Расчет ошибок прогнозирования реферат

Обновлено: 17.05.2024

Для оценки качества прогноза принято использовать такие характеристики как надёжность, точность, достоверность, ошибки прогноза.

Под надёжностью прогнозных расчётов понимается мера неопределённости поведения объекта прогнозирования во времени.

Достоверность прогноза определяется вероятностью осуществления прогноза для заданного варианта или доверительного интервала.

Точность прогноза характеризует интервальный разброс прогнозных траекторий при фиксированном уровне достоверности.

Ошибки прогноза представляют собой меру отклонения прогнозных оценок от реальных значений состояния прогнозируемого объекта.

Рис. 8. Факторы, влияющие на качество прогноза.

Качество исходной информации, в свою очередь, определяется:

- точностью экономических измерений;

- отсутствием ошибок согласования (данные ошибки возникают в тех случаях, когда исходная информация для проведения прогнозных расчётов подготавливается различными специалистами, использующими разные методологические подходы).

Погрешности, связанные с выбором модели прогноза, возникают в результате упрощения, несовершенства теоретических построений или неадекватности моделей прогнозируемым социально-экономическим процессам. Иногда для прогнозирования процессов, протекающих в нашей стране, используются модели разработанные зарубежными специалистами и хорошо себя зарекомендовавшие для прогнозирования аналогичных процессов в других странах. Однако следует помнить о том, что данные модели могут быть неадекватны социально-экономическим процессам, происходящим в нашей стране и их использование может привести к серьезным ошибкам и просчетам.

Наиболее часто на практике для анализа адекватности модели прогноза исследуемым социально-экономическим процессам используются абсолютные показатели, позволяющие количественно определить величину ошибки моделирования в единицах измерения прогнозируемого объекта. К ним относятся:

- абсолютная ошибка, определяемая как разность между фактическим значением показателя и его расчётным значением ;

- средняя абсолютная ошибка ;

Следует отметить, что абсолютные показатели малопригодны для сравнения и анализа точности моделирования разнородных объектов, так как их значения существенно зависят от масштаба измерения исследуемых явлений. В этих случаях используются относительные показатели:

- средняя относительная ошибка .

Прогнозирование численности населения с помощью методов скользящей средней, наименьших квадратов и экспоненциального сглаживания. Построение графика потребления электроэнергии, определения сезонных колебаний и поквартальный прогноз объема потребления.

Рубрика Экономико-математическое моделирование
Вид задача
Язык русский
Дата добавления 30.12.2010
Размер файла 58,3 K

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Государственное образовательное учреждение

Высшего профессионального образования

Уральский государственный экономический университет

По дисциплине Прогнозирование национальной экономики

Задание 1. Имеются данные размера ввода в действие общей площади жилых домов в городе за 1989-1999 гг., тыс. м 2

2. Постройте график фактического и расчетных показателей.

3. Рассчитайте ошибки полученных прогнозов при использовании каждого метода.

4. Сравните результаты.

Скользящая средняя (n = 3):

Ввод в действие общей площади жилых домов, тыс. м 2 . Уt

Скользящая средняя m

Расчет средней относительной ошибки |Уф - Ур| Уф * 100

Рис. 1 График фактических (чёрная линия) и расчетных (серая линия) показателей. (Составлено по таблице 1)

Прогноз на 2000 г.: У2000=806,7+(652-865)/3=735,7

Прогноз на 2001 г.: У2001=750,9+(735,7-652)/3=778,8 и т.д. (Таблица 1).

Средняя относительная ошибка: ?=42,6/9=4,7

Метод экспоненциального сглаживания:

Значение параметра сглаживания: 2/(n+1)=2/(11+1)=0,2=0,17

Начальное значение Uo двумя способами:

1 способ (средняя арифметическая): Uo = 16262/11 = 1478,4

2 способ (принимаем первое значение базы прогноза): Uo = 2360

Ввод в действие общей площади жилых домов, тыс. м 2 .

Экспоненциально взвешенная средняя Ut

Расчет средней относительной ошибки

Рис. 2 График фактических и расчетных показателей экспоненциально взвешенных средних 1 и 2 способ. (Составлено по таблице 2, 3)

Экспоненциально взвешенная средняя для каждого года:

U1989 = 2360*0,17+(1-0,17) * 1478,4=1628,272 1 способ

U1989 = 2360*0,17+(1-0,17) * 2360=2360 2 способ

(Остальное приведено в таблице до 2009 года с целью прогноза на 2007, 2008 годы)

Средняя относительная ошибка:

? = 442,945295/11 = 40,27% (1 способ)

? = 563,561351/11 = 51,23% (2 способ)

прогнозирование экспоненциальный сглаживание

Задание 2. Имеются данные потребления электроэнергии в городе за 2003-2006 гг., млн. кВт·ч

1. Постройте график исходных данных и определите наличие сезонных колебаний.

2. Постройте прогноз объема потребления электроэнергии в городе на 2007-2008 гг. с разбивкой по кварталам.

3. Рассчитайте ошибки прогноза.

I 1 = 102,5714108

I 2 = 134,6464502

I 3 = 90,91831558

I 4 = 73,11296966

Средняя относительная ошибка: 297,09/16=18,57%

потребления электроэнергии в городе., млн. кВт*ч Уф

потребления электроэнергии в городе., млн. кВт*ч

Подобные документы

Использование принципа дисконтирования информации в методах статистического прогнозирования. Общая формула расчета экспоненциальной средней. Определение значения параметра сглаживания. Ретроспективный прогноз и средняя квадратическая ошибка отклонений.

реферат [9,8 K], добавлен 16.12.2011

Сущность социально-экономического прогнозирования. Роль сахара в жизни человека. Математический аппарат, используемый при прогнозировании потребления. Регрессионный анализ. Методы наименьших квадратов и моментов. Оценка качества моделей прогнозирования.

курсовая работа [1,5 M], добавлен 26.11.2012

Сущность, содержание и цели экономического прогнозирования. Классификация и обзор базовых методов прогнозирования спроса. Основные показатели динамики экономических процессов. Моделирование сезонных колебаний при использовании фиктивных переменных.

дипломная работа [372,5 K], добавлен 29.11.2014

Основные задачи и принципы экстраполяционного прогнозирования, его методы и модели. Экономическое прогнозирование доходов ООО "Уфа-Аттракцион" с помощью экстраполяционных методов. Анализ особенностей применения метода экспоненциального сглаживания Хольта.

курсовая работа [1,7 M], добавлен 21.02.2015

Планирование деятельности предприятия по производству продуктов питания. Прогнозирование объема продаж продукции на заданный период времени, построение графика изменения, используя метод трехчленной скользящей средней; расчет доверительных интервалов.

контрольная работа [668,5 K], добавлен 02.01.2012

Порядок и особенности расчета прогнозных значений урожайности озимой пшеницы в Волгоградский области. Общая характеристика основных методов прогнозирования - аналитического выравнивания, экспоненциального сглаживания, скользящих средних и рядов Фурье.

контрольная работа [2,3 M], добавлен 11.07.2010

Построение поля корреляции, оценка тесноты связи с помощью показателей корреляции и детерминации, адекватности линейной модели. Статистическая надёжность нелинейных моделей по критерию Фишера. Модель сезонных колебаний и расчёт прогнозных значений.

практическая работа [145,7 K], добавлен 13.05.2014



В каждой формуле буквой Ф обозначено фактическое значение, а буквой П — прогнозное. Каждая ошибка прогнозирования (кроме последней!), может использоваться для нахождения общей точности прогнозирования некоторого списка позиций, по типу того, что изображен ниже (либо для любого другого подобной детализации):

Алгоритм для нахождения любой из ошибок прогнозирования для такого списка примерно одинаковый: сначала находим ошибку прогнозирования по одной позиции, а затем рассчитываем общую. Итак, основные ошибки прогнозирования!

MPE — Mean Percent Error

MPE — средняя процентная ошибка прогнозирования. Основная проблема данной ошибки заключается в том, что в нестабильном числовом ряду с большими выбросами любое незначительное колебание факта или прогноза может значительно поменять показатель ошибки и, как следствие, точности прогнозирования. Помимо этого, ошибка является несимметричной: одинаковые отклонения в плюс и в минус по-разному влияют на показатель ошибки.

Ошибка прогнозирования MPE

  1. Для каждой позиции рассчитывается ошибка прогноза (из факта вычитается прогноз) — Error
  2. Для каждой позиции рассчитывается процентная ошибка прогноза (ошибка прогноза делится на фактический показатель) — Percent Error
  3. Находится среднее арифметическое всех процентных ошибок прогноза (процентные ошибки суммируются и делятся на количество) — Mean Percent Error
MAPE — Mean Absolute Percent Error

MAPE — средняя абсолютная процентная ошибка прогнозирования. Основная проблема данной ошибки такая же, как и у MPE — нестабильность.

Ошибка прогнозирования MAPE

  1. Для каждой позиции рассчитывается абсолютная ошибка прогноза (прогноз вычитается из факта по модулю) — Absolute Error
  2. Для каждой позиции рассчитывается абсолютная процентная ошибка прогноза (абсолютная ошибка прогноза делится на фактический показатель) — Absolute Percent Error
  3. Находится среднее арифметическое всех абсолютных процентных ошибок прогноза (абсолютные процентные ошибки суммируются и делятся на количество) — Mean Absolute Percent Error

Вместо среднего арифметического всех абсолютных процентных ошибок прогноза можно использовать медиану числового ряда (MdAPE — Median Absolute Percent Error), она наиболее устойчива к выбросам.

WMAPE / MAD-Mean Ratio / WAPE — Weighted Absolute Percent Error

Ошибка прогнозирования WAPE MAD-Mean Ratio

  1. Для каждой позиции рассчитывается абсолютная ошибка прогноза (прогноз вычитается из факта, по модулю) — Absolute Error
  2. Находится сумма всех фактов по всем позициям (общий фактический объем)
  3. Сумма всех абсолютных ошибок делится на сумму всех фактов — WAPE

Данная ошибка прогнозирования является симметричной и наименее чувствительна к искажениям числового ряда.

Рекомендуется к использованию при расчете точности прогнозирования. Более подробно читать здесь.

RMSE (as %) / nRMSE — Root Mean Square Error

RMSE — среднеквадратичная ошибка прогнозирования. Примерно такая же проблема, как и в MPE и MAPE: так как каждое отклонение возводится в квадрат, любое небольшое отклонение может значительно повлиять на показатель ошибки. Стоит отметить, что существует также ошибка MSE, из которой RMSE как раз и получается путем извлечения корня. Но так как MSE дает расчетные единицы измерения в квадрате, то использовать данную ошибку будет немного неправильно.

Ошибка прогнозирования RMSE

MASE — Mean Absolute Scaled Error

MASE — средняя абсолютная масштабированная ошибка прогнозирования. Согласно Википедии, является очень хорошим вариантом для расчета точности, так как сама ошибка не зависит от масштабов данных и является симметричной: то есть положительные и отрицательные отклонения от факта рассматриваются в равной степени.

Важно! Если предыдущие ошибки прогнозирования мы могли использовать для нахождения точности прогнозирования некого списка номенклатур, где каждой из которых соответствует фактическое и прогнозное значение (как было в примере в начале статьи), то данная ошибка для этого не предназначена: MASE используется для расчета точности прогнозирования одной единственной позиции, основываясь на предыдущих показателях факта и прогноза, и чем больше этих показателей, тем более точно мы сможем рассчитать показатель точности. Вероятно, из-за этого ошибка не получила широкого распространения.

Здесь данная формула представлена исключительно для ознакомления и не рекомендуется к использованию.

Суть формулы заключается в нахождении среднего арифметического всех масштабированных ошибок, что при упрощении даст нам следующую конечную формулу:

Ошибка прогнозирования MASE

Также, хочу отметить, что существует ошибка RMMSE (Root Mean Square Scaled Error — Среднеквадратичная масштабированная ошибка), которая примерно похожа на MASE, с теми же преимуществами и недостатками.

Это основные ошибки прогнозирования, которые могут использоваться для расчета точности прогнозирования. Но не все! Их очень много и, возможно, чуть позже я добавлю еще немного информации о некоторых из них. А примеры расчетов уже описанных ошибок прогнозирования будут выложены через некоторое время, пока что я подготавливаю пример, ожидайте.

Работая с научными публикациями, сталкиваюсь с различными показателями ошибок прогнозирования временных рядов. Среди всех встречающихся оценок ошибки прогнозирования стоит отметить две, которые в настоящее время, являются самыми популярными: MAE и MAPE. Пусть ошибка есть разность:
,
где Z(t) – фактическое значение временного ряда, а – прогнозное.
Тогда формулы для оценок ошибки прогнозирования временных рядов для N отчетов можно записать в следующем виде.

MAPE – средняя абсолютная ошибка в процентах


.

Данная оценка применяется для временных рядов, фактические значения которых значительно больше 1. Например, оценки ошибки прогнозирования энергопотребления почти во всех статьях приводятся как значения MAPE.

Если же фактические значения временного ряда близки к 0, то в знаменателе окажется очень маленькое число, что сделает значение MAPE близким к бесконечности – это не совсем корректно. Например, фактическая цена РСВ = 0.01 руб/МВт.ч, a прогнозная = 10 руб/МВт.ч, тогда MAPE = (0.01 – 10)/0.01 = 999%, хотя в действительности мы не так уж сильно ошиблись, всего на 10 руб/МВт.ч. Для рядов, содержащих значения близкие к нулю, применяют следующую оценку ошибки прогноза.

MAE – средняя абсолютная ошибка


.

Для оценки ошибки прогнозирования цен РСВ и индикатора БР корректнее использовать MAE.

Кроме указанных иногда используют другие оценки ошибки, менее популярные, но также применимые. Подробнее об этих оценках ошибки прогноза читайте указанные статьи в Википедии.

MSE – среднеквадратичная ошибка


.

RMSE – квадратный корень из среднеквадратичной ошибки


.

ME – средняя ошибка


.

SD – стандартное отклонение

Связь точности и ошибки прогнозирования

Точность прогнозирования есть понятие прямо противоположное ошибке прогнозирования. Если ошибка прогнозирования велика, то точность мала и наоборот, если ошибка прогнозирования мала, то точность велика. По сути дела оценка ошибки прогноза MAPE есть обратная величина для точности прогнозирования — зависимость здесь простая.

Точность прогноза в % = 100% – MAPE

Величину точности оценивать не принято, говоря о прогнозировании всегда оценивают, то есть определяют значение именно ошибки прогноза, то есть величину MAPE и/или MAE. Однако нужно понимать, что если MAPE = 5%, то точность прогнозирования = 95%. Говоря о высокой точности, мы всегда говорим о низкой ошибки прогноза и в этой области недопонимания быть не должно. Вы практически не найдете материалов о прогнозировании, в которых приведены оценки именно точности прогноза, хотя с точки зрения здравого маркетинга корректней говорить именно о высокой точности. В рекламных статьях всегда будет написано о высокой точности.

При этом величина MAPE является количественной оценкой именно ошибки, и эта величина нам ясно говорит и о точности прогнозирования, исходя из приведенной выше простой формулы. Таким образом, оценивая ошибку, мы всегда оцениваем точность прогнозирования.

Читайте также: