Радиоканалы утечки информации реферат

Обновлено: 05.07.2024

В радиоэлектронной линии передачи носителем данных есть электромагнитное поле с определенными частотами колебаний и электрического тока. Часота колебаний может быть до 10 ГГц. Такой канал утечки, как радиоэлектронный, относят к самым информативным линиям утечки в силу его особенностей:

  • Большая вероятность правдивой информации которая перехватывается. Вероятность повышается при перехвате в функциональных линиях связи (исключая дезинформацию).
  • Независимость такого канала от времени а так же погодных условий при перехвате данных.
  • Такой канал разрешает оперативно перехватывать данные в плоть до реального масштаба времени.
  • Возможно перехватывать большие объемы данных.
  • При этом перехват по таким каналам есть скрытая, даже от радиотеплового наблюдения.

Радиоэлектронная линия утечки разрешает перехватывать электрические сигналы, радиотепловые и радиолокационные. В качестве таких рамок добывается семантические данные, такие как сигнальные и видовые демаскирующие характеристики. Структура радиоэлектронной линии утечки данных показана на рис.1.

структура радиоэлектронного канала утечки

В таких каналах утечки возможны следующие источники сигналов:

  • источники опасных сигналов
  • передатчики функциональных линий связи
  • объекты, которые излучают личные радиоволны в радиодиапазоне
  • объекты, которые отражают магнитные волны в радиодиапазоне

Средой для распространения радиоэлектронного канала утечки данных есть атмосфера. Также возможно и безвоздушное пространство, это электрические провода разных видов. В атмосфере носителем есть электромагнитное поле. В проводах это же электрический ток. Приемник же реализует выделение носителя информации на определенной частоте, усиливает слабый сигнал и реализует демодуляцию информации. Различают два методы перехвата по таким каналам утечки данных. Первый метод подразумевает перехват данных по функциональному каналу связи. В этом случае приемник сигнала настраивается на характеристики сигнала в таком канале, или же подключается к проводам определенного канала.

Второй метод перехвата подразумевает собственный список элементов — передатчик сигналов, среда и приемник. Передатчик в такой линии утечки данных создается случайно или устанавливается в помещении. Для передачи используют опасные сигналы. Особенностью такого метода это использование сигналы малых амплитудных характеристик. Такой сигнал не превышает десятки мВт. Добывание данных таким способом ограничено десятками метров. Возможна установка ретранслятора.

В радиоэлектронном канале передача носителем информации является электрический ток и электромагнитное поле с частотами колебаний от звукового диапазона до десятков ГГц.

1. Радиоэлектронный канал относится к наиболее информативным каналам утечки в силу следующих его особенностей:

· независимость функционирования канала от времени суток и года, существенно меньшая зависимость его параметров по сравнению с другими каналами от метеоусловий;

· высокая достоверность добываемой информации, особенно при перехвате ее в функциональных каналах связи (за исключением случаев дезинформации);

· большой объем добываемой информации;

· оперативность получения информации вплоть до реального масштаба времени;

· скрытность перехвата сигналов и радиотеплового наблюдения.

В радиоэлектронном канале производится перехват радио и электрических сигналов, радиолокационное и радиотепловое наблюдение. Следовательно, в рамках этого канала утечки добывается семантическая информация, видовые и сигнальные демаскирующие признаки. Радиоэлектронные каналы утечки информации используют радио, радиотехническая, радиолокационная и радиотепловая разведка.

2. Структура радиоэлектронного канала утечки информации в общем случае включает (см. рис. 1) источник сигнала или передатчик, среду распространения электрического тока или электромагнитной волны и приемник сигнала.


Рис. 1. Структура радиоэлектронного канала утечки информации.

В радиоэлектронных каналах утечки информации источники сигналов могут быть четырех видов:

- передатчики функциональных каналов связи;

- источники опасных сигналов;

- объекты, отражающие электромагнитные волны в радиодиапазоне;

- объекты, излучающие собственные (тепловые) радиоволны.

Средой распространения радиоэлектронного канала утечки информации являются атмосфера, безвоздушное пространство и направляющие - электрические провода различных типов и волноводы. Носитель в виде электрического тока распространяется по проводам, а электромагнитное поле - в атмосфере, в безвоздушном пространстве или по направляющим - волноводам. В приемнике производится выделение (селекция) носителя с интересующей получателя информацией по частоте, усиление выделенного слабого сигнала и съем с него информации - демодуляция.

При перехвате сигналов функциональных каналов связи передатчики этих каналов являются одновременно источниками радиоэлектронных каналов утечки информации. В общем случае направления распространения электромагнитной волны от передатчика к санкционированному получателю и злоумышленнику отличаются. В функциональных каналах связи максимум излучения энергии электромагнитной волны ориентируют в направлении расположения приемника санкционированного получателя. Поэтому мощность источника сигналов радиоэлектронного канала утечки информации, как правило, существенно меньше мощности излучения в функциональном канале связи.

3. Виды утечки информации

В зависимости от способа перехвата информации различают два вида радиоэлектронного канала утечки информации.

В канале утечки 1‑го вида производится перехват информации, передаваемой по функциональному каналу связи. С этой целью приемник сигнала канала утечки информации настраивается на параметры сигнала функционального радиоканала или подключается (контактно или дистанционно) к проводам соответствующего функционального канала. Такой канал утечки информации имеет общий с функциональным каналом источник сигналов - передатчик. Так как места расположения приемников функционального канала и канала утечки информации в общем случае не совпадают, то среды распространения сигналов в них от общего передатчика различные или совпадают, например, до места подключения приемника злоумышленника к проводам телефонной сети.

Радиоэлектронный канал утечки 2‑го вида имеет собственный набор элементов: передатчик сигналов, среду распространения и приемник сигналов. Передатчик этого канала утечки информации образуется случайно (без участия источника или получателя информации) или специально устанавливается в помещении злоумышленником. В качестве такого передатчика применяются источники опасных сигналов и закладные устройства. Опасные сигналы, как отмечалось ранее, возникают на базе акустоэлектрических преобразователей, побочных низкочастотных и высокочастотных полей, паразитных связей и наводок в проводах и элементах радиосредств. Опасные сигналы создаются в результате конструктивных недоработок при разработке радиоэлектронного средства, объективных физических процессов в их элементах, изменениях параметров в них из-за старения или нарушений правил эксплуатации, не учете полей вокруг средств или токонесущих проводов при их прокладке в здании и т. д.

Вариантов условий для возникновения опасных сигналов очень много. Например, в усилительных каскадах любого радиоэлектронного средства (радиоприемника, телевизора, радиотелефона и др.) могут возникнуть условия для генерации сигналов на частотах вне звукового диапазона, которые модулируются электрическими сигналами акустоэлектрических преобразователей. Функции акустоэлектрических преобразователей могут выполнять элементы (катушки индуктивности, конденсаторы) генераторов, являющихся функциональными устройствами.

Особенностью передатчиков этого канала является малые амплитуда электрических сигналов - единицы и доли мВ, и мощность радиосигналов, не превышающая десятки мВт (для радиозакладок). В результате этого протяженность таких каналов невелика и составляет десятки и сотни метров. Поэтому для добывания информации с использованием такого канала утечки информации приемник необходимо приблизить к источнику на величину длины канала утечки или установить ретранслятор. Среда распространения и приемники этого вида каналов не отличаются от среды и приемников каналов 1‑го вида.

В общем случае направляющие линии связи создаются для передачи сигналов в заданном направлении с должным качеством и надежностью. Способы и средства передачи электрических сигналов по проводам рассматриваются прикладной области радиотехники, называемой проводной связью.

Различают воздушные и кабельные проводные линии связи . Воздушные линии связи относятся к симметричным цепям, отличительной особенностью которых является наличие двух проводников с одинаковыми электрическими свойствами.

В зависимости от типа несущих конструкций они делятся на столбовые и стоечные. Столбовыми называются линии, несущими конструкциями являются деревянные или железобетонные опоры. Опорами столбовых линий служат металлические стойки, установленные, например, на крышах зданий. Для изоляции проводов воздушных линий друг от друга и относительно земли их укрепляют на фарфоровых изоляторах.

Более широко применяются кабельные линии связи. Кабельные линии связи получили доминирующее развитие при организации объектовой, городской и междугородной телефонной связи. Они составляют 65% телефонных линий России. Кабели бывают симметричными и коаксиальными.

Если обе жилы цепи, образованного кабелем, выполнены из проволоки одинакового диаметра, имеют изоляцию одинаковой конструкции и расположены так, что между ними можно провести плоскость симметрии, то кабель называется симметричным. Если же оба проводника цепи выполнены в форме соосных цилиндров, в поперечном сечении имеют форму концентрических окружностей, то такой кабель - коаксиальный.

Симметричные кабели представляют собой проводники (жилы) с нанесенными на них одним или несколькими слоями изолятора из диэлектрических материалов. Несколько жил, объединенных единым изолятором в виде ленты, образуют ленточные кабели или полосковые линии. Известные конструкции симметричных кабелей содержат от 1х2 до 2400х2 жил под общей защитной оболочкой.

В коаксиальном кабеле один проводник концентрически расположен внутри другого проводника, имеющего форму полого цилиндра. Внутренний проводник изолируется от внешнего с помощью различных изоляционных материалов и конструкций. Для изоляции коаксиальных пар кабеля применяется сплошной и пористый полиэтилен, изоляция в виде шайб, в последовательно соединенных баллончиков, напоминающий разрез бамбука и др. Для обеспечения гибкости кабеля внешний проводник выполняется из медной или железной сетки, а для защиты от внешних воздействий он покрывается слоем изолятора (полихлорвинила).

Основными параметрами проводных линий связи являются ширина пропускаемого ими спектра частот и собственное затухания Zc = 10 lgPвх / Pвых , где Pвх и Pвых - мощность сигнала на входе и выходе цепи соответственно.


Если сопротивление проводников на низких частотах (в диапазоне 0-100 кГц) определяется удельным сопротивлением материала и площадью поперечного сечения проводника, то на более высоких частотах начинается сказываться влияние поверхностного эффекта. Сущность его заключается в том, что переменное магнитное поле, возникающее при протекании по проводнику тока, создает внутри проводника вихревые токи, В результате этого плотность основного тока перераспределяется по сечению проводника (жилы): уменьшается в центре и возрастает на периферии. Глубина проникновения (в мм) тока в медную жилу q=67/, где f-частота колебаний в Гц. На частоте f=60 кГц глубина проникновения составляет приблизительно 0.3 мм, а на частоте 250 кГц - на порядок ниже, всего около 0.03 мм. Следовательно, ток с этой частотой распространяется по гипотетической тонкой медной трубке с существенно меньшей площадью сечения и, соответственно, большим сопротивлением.

На величину затухания линии влияют также электрические характеристики диэлектрика, наносимого на металлические провода. За счет их удается расширить полосу пропускания линии. При передаче по воздушным линиям со стальными проводами ширина пропускания составляет около 25 кГц, с медными проводами - до 150 кГц, по симметричным кабелям - до 600 кГц, Расширению спектра частот, передаваемых по симметричным цепям, препятствуют возрастающие наводки. Например, удовлетворительным для телефонных линий считается значение переходного затухание порядка 60-70 дБ.

В коаксиальном кабеле электрическое поле замыкается между внутренним и внешним проводниками, поэтому внешнее электрическое поле отсутствует. Кабель не имеет также внешнего магнитного и электромагнитного полей, что и обусловливает его основные преимущества перед симметричными. Вследствие поверхностного эффекта ток при повышении частоты оттесняется во внутреннем проводнике к его наружной поверхности, а во внешнем, наоборот, к внутренней. Стандартная коаксиальная пара 1.2/4.4 (с диаметрами внутреннего и внешнего проводников - 1.2 и 4.4. мм соответственно) обеспечивают передачу 900-960 телефонных каналов на расстояние до 9 км или 3600 каналов на расстояние 1.5км. При увеличении диаметров проводников до 2.6/9/5 число телефонных каналов для длины участка 1.5 км возрастает до 10800.Ширина частотного диапазона такого кабеля достигает 60 МГц. Повышение частотного диапазона потребует дальнейшего увеличения диаметров проводников коаксиального кабеля.

Электромагнитная волна представляет форму существования электромагнитного поля в виде изменяющихся во времени по синусоидальному закону значений напряженности электрического и магнитного полей.

Электромагнитная волна как носитель информации в радиоэлектронном канале утечки возникает при протекании по проводам электрического тока переменной частоты и распространяются от источника ненаправленного излучения радиально во все стороны с конечной скоростью, в атмосфере несколько меньшей скорости света. Векторы напряженности электрического и магнитного полей взаимноперпендикулярны и перпендикулярны направлению распространения электромагнитной волны. Электромагнитная волна характеризуется частотой колебания, мощностью и поляризацией. По частоте электромагнитные волны классифицируются в соответствии с Регламентом радиосвязи, утвержденным на Всемирной административной конференции в Женеве в 1979 г. (табл. 1).

Delphi site: daily Delphi-news, documentation, articles, review, interview, computer humor.

В радиоэлектронном канале передачи носителем информации является электрический ток и электромагнитное поле с частотами колебаний от звукового диапазона до десятков ГГц.

Радиоэлектронный канал относится к наиболее информативным каналам утечки в силу следующих его особенностей:

• независимости функционирования канала от времени суток и года, существенно меньшая зависимость его параметров по сравнению с другими каналами от метеоусловий;

• высокой достоверности добываемой информации, особенно при перехвате ее в функциональных каналах связи (за исключением случаев дезинформации);

• большого объема добываемой информации;

• оперативности получения информации вплоть до реального масштаба времени;

• скрытности перехвата сигналов и радиотеплового наблюдения.

В радиоэлектронном канале производится перехват радио- и электрических сигналов, а также радиолокационное и радиотеп-лолокационное наблюдение. Следовательно, в рамках этого канала утечки добывается семантическая информация, видовые и сигнальные демаскирующие признаки. Радиоэлектронные каналы утечки информации используют радио-, радиотехническая, радиолокационная и радиотепловая разведка.

Структура радиоэлектронного канала утечки информации в общем случае включает источник сигнала или передатчик, среду распространения электрического тока или электромагнитной волны и приемник сигнала (рис. 6.11).


Рис. 6.11. Структура радиоэлектронного канала утечки информации

В радиоэлектронных каналах утечки информации источники сигналов могут быть:

• передающие устройства функциональных каналов связи;

• источники побочных электромагнитных излучений и наводок (ПЭМИН);

• объекты, отражающие электромагнитные волны в радиодиапазоне;

ч объекты, излучающие собственные (тепловые) электромагнитные волны в радиодиапазоне.

Радиоэлектронные каналы в зависимости от вида источников сигналов можно разделить на каналы 1 и 2-го вида. В каналах утечки первого вида производится перехват информации, передаваемой по функциональному каналу связи (рис. 6.12). С этой целью приемник сигнала канала утечки информации настраивается на параметры сигнала или подключается (контактно или дистанционно) к проводам соответствующего канала связи. Такой канал утечки имеет общий с функциональным каналом связи источник сигналов - передатчик и часть среды радиоканала или проводного функционального канала до точки подключения средства съе ма. Эта особенность иллюстрируется стрелкой распространения носителя (электрического тока) из среды распространения функционального канала связи в среду распространения канала утечки информации на рис. 6.12.


Рис. 6.12. Структура радиоэлектронного канала утечки информации 1-го вида

Радиоэлектронный канал утечки 2-го вида имеет собственный набор элементов: передатчик сигналов, среду распространения и приемник сигналов (рис. 6.13).

Передатчик сигналов этого канала утечки информации образуется случайно (без участия источника или получателя информации) или специально устанавливается в помещении злоумышленником. Такими передатчиками могут быть случайные источники опасных сигналов и закладные устройства. Опасные сигналы, как отмечалось ранее, возникают в результате акустоэлектрических преобразований, побочных низкочастотных и высокочастотных полей, паразитных связей и наводок в проводах и элементах радиосредств. Предпосылки для них создаются в результате инструктивных недоработок при разработке радиоэлектронного средства, объективных физических процессов в их элементах, изменениях параметров в них из-за старения или нарушений правил эксплуатации, неучете полей вокруг средств или токонесущих проводов при их прокладке в здании и т. д.


Рис. 6.13. Структура радиоэлектронного канала утечки информации 2-го вида

Особенностями передатчиков канала 2-го вида являются малые уровни электрических сигналов - единицы и доли мВ и мощность радиосигналов, не превышающая десятки мВт (для радиозакладок). В результате этого протяженность таких каналов невелика и составляет десятки и сотни метров. Поэтому для добывания информации с использованием такого канала утечки приемник необходимо приблизить к источнику на величину длины канала утечки или установить ретранслятор.

Средой распространения сигналов радиоэлектронного канала утечки информации являются атмосфера, безвоздушное пространство (для канала 1-го вида) и направляющие - электрические провода различных типов и волноводы. Носитель в виде электрического тока распространяется по проводам, а электромагнитное доле - в атмосфере, в безвоздушном пространстве или по направляющим - волноводам. В приемнике производится выделение (селекция) носителя с интересующей получателя информацией по частоте, усиление выделенного слабого сигнала и съем с него информации - демодуляция.

6.7.2. Распространение опасных электрических и радиосигналов в радиоэлектронном канале утечки информации

Среда распространения радиоэлектронных каналов утеч! существенно различается для электрических и радиосигнало Электрические сигналы как носители информации могут быть ан логовыми или дискретными, их спектр может содержать частот от десятков Гц до десятков ГГц. Электрические сигналы распрс страняются по направляющим линиям связи, связывающим ис точники и приемники сигналов как внутри организации, так внут ри населенного пункта, города, страны, земного шара в целом Способы и средства передачи электрических сигналов по прово дам рассматриваются теорией и техникой проводной связи.


Рис. 6.14. Классификация направляющих линий связи

Направляющие металлические линии включают воздушные и кабельные проводные линии связи и волноводы.

Воздушные линии связи образуют провода, натянутые в воздушном пространстве между опорами. В зависимости от типа несущих конструкций они делятся на столбовые и стоечные. Столбовыми называются линии, несущими конструкциями которых являются деревянные или железобетонные опоры. Опорами столбовых линий служат металлические стойки, установленные, например, на крышах зданий. Для изоляции проводов воздушных линий друг от друга и относительно земли их укрепляют на фарфоровых изоляторах. Воздушные линии имеют малый частотный диапазон и подвержены воздействию климатических факторов, например обледенению.

Более широко применяются кабельные линии связи. Кабельные линии связи получили доминирующее развитие при организации объектовой, городской и междугородной телефонной связи. Они составляют более 50% телефонных линий России. Наиболее распространены кабели на витой паре и коаксиальные кабели.

Коаксиальный кабель на высоких частотах имеет лучшие электрические характеристики, чем витая пара. В нем практически отсутствуют перекрестные помехи и намного меньше затухание.

Несколько жил, объединенных единым изолятором в виде ленты, образуют ленточные кабели или полосковые линии.

На величину затухания линии влияют также электрические характеристики диэлектрика, наносимого на металлические прово да. За счет их удается расширить полосу пропускания линии. При передаче по воздушным линиям со стальными проводами ширина пропускания составляет около 25 кГц, с медными проводами - до 150 кГц, по симметричным кабелям - до 600 кГц. Расширению спектра частот, передаваемых по симметричным цепям, препятствуют возрастающие наводки. Например, удовлетворительным для телефонных линий считается значение переходного затухания порядка 60-70 дБ.

Металлические волноводы представляют собой трубы прямоугольного или круглого сечения, внутри которых может распространяться электромагнитное поле от излучателя, установленного в торце одной из сторон волновода. Волноводы применяются для передачи электромагнитного поля с длиной волны короче 10-15 см. Отражаясь от внутренней поверхности волновода, электромагнитное поле концентрируется в волноводе и при движении повторяет его изгибы. С целью уменьшения затухания электромагнитного поля внутренние стенки волновода покрывают тонким слоем серебра. Кроме медных и алюминиевых находят применение волноводы из пластических масс с металлизированными изнутри стенками.

Другие типы направляющих линий, указанные на рис. 6.14, представляют собой разновидности волноводных линий с иными физическими процессами. В металло-диэлектрических линиях связи электромагнитное поле распространяется в виде поверхностной волны вдоль металлической ленты или цилиндрического провода с ребристой поверхностью. Энергия электромагнитного поля концентрируется в пространстве, окружающем такой волновод, затухая по мере удаления от него. Недостатком такого волновода является паразитное излучение в эфир электромагнитного поля.

Для передачи сантиметровых и миллиметровых волн могут служить диэлектрические волноводы, в которых поверхностью раздела, направляющей волну, служит внутренняя поверхность диэлектрического стержня волновода. Диэлектрические волноводы чувствительны к внешним воздействиям и создают дополнительные потери, связанные с просачиванием энергии за пределы волновода, что затрудняет их практическое применение.

Основным носителем информации в радиоэлектронном канале является электромагнитное поле.

Электромагнитное поле представляет форму движения материи в виде взаимосвязанных колебаний электрического и магнитного полей. Электромагнитное поле возникает при протекании по проводам источника радиосигнала электрического тока переменной частоты и распространяется с конечной скоростью в окружающем пространстве. Векторы напряженности электрического и магнитного полей взаимно перпендикулярны и перпендикулярны направлению распространения электромагнитной волны. Электромагнитная волна характеризуется частотой колебания, мощностью и поляризацией. По частоте электромагнитные волны классифицируются в соответствии с Регламентом радиосвязи, утвержденным на Всемирной административной конференции в Женеве в 1979 г. (табл. 6.10).

В современных условиях насыщенности нашей жизни самыми разнообразными техническими, особенно электронными, средствами производственной и трудовой деятельности, различными средствами связи, разного рода вспомогательными системами (телевидение, радиовещание) крайне необходимо понимать опасность возникновения канала утечки информации с ограниченным доступом именно через технические средства ее обработки. Более того, технические средства относятся едва ли не к наиболее опасным и широко распространенным каналам утечки информации.

Анализ физической природы многочисленных преобразователей и излучателей показывает, что:

• источниками опасного сигнала являются элементы, узлы и проводники технических средств обеспечения производственной и трудовой деятельности, а также радио- и электронная аппаратура;

• каждый источник опасного сигнала при определенных условиях может образовать технический канал утечки информации;

• каждая электронная система, содержащая в себе совокупность элементов, узлов и проводников, обладает некоторым множеством технических каналов утечки информации.

С определенной степенью обобщения множество радиоканалов утечки информации можно представить в виде следующей структуры (рис. 5.1).

Каждый из этих каналов, в зависимости от конкретной реализации элементов, узлов и изделий в целом, будет иметь определенное проявление, специфические характеристики и особенности образования, связанные с условиями расположения и исполнения.

Наличие и конкретные характеристики каждого источника образования канала утечки информации изучаются, исследуются и определяются конкретно для каждого образца технических средств на специально оборудованных для этого испытательных стендах и в специальных лабораториях.

Образование радиоканалов утечки информации 123

Рис. 5.1. Структура радиоканалов утечки информации

Классификация радиоканалов утечки информации по природе образования, диапазону излучения и среде распространения представлена на рис. 5.2.

Оценка электромагнитных полей

Оценка электромагнитных полей полезных и мешающих сигналов в месте приема или оценка собственно радиосигналов на входе приемника (после преобразования электромагнитного поля в радиосигналы антенной приемного устройства) составляет сущность электромагнитной обстановки, которая отражается статической моделью (рис. 5.3).

Модель содержит блоки канала передачи информации и звенья описания состояний информации. Блоки модели соответствуют материальным элементам, обеспечивающим формирование, передачу, распространение и, частично, прием радиосигналов. В соответствии с этим модель электромагнитной обстановки (ЭМО) включает в себя следующие блоки: источник полезных сигналов; источники мешающих сигналов (непреднамеренных помех); среда распространения электромагнитных колебаний.

Информационное описание процессов формирования ЭМО с учетом наличия непреднамеренных помех осуществляется в звеньях (пространствах): пространстве сооб-

щений Λ , пространстве полезных сигналов S , пространстве мешающих сигналов V и пространстве входных сигналов U .

124 Глава 5. Классификация радиоканалов утечки информации

Рис. 5.2. Классификация радиоканалов утечки информации

Рис. 5.3. Статическая модель формирования электромагнитной обстановки

При этом входные сигналы могут рассматриваться в двух вариантах:

• на входе приемного устройства в форме электромагнитных полей;

• на входе приемника в форме радиосигнала.

Образование радиоканалов утечки информации 125

Все многообразие функциональных задач, реализуемых радиоприемными устройствами РЭС может быть сведено к трем основным задачам: обнаружение, распознавание и измерение параметров сигнала.

В свою очередь, три основные задачи могут быть систематизированы и объединены единой схемой классификации (рис. 5.4).

Схема классификационных задач имеет иерархическую структуру. Верхний уровень схемы отвечает двухвариантной задаче обнаружения, все последующие ниже расположенные уровни соответствуют многовариантным задачам распознавания и измерения. Каждому ниже расположенному уровню соответствует более детальное распознавание и, соответственно, большее число классов решений. Нижний уровень отражает задачу измерения, которая представлена набором дискретов значений измеряемого параметра.

126 Глава 5. Классификация радиоканалов утечки информации

Рис. 5.4. Классификация функциональных задач РЭС

S = s(x 1 , y 1 , z 1 , α , β )

S i = s i ( x 1 , y 1 , z 1 , t, α ) β exp(j ω 0 t) ,

Технические средства защиты от утечки информации [16.03.11]

В современном мире информационный ресурс стал одним из наиболее мощных рычагов экономического развития. Владение информацией необходимого качества в нужное время и в нужном месте является залогом успеха в любом виде хозяйственной деятельности. Широкое внедрение персональных ЭВМ вывело уровень "информатизации" деловой жизни на качественно новую ступень. Однако создание индустрии переработки информации, давая объективные предпосылки для грандиозного повышения эффективности жизнедеятельности человечества, порождает целый ряд сложных и крупномасштабных проблем.

Одной из таких проблем является надежное обеспечение сохранности и установленного статуса использования информации, циркулирующей и обрабатываемой в автоматизированных системах обработки информации (АСОИ). Главная тенденция, характеризующая развитие современных информационных технологий - рост числа компьютерных преступлений и связанных с ними хищений информации. Потеря конфиденциальности влечет за собой материальный и имиджевый ущерб, в особых случаях - риск раскрытия государственной тайны. Эти обстоятельства определяют высокий уровень озабоченности данной проблемой со стороны крупного бизнеса и правительственных организаций.

Цель курсовой работы - изучить характеристики, особенности и организацию технических средств защиты от утечки информации на современном этапе.

В теоретической части курсовой работы рассказывается об возможных каналах утечки информации, о методах и технических средствах защиты от утечки информации.

Практическая часть курсовой работы описывает алгоритм решения экономической задачи с использованием ППП MS Exсel. При помощи мастера диаграмм создано и представлено графическое изображение табличных данных.

1. Теоретическая часть

1.1. Возможные каналы утечки информации

По мере развития и усложнения средств, методов и форм автоматизации процессов обработки информации, повышается её уязвимость. Возникает уязвимость двух видов: с одной стороны, возможность уничтожения или искажения информации (нарушение ее физической целостности), а с другой - возможность несанкционированного использования информации (опасность утечки информации ограниченного пользования). Второй вид уязвимости вызывает особую озабоченность пользователей ЭВМ и обуславливается объективным существованием в современных автоматизированных системах обработки информации (АСОИ) значительного количества потенциальных каналов утечки информации.

Одним из наиболее важных источников, образующий возможный канал утечки информации, является "человек". Среди вызванных человеческой деятельностью искусственных угроз АСОИ, можно выделить неумышленные (непреднамеренные) угрозы и умышленные (преднамеренные) угрозы.

Сегодня, наверное, никто не сможет с уверенностью назвать точную цифру суммарных потерь от компьютерных преступлений, связанных с несанкционированным доступом к информации. Это объясняется, прежде всего, нежеланием пострадавших компаний обнародовать информацию о своих потерях, а также тем, что не всегда потери от хищения информации можно точно оценить в денежном эквиваленте.

Основными каналами НСД к информации могут быть:

  • все штатные каналы доступа к информации (терминалы пользователей, оператора, администратора системы; средства отображения и документирования информации; каналы связи) при их использовании нарушителями, а также законными пользователями вне пределов их полномочии;
  • технологические пульты управления;
  • линии-связи между аппаратными средствами АСОИ;
  • побочные электромагнитные излучения от аппаратуры, линий связи, сетей электропитания и заземления и др.

В этих условиях естественно возникает проблема принятия специальных мер и средств по защите информации (СЗИ).

1.2. Методы и средства защиты от утечки информации

Задача защиты информации АСОИ в самом общем виде может быть сформулирована как введение специальных средств и проведение мероприятий, гарантирующих достаточно надежное и регулярное перекрытие потенциальных каналов утечки информации.

Можно выделить три направления работ по ЗИ: теоретические исследования; разработка СЗИ; обоснование способов использования СЗИ. В теоретическом плане основное внимание уделяется исследованию уязвимости АСОИ, явлению и анализу каналов утечки информации и разработке методик оценки надежности защиты. Надежная и регулярная защита информации (ЗИ) не может быть обеспечена чисто формальными средствами, а также не может быть абсолютной. В результате этого, на практике проблема ЗИ оказывается значительно более широкой и сложной задачей.

К настоящему времени разработано и представлено на рынке множество технических средств защиты от утечки информации, в состав которых включаются аппаратно-программные средства. Это различные электронные, электронно-механические устройства и специальные программы, которые реализуют самостоятельно или в комплексе с другими средствами следующие способы защиты:

  • идентификацию и аутентификацию пользователей АСОИ;
  • разграничение доступа к ресурсам АСОИ;
  • регистрацию и анализ событий, происходящих в АСОИ;
  • контроль целостности СЗИ и информационных ресурсов;
  • защиту загрузки операционной системы с гибких магнитных дисков и CD-ROM;
  • резервирование ресурсов и компонентов АСОИ;
  • обеспечение конфиденциальности данных.

Большинство из перечисленных способов защиты реализуется криптографическими методами. Криптографической защите специалисты уделяют особое внимание, считая ее наиболее надежной, а для информации, передаваемой по линии связи большой протяженности - единственным средством защиты информации от хищений.

Методами защиты от НСД со стороны сети являются:

  • абонентское шифрование;
  • пакетное шифрование;
  • криптографическая аутентификация абонентов;
  • электронная цифровая подпись.

С каждым объектом компьютерной системы (КС) связана некоторая информация, однозначно идентифицирующая его. Идентификация объекта (функция подсистемы защиты) выполняется в первую очередь, когда объект делает попытку войти в сеть и если завершается успешно, данный объект считается законным для данной сети. Следующий шаг -аутентификация объекта и если объект идентифицирован и подтверждена его подлинность, можно установить сферу его действия и доступные ему ресурсы КС. Такую процедуру называют предоставлением полномочий (авторизацией).

Электронная цифровая подпись – одно из интенсивно разрабатываемых направлений по обеспечению безопасности документов и установлении их подлинности, передаваемых по каналам связи (ныне простирается от проведения финансовых и банковских операций до контроля выполнения различных договоров).

Криптографическое преобразование – один из наиболее эффективных методов защиты, повышающий безопасность передачи данных в компьютерных сетях и заключается он в приведении информации к неявному виду путем преобразования составных частей её (слов, букв, слогов, цифр) с помощью специальных алгоритмов или аппаратных решений и кодов ключей. Знание ключа позволяет просто и надежно расшифровать текст (без знания ключа эта процедура практически невыполнима даже при известном алгоритме кодирования). Существуют несколько методов защитных преобразований (шифрование), которые можно классифицировать на четыре большие группы: перестановки, замены (подстановки), аддитивные и комбинированные. Особенно эффективными являются комбинированные шифры (текст последовательно шифруется двумя или большим числом систем шифрования), их стойкость теоретически равна произведению стойкости используемых простых шифров [4, С. 67-68]. Так, принятый в США национальный стандарт криптографической защиты основан на комбинированной системе шифрования.

Наличие постоянных или временных физических соединений является важнейшим фактором, который влияет на повышение уязвимостей корпоративных систем из-за брешей в используемых защитных и программных средствах и утечки информации вследствие ошибочных или неграмотных действий персонала.

Достойными представителями программных средств анализа защищенности являются сетевые сканеры (необходимый инструмент в арсенале любого администратора, либо аудитора безопасности АСОИ). Основной принцип их функционирования заключается в эмуляции действий потенциального злоумышленника по осуществлению сетевых атак. Современный сетевой сканер выполняет основные задачи:

идентификация доступных сетевых ресурсов и сетевых сервисов;

идентификация имеющихся уязвимостей сетевых сервисов;

выдача рекомендаций по устранению уязвимостей.

Технический канал утечки информации происходит по различным физическим каналам (в зависимости от возникновения информационных сигналов, среды их распространения, способов перехвата).

Электрические каналы утечки информации возникают в следствии:

Заключение

Требования к надежности ЗИ с каждым годом становятся жестче. Это вызвано неуклонным ростом возможностей средств разведки, появлением новых технических каналов утечки информации, расширением сферы информационной борьбы. Современная система ЗИ обязана обеспечивать не периодический, а непрерывный круглосуточный мониторинг наиболее опасных каналов утечки информации. Она должна практически мгновенно (в идеале – в реальном масштабе времени) обнаруживать отказы применяемых ТСЗИ, выявлять любые организованные противником каналы съема информации, обеспечивать оперативную реакцию персонала на факты обнаружения ее утечки.

Нет сомнения в том, что выполнение столь жестких требований к системе невозможно без автоматизации основных процессов поиска, распознавания, идентификации и нейтрализации технических каналов утечки информации, а также контроля эффективности принятых мер защиты.

Реализация эффективных методов защиты, позволяющие блокировать все попытки несанкционированного доступа к конфиденциальным данным, достигается тогда, когда все используемые средства, методы и мероприятия объединяются в единый, целостный механизм защиты информации.

Существуют определенные правила, которых целесообразно придерживаться при организации защиты информации:

- не доверять вопросы защиты информации дилетантам, а поручить их профессионалам;

- не стараться организовать абсолютно надежную защиту – такой просто не существует. Система защиты должна быть достаточной, надежной, эффективной и управляемой. Можно с уверенностью утверждать, что создание эффективной системы защиты информации сегодня вполне реально.

Неумышленные (непреднамеренные) угрозы - угрозы, вызываемые ошибками в проектировании, в программном обеспечении, случайными сбоями в работе СВТ и линий связи, энергоснабжения, ошибками пользователей, воздействием на аппаратуру физических полей при несоблюдении условий электромагнитной совместимости и т.д.

Умышленные (преднамеренные) угрозы – угрозы, обусловленные несанкционированными действиями обслуживающего персонала и несанкционированным доступом к ресурсам АСОИ, в том числе и посторонними лицами [4, С. 39].

Несанкционированный доступ (НСД) – это действия, приводящие к нарушению безопасности информационного ресурса и получению секретных сведений лицами, не имеющими права доступа к этой информации или не имеющими необходимых полномочий на ее модификацию и использование [4, С. 40].

Под защитой информации АСОИ понимают единую совокупность правовых и морально-этических норм, административно-организационных мер, физических и программно-технических средств, направленных на противодействие угрозам АСОИ с целью сведения к минимуму возможности ущерба.

Идентификация – присвоение какому-либо объекту (субъекту) уникального имени или образа (это может быть число, строка символов, алгоритм). Эту информацию называют идентификатором объекта.

Аутентификация – установление (проверка) подлинности, является ли объект (субъект) действительно тем, за кого он себя выдает [4, С. 56].

Ключ – это изменяемая часть криптографической системы, хранящаяся в тайне и определяющая, какое шифрующее преобразование выполняется в данном случае.

Шифрование – это такой вид закрытия, при котором самостоятельному преобразованию подвергается каждый символ закрываемых данных.

Межсетевой экран (МЭ) - это система межсетевой защиты, позволяющая разделить общую сеть на две части или более и реализовать набор правил, определяющих условия прохождения пакетов с данными через границу из одной части общей сети в другую.

Технический канал утечки информации - это совокупность объекта информации, технических средств съема информации и физического канала, по которому информация передается агенту.

Читайте также: