Радионавигационные системы и комплексы реферат

Обновлено: 02.07.2024

Радионавигация - раздел навигации и аэронавигации, изучающий и разрабатывающий теоретические вопросы и практические приемы вождения судов и летательных аппаратов с помощью радиотехнических средств и устройств.

Основными задачами радионавигации являются определение:

- координат судна или летательного аппарата, а также их взаимного положения; и

- направления выхода в заданные районы (точки) и др.

Для решения задач радионавигации используют радиокомпасы радиодальномеры, радиомаяки и радионавигационные системы.

Радиомаяк аэронавигационной системы VORTAC, Германия

Радиомая́к — передающая радиостанция, излучающая радиосигналы, используемые для определения координат и направления движения различных объектов, в основном, самолётов и судов. Параметры сигнала радиомаяка зависят от направления излучения: например, его интенсивность или момент времени пеленгации.

Радиомаяки относят к угломерным (азимутальным) радионавигационным устройствам, так как они предназначены только для определения направления, а нахождение координат становится возможным после специальных вычислений на основе информации о направлении не менее чем на два радиомаяка.

В качестве радиомаяков также используются объекты, специально не предназначенные для целей радионавигации, но имеющие отличительные параметры радиосигнала (например, частоту) и, возможно, известные постоянные координаты — вещательные радиостанции, радиоакустические маяки, радиобуи, радиолокационные маяки, аварийные радиомаяки.

Классы радиомаяков по методу измерения

Радиомаяки делят на классы, в соответствии с параметром радиосигнала, меняющимся по направлению, и соответствующим методом радиотехнических измерений:

· Амплитудные маяки, направление на которые определяется измерением интенсивности принятого сигнала;

· Фазовые маяки — для определения направления измеряется фаза сигнала;

· Частотные маяки — для определения направления измеряется частота сигнала;

· Временны́е маяки — для определения направления засекается момент приёма сигнала;

наиболее распространены амплитудные радиомаяки.

Виды радиомаяков по назначению

- Курсовые маяки, створные радиомаяки — предназначены для задания курсов в горизонтальной или вертикальной плоскости, используются в курсоглиссадных системах;

- Пеленговые радиомаяки. Предназначены для определения пеленга путём сравнения момента времени приёма сигнала вращающейся диаграммы направленности маяка с моментом времени, когда положение диаграммы направленности известно. Для такого измерения вращение диаграммы направленности должно быть строго синхронизировано, либо маяк должен излучать короткий всенаправленный сигнал при проходе ДН через нулевую отметку;

- Маркерные радиомаяки. Имеют узкую постоянную ДН, ориентированную вертикально вверх, и используются для маркировки пунктов, важных в навигационном отношении (например, контрольных пунктов при заходе самолётов на посадку и при подходе судов к порту, пунктов излома маршрутов или фарватеров и т. д.).

- Приводные радиостанции — радиостанции с ненаправленным излучением и с отличительными для каждой из станций сигналами (позывными). Определение направления возможно только с помощью специального радиопеленгатора.

Дальность и точность

Радиомаяки, работающие в диапазонах длинных волн (километровые и более), имеют дальность действия до 500 км. Они обеспечивают точность пеленгации с борта объекта ~1-3° (по азимуту). Всенаправленные радиомаяки, работающие в диапазонах дециметровых и сантиметровых волн, имеют дальность действия, ограниченную прямой видимостью, и обеспечивают точность определения азимута до 0,1-0,25°.

Спутниковая система навигации — комплексная электронно-техническая система, состоящая из совокупности наземного и космического оборудования, предназначенная для определения местоположения (географических координат и высоты), а также параметров движения (скорости и направления движения и т. д.) для наземных, водных и воздушных объектов.

Основные элементы спутниковой системы навигации:

· Орбитальная группировка, состоящая из нескольких (от 2 до 30) спутников, излучающих специальные радиосигналы;

· Наземная система управления и контроля, включающая блоки измерения текущего положения спутников и передачи на них полученной информации для корректировки информации об орбитах;

· Приёмное клиентское оборудование ("спутниковых навигаторов"), используемое для определения координат;

· Опционально: информационная радиосистема для передачи пользователям поправок, позволяющих значительно повысить точность определения координат.

Принцип работы спутниковых систем навигации основан на измерении расстояния от антенны на объекте (координаты которого необходимо получить) до спутников, положение которых известно с большой точностью. Таблица положений всех спутников называется альманахом, которым должен располагать любой спутниковый приёмник до начала измерений. Обычно приёмник сохраняет альманах в памяти со времени последнего выключения и если он не устарел — мгновенно использует его. Каждый спутник передаёт в своём сигнале весь альманах. Таким образом, зная расстояния до нескольких спутников системы, с помощью обычных геометрических построений, на основе альманаха, можно вычислить положение объекта в пространстве.

Метод измерения расстояния от спутника до антенны приёмника основан на определённости скорости распространения радиоволн. Для осуществления возможности измерения времени распространения радиосигнала каждый спутник навигационной системы излучает сигналы точного времени в составе своего сигнала используя точно синхронизированные с системным временем атомные часы. При работе спутникового приёмника его часы синхронизируются с системным временем и при дальнейшем приёме сигналов вычисляется задержка между временем излучения, содержащимся в самом сигнале, и временем приёма сигнала. Располагая этой информацией, навигационный приёмник вычисляет координаты антенны. Для получения информации о скорости большинство навигационных приёмников используют эффект Доплера. Дополнительно накапливая и обрабатывая эти данные за определённый промежуток времени, становится возможным вычислить такие параметры движения, как скорость (текущую, максимальную, среднюю), пройденный путь и т. д.

В реальности работа системы происходит значительно сложнее. Ниже перечислены некоторые проблемы, требующие специальных технических приёмов по их решению:

· Отсутствие атомных часов в большинстве навигационных приёмников. Этот недостаток обычно устраняется требованием получения информации не менее чем с трёх (2-мерная навигация при известной высоте) или четырёх (3-мерная навигация) спутников; (При наличии сигнала хотя бы с одного спутника можно определить текущее время с хорошей точностью).

· Неоднородность гравитационного поля Земли, влияющая на орбиты спутников;

· Неоднородность атмосферы, из-за которой скорость и направление распространения радиоволн может меняться в определённых пределах;

· Отражения сигналов от наземных объектов, что особенно заметно в городе;

· Невозможность разместить на спутниках передатчики большой мощности, из-за чего приём их сигналов возможен только в прямой видимости на открытом воздухе.

В настоящее время работают или готовятся к развёртыванию следующие системы спутниковой навигации:

Принадлежит министерству обороны США, что считается другими государствами её главным недостатком. Более известна под названием GPS. Единственная полностью работающая спутниковая навигационная система.

Находится на этапе развёртывания спутниковой группировки. Принадлежит министерству обороны России. Обладает, по заявлениям разработчиков, некоторыми техническими преимуществами по сравнению с NAVSTAR, однако в настоящее время эти утверждения проверить невозможно ввиду недостаточности спутниковой группировки и отсутствия доступного клиентского оборудования.

Развёртываемая в настоящее время Китаем подсистема GNSS, предназначенная для использования только в этой стране. Особенность — небольшое количество спутников, находящихся на геостационарной орбите.

Европейская система, находящаяся на этапе создания спутниковой группировки.

Современные технологии спутниковой связи нашли свое применение практически во всех сферах жизни и деятельности человека. Сегодня невозможно представить современный офис или дом без интернета, спутникового телевидения или других, не менее значительных достижений "спутникового века". Спутниковые системы навигации и GPS навигаторы прочно заняли свою нишу среди необходимых в нашей жизни электронных устройств. GPS навигатор и эхолот успешно применяется в судоходстве и рыболовецком промысле, не менее популярны GPS навигаторы и у рыбаков любителей. Сегодня многие автоконцерны в качестве опций оборудования машин предлагают большой выбор GPS навигаторов различного класса. Некоторые автомобили комплектуются GPS навигатором в "базе". GPS приемники нашли свое применение в туристической сфере, сегодня на прилавках магазинов электроники нередко можно увидеть КПК с GPS и оборудованные навигационными системами мобильные телефоны. GPS навигатор за последние несколько лет из профессионального дорогостоящего оборудования превратился в доступный бытовой прибор, а карты GPS можно купить даже в интернете.

Вопреки расхожему мнению о том, что GPS приемник служит только лишь для определения месторасположения объекта на местности и соотносит его координаты с электронной картой, GPS навигаторы выполняют ряд других полезных функций. Среди них - выбор оптимального направления, определение скорости и расстояния до объекта и многое другое. Современные GSM карты позволяют с точностью до метров определить местонахождение того или иного объекта, найти нужный город, дом или улицу. Стоит отметить, что современный GPS навигатор может освоить каждый, кто хотя бы раз сталкивался с компьютером или другой электроникой. В его настройках и пользовании нет ничего сложного, а удобный логический интерфейс сможет освоить даже новичок.

4. Использованные источники

2. [сс2] - Большая советская энциклопедия (БСЭ) Выдержала три издания:

3. 1-е издание, 65 томов и дополнительный том без номера — "СССР", 1926—1947

4. 2-е издание, 49 томов, том № 50 — "СССР", дополнительный том № 51, том № 52 (в двух книгах) "Алфавитный указатель", 1949—1960

5. 3-е издание, 30 томов. Том № 24 в двух книгах (кн. 2: "СССР"), 1969—1978. В 1981 году был выпущен

Элементы общей теории навигации. Радиотехнические методы определения основных навигационных параметров, характеризующих положение и движение объектов. Современные средства радионавигационных измерений, способы применения их для решения задач навигации.

Рубрика Коммуникации, связь, цифровые приборы и радиоэлектроника
Вид курс лекций
Язык русский
Дата добавления 06.08.2015
Размер файла 665,1 K

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Основной задачей навигации является вывод подвижного объекта по оптимальной (наивыгоднейшей для данных условий) траектории в заданную точку или область пространства в заданный момент времени. Решение этой общей задачи подразделяется на ряд частных задач, разнообразных по характеру и методам решения. К частным задачам навигации относят:

выбор и расчет оптимальной траектории движения объекта и временных характеристик движения (при подготовке к полету и в процессе полета с учетом изменения условий полета);

измерение основных навигационных параметров движения объекта, т. е. величин, характеризующих текущие координаты объекта, направление и скорость его перемещения;

сравнение результатов определения навигационных параметров с заданными или расчетными значениями и выработка корректирующих команд (сигналов), обеспечивающих движение объекта, необходимое для решения основной навигационной задачи.

Радиотехнические средства навигации позволяют осуществлять вождение летательных аппаратов и управление воздушным движением в условиях отсутствия видимости Земли и небесной сферы. Радиотехнические средства навигации обладают высокой точностью измерения навигационных параметров и большой дальностью действия, решают комплекс разнообразных навигационных задач.

Наука, изучающая методы создания и применения навигационных средств, использующих эффект и закономерности распространения радиоволн для обеспечения подвижных объектов навигационной информацией, называется радионавигацией.

1. Методы определения местоположения объектов

Цель модуля - описание принципов определения местоположения объектов на основе использования линий положения.

В навигации вообще и в радионавигации в частности задача определения местоположения решается с использованием базовых понятий навигационного параметра и линии положения.

Навигационный параметр (НП) - измеряемая величина, используемая для определения местоположения (МП).

НП - угол, дальность, разность расстояний, сумма расстояний.

Каждому НП соответствует линия положения (ЛП) (поверхность положения) - это геометрическое место точек равных значений НП.

Для определения ЛП при использовании различных методов пеленгации рассмотрим диаграммы определения линии положения:

Угол определяет угловое МП, в этом случае линией положения является прямая линия.

Технически угломерный метод может быть реализован с помощью вращающейся направленной антенной системы.

При использовании дальномерного метода измеряется расстояние до объекта. Антенна используется ненаправленная, но может потребоваться запросно-ответная система.

Линией положения в дальномерном методе является окружность.

Особенностью разностно-дальномерного метода является то, что объекты сами по себе ничего не излучают, а только принимают сигналы, антенны используются ненаправленные, а система может обслуживать неограниченное количество потребителей.

Линией положения в разностно-дальномерном методе является гипербола.

В суммарно-дальномерной системе один навигационный пункт излучает сигнал, объект его переизлучает, после чего сигнал принимается вторым навигационным пунктом.

Линией положения в суммарно-дальномерном методе является эллипс.

Линии положения, соответствующие рассмотренным методам пеленгации приведены в следующей таблице.

Измеряемая величина (НП)

Линия положения, соответствующая измеряемому НП

Местоположение объекта определяется координатами (точкой) пересечения линий (поверхностей) положения с одинаковым значением навигационного параметра. Для решения навигационной задачи, т.е. для нахождения МП, используют навигационные функции, определяющие функциональную связь между навигационными параметрами и МП объекта.

Для определения МП требуется пересечение, по крайней мере, двух ЛП, поэтому методы определения МП характеризуются выбранной парой методов определения ЛП и могут быть представлены соответствующими диаграммами определения МП.

Диаграммы определения местоположения объектов на плоскости.

1. Угломерная система:

2. Дальномерная система

ДРМ - дальномерный радиомаяк.

АРМ - азимутальный радиомаяк.

ВМ - ведомая, ВЩ - ведущая.

По такому принципу работают: Лоран - С, Чайка, РСДН.

5. Суммарно-дальномерная система

Интересной разновидностью дальномерных методов является псевдодальномерный, для пояснения сути которого рассмотрим следующий вспомогательный рисунок.

На данном рисунке - расстояние между объектами и , - скорость света, - неизвестный момент излучения сигнала, - момент приема сигнала, который известен. Проблема неизвестности момента времени может быть решена, если информация об этом моменте кодируется в самом передаваемом сигнале. Но в этом случае из-за неизбежного расхождения часов на величину на объектах и производится измерение не истинной дальности , а псевдодальности

содержащей неизвестную величину , что приводит к ошибке измерения дальности .

На рисунке пунктирной линией показано смещение линии положения на величину . Однако, задача определения МП в данном случае может быть решена при условии использования трех навигационных пунктов, как это показано на следующем рисунке, на котором сплошные линии соответствуют истинным дальностям, а пунктирные линии соответствуют псевдодальностям.

При этом истинное положение объекта находится в середине треугольника, образованного пунктирными линиями псевдодальностей.

Задача. Определить, сколько точек пересечения ЛП на плоскости может быть, если радионавигационная система использует дальномерно-суммарно-дальномерный метод.

Линией положения для дальномерного метода является окружность, а линией положения для суммарно-дальномерного метода является эллипс.

Для определения возможного количества точек пересечения ЛП, следует изобразить на плоскости возможные взаимные положения окружности и эллипса. На приведенных ниже четырех приведены соответствующие положения.

Из представленных рисунков следует, что если радионавигационная система, использует дальномерно-суммарно-дальномерный метод, то линии положения могут пересекаться в одной, двух, трех и четырех точках.

Дидактические тесты рубежного контроля

Тест 1.Какой тип антенны требуется для реализации угломерного метода? Выберите правильный ответ из приведенной ниже таблицы.

Развитие радионавигационных средств на протяжении всейистории их существования неизменно стимулировалось расширением области применения и усложнением задач, возлагавшихся на них, и прежде всего ростом требований к их дальности действия и точности. Если в первые десятилетия радионавигационные системы обслуживали морские корабли и самолеты, то затем состав их потребителей значительно расширился, и в настоящее время охватывает все категории подвижных объектов, принадлежащих различным ведомствам. Если для первых РИС - амплитудных радиомаяков и радиопеленгаторов - была достаточнадальность действия в несколько сотен километров, то затем постепенно требования к дальности возросли до 1. 2.5 тыс. км(для внутриконтинентальной навигации), до 8. 10 тыс. км (длямежконтинентальной навигации) и, наконец, превратились в требования глобального навигационного обеспечения. Что касается точности, то поначалу устраивала точность в несколько километров, затем оказалось возможным реализовать точности в сотни метров и, наконец, с появлением технических возможностей для создания сетевых СРНС удалось удовлетворить требованиям на уровне десятка метров. Но требования продолжают ужесточаться, возникает необходимость в дециметровых и сантиметровых точностях, которые можно обеспечить, совершенствуя сетевые СРНС и применяя в них дифференциальный режим работы.

Наиболее высоким уровнем эффективности использования различных РИС представляется создание единого радионавигационного поля, когда излучения всех источников навигационных сигналов синхронизированы. При этом информация, выделяемая при обработке сигналов любой из излучающих радиостанций, способна в соответствующей степени повысить точность и надежность навигационно-временных определений. Синхронизация излучения всех радионавигационных средств с помощью сигналов системы единого времени (СЕВ) будет способна объединить частные радионавигационные поля в Единое радионавигационное поле, что позволит более гибко предоставлять навигационно-временное обеспечение различным потребителям в необходимых районах.

В СНГ СРНС 2–го поколения получила наименование “Глонасс” (Глобальная навигационная спутниковая система), в США “Навстар” (Navstar–Navigational Satellite Time and Randin – навигационный спутник измерения времени и координат) или по ее фактическому назначению GPS (Global Position Sistem – глобальная система местоопределения). Основные свойства обеих СРНС определяются выбором системы НИСЗ (баллистическим построением), высокой стабильностью бортовых эталонов частоты, выбором сигнала и способов его обработки, а так же действенными способами устранения и компенсации ряда погрешностей.

ГЛОНАСС – глобальная навигационная спутниковая система, предназначенная для определения положения, скорости и точного времени для кораблей, самолетов, наземных объектов и других типов пользователей. Система “Глонасс состоит из трех подсистем: подсистемы космических аппаратов, подсистемы контроля и управления, оборудование пользователей.

Орбитальная группировка ИСЗ состоит из 24 спутников, по восемь в каждой из трех орбитальных плоскостях. Орбитальные плоскости размещаются через каждые 120 градусов по возрастанию абсолютного угла долготы.

Определение пространственных координат и составляющих скорости основывается на дальномерных и доплеровских измерениях. Спутниковые РИС характеризуются высокими требованиями к формированию системной шкалы времени и ее поддержанию (хранению) в течение всего срока существования системы. Необходимость в высокой стабильности временной шкалы возрастает по мере повышения требований к точности навигационных определений, в особенности при использовании пассивного дальномерного метода. Параметры системы и ее отдельных звеньев, а также математическое обеспечение (МО) выбираются так, чтобы точность навигационных определений оценивалась значениями по координатам до 10 м, по скорости до 0,05 м/с.

В бортовой аппаратуре навигационно-временного обеспечения подвижных объектов, создаваемой в виде комплексов соответствующих средства основным радионавигационным каналом явится канал сетевых СРНС, позволяющий определять полный вектор состояния подвижного объекта - три его координаты, три составляющие вектора скорости, поправки к бортовой ШВ и к частоте местного эталонного генератора. Поскольку потребителями ССРНС будут не только подвижные объекты, но и стационарные, нуждающиеся в высокоточном определении их координат и поправок к местной ШВ, речь может идти не только о навигационно-временном обеспечении, но и о более широкой задаче - координатно-временном обеспечении. Применительно к такой постановке вопроса можно также утверждать, что основу координатно-временного обеспечения составит именно применение сетевых спутниковых РИС.

Спутниковой радионавигационной системой (СРНС) принято называть такую РНС, в которой роль опорных радионавигационных точек (РНТ) выполняют ИСЗ, несущие навигационную аппаратуру. Навигационные ИСЗ (НИСЗ) являются аналогом неподвижных РНТ, представляющих собой опорные пункты наземных РНС. Перенос РНТ из наземных точек с фиксированными географическими координатами в точки, совершающие орбитальное движение, привел к существенным изменениям в построении этих РНС. Если наземные РНС содержат в качестве основных своих звеньев только аппаратуру РНТ и потребителей (П), то СРНС включают в себя ряд дополнительных звеньев. Упрощенная структурная схема СРНС включает космодром, систему НИСЗ, аппаратуру П, командно-измерительный комплекс (КИК) и центр управления (ЦУ).

Космодром обеспечивает вывод НИСЗ на требуемые орбиты при первоначальном развертывании СРНС, а также периодическое восполнение числа НИСЗ по мере выработки каждым из них ресурса. Главными объектами космодрома являются техническая позиция и стартовый комплекс. Техническая позиция обеспечивает прием, хранение и сборку ракетоносителей и НИСЗ, их испытания, заправку НИСЗ и их состыковку. В число задач стартового комплекса входят: доставка носителя с НИСЗ на стартовую площадку, установка на пусковую систему, предполетные испытания, заправка носителя, наведение и пуск. Приданные космодрому командно-измерительные средства по телеметрическому и траекторному каналам контролируют работу бортовых систем и траекторию полета на участке вывода на орбиту.

Система НИСЗ представляет собой совокупность источников навигационных сигналов, передающих одновременно значительный объем служебной информации. На НИСЗ, как на КА, размещается разнообразная аппаратура: средства пространственной стабилизации, аппаратура траекторных измерений, телеметрическая система, аппаратура командного и программного управления, системы энергопитания и терморегулирования. С навигационными блоками взаимодействуют бортовой эталон времени и бортовая ЭВМ.

Аппаратура потребителей предназначается для приема сигналов от НИСЗ, измерения навигационных параметров и обработки измерений. Для решения навигационных задач в аппаратуре П предусматривается специализированная ЭВМ.

Командно-измерительный комплекс (именуемый также подсистемой контроля и управления) служит для снабжения НИСЗ служебной информацией, необходимой для проведения навигационных сеансов, а также для контроля за НИСЗ и для управления ими как космическими аппаратами. Для этого с помощью наземных средств КИК выполняется телеметрический контроль за состоянием спутниковых систем и управление их работой, осуществляется определение параметров Движения НИСЗ и управление их движением, проводится сверка и согласование бортовой и наземной шкал времени, а также ведется снабжение П так называемой эфемеридной информацией, т. е. сведениями о текущих координатах сети НИСЗ, информацией о состоянии их бортовых шкал времени, а также рядом поправок.

Координирует функционирование всех элементов СРНС центр управления, который связан информационными и управляющими радиолиниями с космодромом и КИК.


Рисунок 1 Схемы формирования шкал системного времени ССРНС "Глонасс" и "Навстар"

Наиболее высоким уровнем эффективности использования различных РИС представляется создание единого радионавигационного поля, когда излучения всех источников навигационных сигналов синхронизированы. При этом информация, выделяемая при обработке сигналов любой из излучающих радиостанций, способна в соответствующей степени повысить точность и надежность навигационно-временных определений.

Для обоснования использования СРНС для этих целей приведем общую характеристику хранителей временных шкал в этих системах.

Спутниковые РИС характеризуются высокими требованиями к формированию системной шкалы времени и ее поддержанию (хранению) в течение всего срока существования системы. Необходимость в высокой стабильности временной шкалы возрастает по мере повышения требований к точности навигационных определений, в особенности при использовании пассивного дальномерного метода.

Системная шкала времени задается наземным хранителем времени (НХВ). Носителями системного времени на борту НИСЗ являются бортовые хранители времени (БХВ). При этом в системе непосредственно используются бортовые шкалы НИСЗ, поскольку именно их состояние определяет точность измерений РНП, а шкала наземного хранителя выступает как эталонная. Приведение в соответствие шкал БХВ НИСЗ со шкалой НХВ, т. е. синхронизация временных шкал, осуществляется путем проведения операций сверки и коррекции времени с использованием радиоканалов НИСЗ - Земля и Земля - НИСЗ.

Времязадающим элементом в ССРНС является НХВ, который создает шкалу времени (и необходимую сетку синхрочастот) путем деления частоты высокостабильного опорного генератора.

В качестве опорного генератора используются цезиевые или водородные атомные стандарты. Одной из основных характеристик стандартов частоты является относительная нестабильность частоты на некотором определенном интервалевремени

где:f1 и f о - соответственно действительное и номинальное значения частоты.

Для современных атомных стандартов суточная относительная нестабильность частоты(1. 5)x10 -14 и выше. Конечно, для поддержания стольвысокой стабильности необходимо создание сложного аппаратурного комплекса, обеспечивающего функционирование сердцевиныНХВ - атомного стандарта - в условиях постоянной температуры, минимального влияния внешних и внутренних электромагнитных полей, исключения вибраций и т. д.

В БХВ, как и в НХВ, временная шкала формируется высокостабильным опорным генератором. В БХВ используются кварцевые или атомные стандарты частоты. Космические кварцевые стандарты имеют относительную нестабильность (1. 5)x10 -10 ,а атомные до 1 x 10 -11 . 1 x 10 -12 . Возможности дальнейшегоулучшения стабильности кварцевых генераторов практическиисчерпаны, а значения нестабильности частот атомных стандартовмогут быть доведены до 1 x 10 -13 и единиц 10 -14 .

Предположим, что бортовые шкалы времени НИСЗ приведены в строгое соответствие со шкалой НХВ. Далее, с течением времени начнется неизбежное расхождение этих шкал и прежде всего за счет ухода частоты БХВ, поскольку именно они эксплуатируются в наиболее сложных условиях. Наряду с этим при создании космических БХВ сталкиваются с рядом ограничений (весовых, габаритных и энергетических), что не позволяет реализовать инженерно-технические решения, направленные на повышение стабильности.

Стабильность частоты опорного генератора БХВ зависит от многих факторов. Для кварцевых стандартов, например, это - геометрические размеры кварцевой линзы, конструкция держателя кристалла, совершенство электронной схемы, стабильность поддержания теплового режима, параметры окружающего магнитного и электрического полей и т. д. Обычно принимаются меры конструктивного, схемного и технологического характера к тому, чтобы устранить или существенно ослабить влияние дестабилизирующих факторов. Так, в БХВ применяют систему термостатирования, обеспечивающую поддержание рабочей температуры с точностью до сотых долей градуса. Для защиты от воздействия внутренних и внешних электромагнитных полон используется система экранов, ослабляющих их до единиц и долей эрстеда.

При правильном учете особенностей функционирования БХВ в составе аппаратуры НИСЗ можно добиться некоторого ослабления воздействия дестабилизирующих факторов. Для прецизионной аппаратуры, к которой можно отнести и БХВ, требуется создание более благоприятных условий, например поддержание теплового режима вокрестности установки в пределахtp ±10°С, гдеtp - оптимальная температура для работы БХВ. Соответственно налагается ограничение и на градиент температурного поляв месте установки БХВ при изменении внешнего и внутреннеготепловых потоков, действующих на НИСЗ.

Подбором взаимного расположения блоков аппаратуры, а принеобходимости и установкой дополнительных экранов ослабляетсявоздействие наводимых в корпусе НИСЗ электромагнитных полей.При высокой насыщенности радиоэлектронной аппаратурой обеспечение указанных условий работоспособности БХВ на бортуНИСЗ является нелегкой задачей.

Необходимо отметить, что на уход бортовой шкалы временинемалое влияние оказывают и индивидуальные особенности тогоили иного образца БХВ. Это – точность установки номиналачастоты опорного генератора, точность воспроизводимости частоты от включения к включению, шумовые характеристики электронной схемы БХВ и др.

Основные характеристики некоторых типов спутниковых бортовых стандартов частоты приведены в табл.1.

Таким образом важной стороной использования СРНС может является передача сигналов единого времени. Без особых трудностей шкала системы может быть синхронизирована со шкалой системы единого времени (СЕВ). Расхождения шкал, выявляемые в процессе синхронизации, фиксируются как поправка к системному времени. Эта поправка в виде, соответствующего кода вносится в состав кадра навигационного сигнала. Потребители в процессе навигационного сеанса определяют системное время, а учитывая указанную поправку, и время в шкале СЕВ.

Как видно из изложенного ССРНС 2-го поколения могут эффективно решать задачи временной синхронизации удаленных пунктов. Выполняться это может различными способами.

  • Для учеников 1-11 классов и дошкольников
  • Бесплатные сертификаты учителям и участникам

Глобальные навигационные спутниковые системы (ГНСС).

Объяснить, что такое ГНСС.

Объяснить общие принципы работы спутниковой навигации(СН).

Описать действующие СНС- GPS и GLONASS , их составляющих (космический и наземный сегменты) и областей применения.

Рассказать, какие СНС готовятся к запуску или находятся в стадии разработки( GALLILEO , COMPASS ).

Объяснить сбои СНС:

Во время солнечных вспышек.

Во время геомагнитных возмущений.

Рассказать о факторах, влияющих на ухудшение точности позиционирования.

Спутниковая навигация: понятие, система, действие.

hello_html_m6a23568c.jpg

hello_html_m19644972.jpg

Сколько существует человечество, столько и решается вопрос о том, как определить свое местоположение на суше и на море, в лесу или в городе. На сегодняшний день отпала необходимость ориентироваться, как древние путешественники и мореплаватели по звездам или компасу. Эпоха открытия радиоволн существенно упростило задачу навигации и открыло новые перспективы перед человечеством во многих сферах жизни и деятельности, а с открытием возможности покорения космического пространства совершился огромный прорыв в области определения координат местоположения объекта на Земле. Искусственные спутники Земли стали опорными станциями для радионавигации и на сегодняшний день системы спутниковой навигации стали доступны не только военным или морякам, но и простым людям, частным лицам и компаниям, для которых навигация необходима.

Понятие: Спутниковая система навигации

— комплексная электронно-техническая система, состоящая из совокупности наземного и космического оборудования, предназначенная для определения местоположения (географических координат и высоты), а также параметров движения (скорости и направления движения и т. д.) для наземных, водных и воздушных объектов.

Действие: Принцип работы спутниковых систем навигации основан на измерении расстояния от антенны на объекте (координаты которого необходимо получить) до спутников, положение которых известно с большой точностью. Таблица положений всех спутников называется альманахом, которым должен располагать любой спутниковый приёмник до начала измерений. Обычно приёмник сохраняет альманах в памяти со времени последнего выключения и если он не устарел — мгновенно использует его. Каждый спутник передаёт в своём сигнале весь альманах.

Таким образом, зная расстояния до нескольких спутников системы, с помощью обычных геометрических построений, на основе альманаха, можно вычислить положение объекта в пространстве. Метод измерения расстояния от спутника до антенны приёмника основан на определённости скорости распространения радиоволн. Для осуществления возможности измерения времени распространения радиосигнала, каждый спутник навигационной системы излучает сигналы точного времени, в составе своего сигнала используя точно синхронизированные с системным временем атомные часы.

При работе спутникового приёмника его часы синхронизируются с системным временем и при дальнейшем приёме сигналов вычисляется задержка между временем излучения, содержащимся в самом сигнале, и временем приёма сигнала. Располагая этой информацией, навигационный приёмник вычисляет координаты антенны. Для получения информации о скорости большинство навигационных приёмников используют эффект Доплера. Дополнительно накапливая и обрабатывая эти данные за определённый промежуток времени, становится возможным вычислить такие параметры движения, как скорость (текущую, максимальную, среднюю), пройденный путь и т. д. В реальности работа системы происходит значительно сложнее.
Ниже перечислены некоторые проблемы, требующие специальных технических приёмов по их решению: Отсутствие атомных часов в большинстве навигационных приёмников. Этот недостаток обычно устраняется требованием получения информации не менее чем с трёх (2-мерная навигация при известной высоте) или четырёх (3-мерная навигация) спутников; (При наличии сигнала хотя бы с одного спутника можно определить текущее время с хорошей точностью). Неоднородность гравитационного поля Земли, влияющая на орбиты спутников; Неоднородность атмосферы, из-за которой скорость и направление распространения радиоволн может меняться в определённых пределах; Отражения сигналов от наземных объектов, что особенно заметно в городе; Невозможность разместить на спутниках передатчики большой мощности, из-за чего приём их сигналов возможен только в прямой видимости на открытом воздухе.

История и перспективы развития.

Долговременная программа развития космической навигационной системы реализовывается по следующим укрупненным этапам:

Эксперты считают, что главные задачи в нынешний период восстановления и развития ГЛОНАСС это:

- развивать орбитальную группировку до 6 плоскостей с 48 спутниками с целью обеспечения высокоточного позиционирования в условиях закрытой местности (такая программа уже принята США);

- обеспечить радиоэлектронную безопасность и независимость системы;

- А главное - привлечь к работе настоящих специалистов, которые способны доложить всю правду о ГЛОНАСС. ГЛОНАСС является приоритетной из всех космических программ, потому что без нее через несколько лет Россия останется беззащитной. Без ГЛОНАСС асимметричный ответ на американскую ПРО и прочие потенциальные угрозы в принципе невозможен. Поэтому президент так настойчиво требует в максимально короткие сроки возродить ГЛОНАСС.

Принцип работы.
Спутники системы ГЛОНАСС непрерывно излучают навигационные сигналы двух типов: навигационный сигнал стандартной точности (СТ) в диапазоне L1 (1,6 ГГц) и навигационный сигнал высокой точности (ВТ) в диапазонах L1 и L2 (1,2 ГГц). Информация, предоставляемая навигационным сигналом СТ, доступна всем потребителям на постоянной и глобальной основе и обеспечивает, при использовании приёмников ГЛОНАСС, возможность определения:
* горизонтальных координат с точностью 50-70 м (вероятность 99,7%);
* вертикальных координат с точностью 70 м (вероятность 99,7%);
* составляющих вектора скорости с точностью 15 см/с (вероятность 99,7%)
* точного времени с точностью 0,7 мкс (вероятность 99,7%).
Эти точности можно значительно улучшить, если использовать дифференциальный метод навигации и/или дополнительные специальные методы измерений.

Сигнал ВТ предназначен, в основном, для потребителей Министерства обороны России, и его несанкционированное использование не рекомендуется. Вопрос о предоставлении сигнала ВТ гражданским потребителям находится в стадии рассмотрения.

Для определения пространственных координат и точного времени требуется принять и обработать навигационные сигналы не менее чем от 4-х спутников ГЛОНАСС. При приёме навигационных радиосигналов ГЛОНАСС приёмник, используя известные радиотехнические методы, измеряет дальности до видимых спутников и измеряет скорости их движения.
Одновременно с проведением измерений в приёмнике выполняется автоматическая обработка содержащихся в каждом навигационном радиосигнале меток времени и цифровой информации. Цифровая информация описывает положение данного спутника в пространстве и времени (эфемериды) относительно единой для системы шкалы времени и в геоцентрической связанной декартовой системе координат. Кроме того, цифровая информация описывает положение других спутников системы (альманах) в виде кеплеровских элементов их орбит и содержит некоторые другие параметры. Результаты измерений и принятая цифровая информация являются исходными данными для решения навигационной задачи по определению координат и параметров движения. Навигационная задача решается автоматически в вычислительном устройстве приёмника, при этом используется известный метод наименьших квадратов. В результате решения определяются три координаты местоположения потребителя, скорость его движения и осуществляется привязка шкалы времени потребителя к высокоточной шкале Универсального координированного времени (UTC).

ГЛОНАСС сегодня.

Сравнение ГЛОНАСС и GPS.

hello_html_m3fc13c86.jpg

НЕДОСТАКИ GPS-СИСТЕМЫ.
Несмотря на все преимущества, у GPS-систем есть и недостатки. Например, GPS- приемник может быть отключен в любой момент, скажем, из соображений безопасности США. Кроме того, внедрение GPS- технологии подразумевает наличие подробных электронных карт c масштабом до 100 м, которые есть в свободной продаже не в каждой стране. Нельзя не упомянуть то обстоятельство, что при вычислении координат спутниковая система допускает погрешности. Природа этих ошибок различна. Основными источниками ошибок, влияющими на точность навигационных вычислений в GPS-системе, в частности, являются:

-погрешности, обусловленные режимом селективного доступа (Selective availability, S/A). Используя данный режим, Министерство Обороны США намеренно снижает точность определения местонахождения для гражданских лиц. В режиме S/A формируются ошибки искусственного происхождения, вносимые в сигнал на борту GPS-спутников с целью огрубления навигационных измерений. Такими ошибками являются неверные данные об орбите спутника и искажения показаний его часов за счет внесения добавочного псевдослучайного сигнала. Величина среднеквадратического отклонения из-за влияния этого фактора составляет, примерно, 30 м.

-погрешности, связанные с распространением радиоволн в тропосфере. Возникают при прохождении радиоволн через нижние слои атмосферы. Значения погрешностей этого вида при использовании сигналов с С/А- кодом не превышают 30 м.

-эфемеридная погрешность. Ошибки обусловлены расхождением между фактическим положением GPS-спутника и его расчетным положением, которое устанавливается по данным навигационного сигнала, передаваемого с борта спутника. Значение погрешности обычно не боее 3м.

- погрешность ухода шкалы времени спутника вызвана расхождением шкал времени различных спутников. Устраняется с помощью наземных станций слежения или за счет компенсации ухода шкалы времени в дифференциальном режиме определения местоположения.

- погрешность определения расстояния до спутника является статистическим показателем. Он вычисляется для конкретного спутника и заданного интервала времени. Ошибка не коррелированна с другими видами погрешностей. Ее величина обычно не превышает 10 м.

НЕДОСТАТКИ СИСТЕМЫ ГЛОНАСС:

-необходимость сдвига диапазона частот вправо, так как в настоящее время ГЛОНАСС мешает работе как подвижной спутниковой связи, так и радиоастрономии

-при смене эфемерид спутников, погрешности координат в обычном режиме увеличиваются на 25-30м, а в дифференциальном режиме - превышают 10 м;

-при коррекции набежавшей секунды нарушается непрерывность сигнала ГЛОНАСС. Это приводит к большим погрешностям определения координат места потребителя, что недопустимо для гражданской авиации;

-сложность пересчета данных систем ГЛОНАСС и GPS из-за отсутствия официально опубликованной матрицы перехода между используемыми системами координат.

Однако он был сорван из-за разногласий между правительствами стран ЕС и нежелания частных компаний инвестировать в Galileo. Консорциум частных компаний состоял из EADS, Thales, Inmarsat, Alcatel-Lucent, Finmeccanica, AENA, Hispasat и немецкой группы, включающей Deutsche Telekom и German Aerospace Centre.

В мае 2007 года консорциум вышел из проекта, и руководство Galileo взяла на себя Еврокомиссия. Сейчас из 30 планируемых спутников на орбите находится только один, второй планируется вывести на орбиту 27 апреля 2008 года.

На данный момент ЕС потратил на реализацию проекта около 1 млрд евро

Влияние ионосферы на характеристики трансионосферных радиосигналов

Электромагнитные волны, распространяющиеся через ионосферу, испытывают самые разнообразные возмущения. Основной характеристикой ионосферы, определяющей изменение параметров радиоволны, является интегральное (полное) электронное содержание I ( t ) или его производные (по времени и пространству) I ´ t ( t ), I′ x ( t ) и I′ y ( t ) вдоль пути распространения.

Изменения ПЭС можно условно разделить на регулярные и нерегулярные. Регулярные изменения (сезонные, суточные), по крайней мере, для магнитоспокойной среднеширотной ионосферы, описываются моделями, дающими относительные точности прогноза ПЭС до 50 - 80 %. Нерегулярные изменения (вариации) связаны с ионосферными неоднородностями различной природы, спектр которых носит степенной характер.

В результате проведенных в последнее время исследований стало ясно, что возмущения ионосферы во время магнитных бурь сказываются на деградации сигналов и сбоях системы GPS не только на экваторе и в полярной зоне, но даже на средних широтах. Однако вопрос о причинах и конкретных механизмах этого влияния остается в значительной степени открытым.

Основной задачей будущих исследований является изучение физических механизмов многомасштабных вариаций полного электронного содержания в ионосфере во время геомагнитных возмущений околоземного космического пространства, сопровождающихся деградацией сигналов и сбоями спутниковых радиотехнических систем. Эти исследования должны носить комплексный характер с максимальным привлечением ряда независимых экспериментальных средств мониторинга ионосферы (цифровые ионозонды, радары некогерентного рассеяния, ЛЧМ-ионозонды и т.д.).

Каждый полный набор данных включает ионосферную модель, которая используется в приемнике для аппроксимации задержки фазы сигнала при его прохождении через ионосферу при любом расположении спутников и в любой момент времени. Методы измерение дальности до спутника С помощью псевдослучайного кода. Псевдодальность – расстояние между антенной приемника и спутником измеренное с помощью псевдослучайного кода. Как говорилось раньше, эти расстояния необходимы для расчета координат. Процедура определения псевдодальности, может быть описана следующим образом.
Представим, что часы на спутнике и приемнике полностью синхронизированы друг с другом. Когда код PRN передается от спутника, приемник воспроизводит точную копию того же кода. После некоторое время, код переданный спутником будет принят приемником. Сравнивая переданный код и его точную копию, приемник может вычислить время нужное для того чтоб код достиг приемника. Умножение времени путешествия на скоростью света дает нам дальность между спутником и приемником . Измерения расстояния по коду К сожалению, предположение, что приемник и спутниковые часы полностью синхронизированы, не совсем верен. Этот метод вычисления дальности требовал бы очень точной синхронизации часов спутника и приемника. На спутники GPS стоят очень точные атомные часы, очень дорого обеспечить такими часами приемник, так как их цена может достигать 20 000 $.
Проблему синхронизации часов решают, рассматривая ошибку часов приемника как дополнительное неизвестное в навигационных уравнениях.
Расстояния между спутником и приемником - сумма общего количества полных циклов плюс дробный цикл между приемником и спутник, умноженный на длину волны несущей. Дальность, определенная с помощью фазы несущей, имеет намного большую точность чем дальность, полученная с помощью кода.
Есть, однако, одна проблема. Несущая это синусоидальная волна, что означает, что все циклы выглядят одинаково. Поэтому, приемник GPS не может отличить один цикл от другого. Другими словами, приемник, сразу при включении, не может определить общее количество полных циклов между спутником и приемником. Он может определить только дробную часть цикла (с точность не менее 2 мм), в то время как полное число циклов остается неизвестным, или неоднозначным.

К счастью, приемник может отслеживать изменение фазы, будучи включенным. Это означает, что начальная неопределенность решается с течением временем. Определение полного числа циклов несущей (длин волн) между антенной и спутником называется разрешением неоднозначности - поиском целого значения числа длин волн. Для измерений в режиме с постобработкой, который используется для определения местоположения с точностью на уровне сантиметра, это целое значение определяется во время обработки на компьютере. Для измерений в реальном времени, которые используются для определения местоположения с точностью на уровне сантиметра, это целое значение определяется в течение процесса называемого инициализацией.
Пропуск цикла сигнал - это скачок в целое число циклов в фазе несущей при измерении дальности. Пропадание сигнала может быть вызвано преградой между сигналом и спутником. Радиопомехи, ионосферное возмущение, и высокая динамика приемника - все это также может быть причинной пропадания сигнала. Так же проскальзывания цикла может произойти из-за сбоя приемника. Пропуск цикла может длиться в течение любого времени.
Вам необходимо знать координаты вашей базовой станции как можно точнее, так как точность получаемая в результате дифференциальной коррекции напрямую зависит от точности координат базовой станции. Существует два метода выполнения дифференциальной коррекции, в реальном времени и в постобработке

Шебшаевич В. С., Дмитриев П. П., Иванцев Н. В. и др. Сетевые спутниковые радионавигационные системы / Под ред. В. С. Шебшаевича. — 2-е изд., перераб. и доп. — М.: Радио и связь, 1993. — 408 с. — ISBN 5-256-00174-4

ИНТЕРФЕЙСНЫЙ КОНТРОЛЬНЫЙ ДОКУМЕНТ (редакция 5.0). КООРДИНАЦИОННЫЙ НАУЧНО-ИНФОРМАЦИОННЫЙ ЦЕНТР (2002). — официальное техническое описание параметров и сигнала ГЛОНАСС. Проверено 14 декабря 2009.

ИНТЕРФЕЙСНЫЙ КОНТРОЛЬНЫЙ ДОКУМЕНТ (редакция 5.1). РОССИЙСКИЙ НАУЧНО-ИССЛЕДОВАТЕЛЬСКИЙ ИНСТИТУТ КОСМИЧЕСКОГО ПРИБОРОСТРОЕНИЯ (2008). — официальное техническое описание параметров и сигнала ГЛОНАСС. Проверено 14 декабря 2009.

Сущность метода счисления пути основана на непрерывном измерении вектора ускорения или скорости движения объекта, интегрировании этого вектора до получения приращений координат (вектор ускорения интегрируется дважды), которые суммируются с координатами начальной точки маршрута. Исходными данными в методе счисления пути являются координаты начальной точки маршрута. Измерительная информация – информация о параметрах движения центра масс объекта и его движении относительно центра масс. Алгоритм решения навигационной задачи основан на алгоритмах динамики твердого тела.

Содержание

1. Не инерциальные навигационные системы. 3
2. Астрономические навигационные системы. 6
3. Спутниковые навигационные системы. 12
4. Угломерные радиотехнические системы. 17
5. Радиодальномеры 20
6. Разностно-дальномерные системы. 21
7. Обзорно-сравнительные навигационные комплексы. 23
8. Комплексирование навигационных систем 26
9. Схемы комплексирования радионавигационных и автономных систем 28
10. Радионавигационные системы. 30
11. Радиотехнические системы ближней навигации. 33
12. Радиотехнические системы дальней навигации. 35
13. Принцип навигации по геофизическим полям 36
14. Особенности проектирования БВК 38
Список литературы 39

Работа содержит 1 файл

Бортовые вычислительные комплексы навигации и самолетоведения.docx

Министерство образования РФ

Пермский Научно- Исследовательский Политехнический Университет

Задание на самостоятельное изучение на тему:

1. Не инерциальные навигационные системы. 3

2. Астрономические навигационные системы. 6

3. Спутниковые навигационные системы. 12

4. Угломерные радиотехнические системы. 17

5. Радиодальномеры 20

6. Разностно-дальномерные системы. 21

7. Обзорно-сравнительные навигационные комплексы. 23

8. Комплексирование навигационных систем 26

9. Схемы комплексирования радионавигационных и автономных систем 28

10. Радионавигационные системы. 30

11. Радиотехнические системы ближней навигации. 33

12. Радиотехнические системы дальней навигации. 35

13. Принцип навигации по геофизическим полям 36

14. Особенности проектирования БВК 38

Список литературы 39

1. Сущность метода счисления пути основана на непрерывном измерении вектора ускорения или скорости движения объекта, интегрировании этого вектора до получения приращений координат (вектор ускорения интегрируется дважды), которые суммируются с координатами начальной точки маршрута. Исходными данными в методе счисления пути являются координаты начальной точки маршрута. Измерительная информация – информация о параметрах движения центра масс объекта и его движении относительно центра масс. Алгоритм решения навигационной задачи основан на алгоритмах динамики твердого тела.

Системы навигации, реализующие метод счисления пути, в отличие от рассмотренных ранее систем являются автономными системами навигации, так как для них не требуется никакой внешней информации. На борту подвижного агрегата размещается измеритель вектора ускорения (скорости) движения. Измерение вектора предусматривает измерение величины параметра и его направление в заданной системе координат. Практически это означает известную ориентацию входных осей измерителей на протяжении всего периода функционирования системы навигации.

Практическая реализация метода счисления пути требует решения следующих задач:

  • определение исходных данных для системы навигации в начальной точке маршрута;
  • непрерывное измерение во время движения скорости и направления движения объекта;
  • вычисление координат текущего местоположения объекта.

Преимуществом систем счисления пути является их автономность. Этим свойством не обладают системы навигации, реализующие позиционный и обзорно- сравнительный методы навигации. Основной недостаток систем счисления пути – нарастание погрешностей в определении координат пропорционально пройденному агрегатом пути. Это обусловлено тем, что координаты каждой последующей точки определяются от координат предыдущей точки. В этом случае к погрешностям из-за ошибок в измерении текущих параметров движения добавляются погрешности в определении координат предыдущей точки.

1.2 Принцип построения неинерциальных автономных наземных навигационных систем

1.2.1 Математические модели неинерциальных наземных навигационных систем

Выше был рассмотрен принцип действия систем счисления пути на примере простейшего прямолинейного движения. Рассмотрим далее общий случай - систему на произвольном маршруте, приведенном в прямоугольной системе координат на рисунок 1.1.

Рисунок 1.1 - К выводу уравнений неинерциальной навигации

Разобьем весь маршрут произвольной конфигурации на прямолинейные отрезки 0 - 1; 1 - 2; 2 - 3; … i - i + 1; …n - 1 - n. Обозначим длину (горизонтальная составляющая) каждого отрезка как , а дирекционные углы направлений с начальной точки каждого отрезка на конечную как . Координаты точек перегиба обозначены как . Согласно принципу счисления пути, в котором координаты последующей точки определяются через координаты предыдущей точки и приращения координат между ними

Полученные уравнения показывают, что реализация метода счисления пути предполагает, что перед началом движения определяются начальные данные, а во время движения измеряются пройденный агрегатом путь и курс движения. Технически реализовать указанные задачи не представляет особых трудностей за исключением измерения на подвижном агрегате текущего значения курса движения. Существующие компасы (магнитные и гироскопические) обладают рядом особенностей, которые требуют применения специальных технических и алгоритмических мер по устранению погрешностей курсоуказания, вызванных различного рода девиациями (магнитными, скоростными, баллистическими и т.п.). Наиболее полно эти проблемы решены в морской навигации, в том числе и за счет увеличения массогабаритных характеристик измерителей.

Более простой способ решения указанной проблемы основан на отказе от измерения во время движения непосредственно курса (азимута или дирекционного угла), и измерения только углов поворота агрегата – приращений курса по отношению к его первоначальному значению. В данном способе отпадает необходимость определять во время движения направление на Север, что и составляет основу рассмотренной технической проблемы. Полный курс движения агрегата применительно к значениям дирекционных углов определяется

где - значение дирекционного продольной оси агрегата, указывающей направление движения, перед маршем (начальное значение дирекционного угла);

- текущее значение приращения дирекционного угла продольной оси движущегося агрегата по отношению к начальному значению.

Тогда основные уравнения неинерциальной навигации принимают вид

Полученные уравнения – дискретные уравнения, которые не обладают полной универсальностью. Приведем их к аналоговому виду. При этом вспомним, что величина пути DS – это горизонтальная составляющая пути. Для перехода к реальному пути DSр, пройденному по поверхности Земли, необходимо составить уравнение проекции с учетом угла уклона дороги

Увеличивая количество отрезков, и устремляя их число к бесконечности, что приводит к уменьшению отрезков пройденного пути до бесконечно малых величин, и, определяя данные отрезки пути через скорость агрегата V и малые интервалы времени dt

получаем аналоговое выражение, где операция суммирования заменяется операцией интегрирования

Последние выражения определяют решение навигационной задачи в аналитическом виде.

1.2.2 Функциональный состав неинерциальных наземных навигационных систем

Анализ основных уравнений неинерциальной навигации показывает, что их техническая реализация предполагает решение следующих задач:

  • определение перед началом движения начальных данных для системы навигации: координат начальной точки маршрута и дирекционного угла продольной оси агрегата , находящегося на начальной точке;
  • измерение во время движения текущих значений приращений дирекционного угла продольной оси агрегата по отношению к начальному значению;
  • измерение во время движения пройденного агрегатом горизонтальной составляющей пути или скорости движения ;
  • вычисление текущих значений координат и других навигационных параметров, а также наглядное отображение местоположения движущегося агрегата.

Для технического решения каждой из названных задач введем соответствующую группу приборов. Функционально неинерциальная система навигации счисления пути должна содержать следующие группы приборов:

  • приборы начального ориентирования (ПНО);
  • приборы курсовой системы (КС);
  • приборы путевой системы (ПС);
  • приборы обработки и отображения навигационной информации (ПООНИ).

Обобщенная функциональная схема системы навигации счисления пути представлена на рисунок 1.2.

Рисунок 1.2 - Обобщенный функциональный состав неинерциальных систем навигации счисления пути

В состав неинерциальной системы навигации счисления пути принципиально входят четыре группы приборов, из которых три являются измерительными системами (ПНО, КС, ПС) и одна - вычислительной системой (ПООНИ).

ПНО предназначены для начального ориентирования систем навигации, то есть для определения перед началом движения и передачи в приборы обработки и отображения навигационной информации начальных данных.

КС предназначена для измерения во время движения изменений курса движения агрегата – приращений дирекционного угла продольной оси агрегата по отношению к начальному значению.

ПС предназначена для измерения во время движения горизонтальной составляющей пройденного агрегатом пути.

ПООНИ предназначены для вычисления по представленной измерительной информации координат текущего местоположения агрегата и наглядного отображения на специальном терминальном устройстве его положения на местности. Дополнительно ПООНИ могут предоставлять информацию и о других навигационных параметрах (величина пройденного пути, текущее значение курса движения, углы продольного и поперечного наклонов агрегата и др.).

Еще раз подчеркнем, что здесь представлен принципиально необходимый состав систем навигации, реализующих метод счисления пути. В конкретных системах представленные группы приборов могут быть построены по различным принципам, иметь отличия в решаемых задачах и функциях, отличаться по названиям. Приборный состав конкретных групп приборов будет рассмотрен в дальнейшем.

Астрономические методы навигации основаны на определении положения известных небесных светил относительно выбранной системы координат. Эти методы реализуются при помощи астрономических оптических и оптико-электронных навигационных приборов. Для астронавигационных приборов характерны автономность измерения, ограничиваемая только видимостью небесных светил (в приземной области), и высокая точность определения координат места, не зависящая от длительности, дальности, высоты и скорости движения. Поскольку основная задача навигации заключается в проведении объекта по заданной траектории в заданное время, учет хода времени является обязательной составной частью навигационных измерений.

Положение светил на небе определяется аналогично тому, как определяется положение точки на земной поверхности, – долготой и широтой. Вводится вспомогательная небесная сфера с центром в центре Земли, и все светила проецируются на нее. Принимается, что все светила расположены на этой сфере, вращающейся вокруг Земли. Небесный экватор рассматривается как проекция земного экватора на небесную сферу, и точно так же получаются Северный и Южный полюсы мира – как проекции земных полюсов.

Широта на небесной сфере называется склонением и может быть северной или южной относительно экватора, как и на Земле. Небесная долгота выражается звездным часовым углом (ЗЧУ), гринвичским часовым углом (ГЧУ) или местным часовым углом (МЧУ) светила

Небесные часовые углы

Небесный меридиан, проходящий через точку весеннего равноденствия, называемую также первой точкой Овна ( ), считается нулевым. ЗЧУ светила отсчитывается к западу от нулевого небесного меридиана в пределах от 0 до 360° и указывается в угловых градусах.

Поскольку небесная сфера равномерно вращается вокруг Земли с востока на запад, всякая задача астронавигации требует соотнесения часового угла наблюдаемого светила с нулевым, т.е. гринвичским, меридианом на Земле. Угол между гринвичским меридианом и светилом называется гринвичским часовым углом светила. ГЧУ тоже измеряется к западу от 0 до 360°.

Местный часовой угол (МЧУ) светила есть угол между небесным меридианом наблюдателя и положением светила. МЧУ всегда измеряется в градусах к западу от меридиана наблюдателя. Чтобы найти МЧУ светила, нужно из его ГЧУ вычесть гринвичский угол наблюдателя. Если результат оказывается отрицательным, то нужно абсолютную величину этого результата вычесть из 360°. Следует учитывать, что долгота на Земле измеряется также к востоку от гринвичского меридиана до 180°.

Приборы.

Географические координаты места объекта можно определить, измерив высоты двух светил над горизонтом. Вычисления координат могут осуществляться оператором или автоматическими астронавигационными системами. Высота же светила измеряется секстантом. Авиационные секстанты снабжаются искусственным горизонтом в виде жидкостного уровня (или гироскопа). После определения по шкале секстанта высоты светила над горизонтом вносятся небольшие поправки на погрешность градуировки прибора и на параллакс – отклоняющее действие земной атмосферы на проходящий сквозь нее свет. В авиационных секстантах предусматриваются автоматическая регистрация показания по завершении визирования, а также усреднение показаний в процессе быстрого многократного визирования. Космические секстанты на один-два порядка величины точнее морских и авиационных.

Читайте также: