об этих тенденциях. Они создают систему "раннего обнаружения" в деле о таянии льдов.

Благодаря снимкам, которые спутник ERS-1 передал на Землю, мы знаем, что дно океана с его горами и долинами как бы "отпечатывается" на поверхности вод. Так ученые могут составить представление о том, является ли расстояние от спутника до морской поверхности (с точностью до десяти сантиметров измеренное спутниковыми радарными высотомерами) указанием на повышение уровня моря, или же это "отпечаток" горы на дне.

Хотя первоначально спутник ERS-1 был разработан для наблюдений за океаном и льдами, он очень быстро доказал свою многосторонность и по отношению к суше. В сельском и лесном хозяйстве, в рыболовстве, геологии и картографии специалисты работают с данными, представляемыми спутником. Поскольку ERS-1 после трех лет выполнения своей миссии он все еще работоспособен, ученые имеют шанс эксплуатировать его вместе с ERS-2 для общих заданий, как тандем. И они собираются получать новые сведения о топографии земной поверхности и оказывать помощь, например, в предупреждении о возможных землетрясениях.

Спутник ERS-2 оснащен, кроме того, измерительным прибором GlobalOzoneMonitoringExperimentGome который учитывает объем и распределение озона и других газов в атмосфере Земли. С помощью этого прибора можно наблюдать за опасной озоновой дырой и происходящими изменениями. Одновременно по данным ERS-2 можно отводить близкое к земле UV-B излучение.

На фоне множества общих для всего мира проблем окружающей среды, для разрешения которых должны предоставлять основополагающую информацию и ERS-1, и ERS-2, планирование судоходных маршрутов кажется сравнительно незначительным итогом работы этого нового поколения спутников. Но это одна из тех сфер, в которой возможности коммерческого использования спутниковых данных используются особенно интенсивно. Это помогает при финансировании других важных заданий. И это имеет в области охраны окружающей среды эффект, который трудно переоценить: скорые судоходные пути требуют меньшего расхода энергии. Или вспомним о нефтяных танкерах, которые в шторм садились на мель или разбивались и тонули, теряя свой опасный для окружающей среды груз. Надежное планирование маршрутов помогает избежать таких катастроф.

Читайте также: