Работа стали под нагрузкой реферат

Обновлено: 05.07.2024

1. Работа стали при статической нагрузке. Как было сказано, сталь в основном состоит из феррита с включением перлита. Зерна перлита значительно прочнее ферритовой основы. Эти две разные по прочностным, упругим и пластическим показателям составляющие и определяют работу углеродистой стали под нагрузкой.

2. Работа стали при концентрации напряжений. В местах искажения сечения (у отверстий, выточек, надрезов, утолщений и т. п.) происходит искривление линий силового потока и их сгущение около препятствий (рис. 2.17), что приводит к повышению напряжений в этих местах.

Отношение максимального напряжения в местах концентрации к номинальному, равномерно распределенному по ослабленному сечению, называется коэффициентом концентрации. Коэффициент концентрации у круглых отверстий и полукруглых выточек имеет значение 2 - 3. В местах острых надрезов оно выше и тем больше, чем меньше радиус кривизны надреза и чем гуще собирается в этих местах силовой поток; коэффициент концентрации в этом случае достигает значения 6 - 9.

Напряженное состояние изделия при наличии концентрации напряжений очень сложное, однако в основном по характеру работы металла можно установить две зоны: зону резкого перепада напряжений и зону с распределением напряжений, близким к равномерному.

Развитие пластических деформаций и разрушение при равномерном распределении напряжений происходят под воздействием касательных напряжений, наибольшее значение которых возникает на плоскостях наклонных под углом 45° к действующей силе. При резком перепаде напряжений общие сдвиговые деформации происходить не могут (из-за задержки соседними, менее напряженными участками), поэтому в этих областях металл разрушается путем отрыва по плоскостям, нормальным к действующей силе. Характерно, что соответствующий рентгенографический анализ указывает на наличие при отрыве на этих плоскостях участков с явно выраженным пластическим течением металла. Поэтому такой отрыв можно назвать техническим а отвечающая ему прочность много ниже, чем прочность монокристалла на отрыв, но выше, чем прочность при сдвиге. При сдвиге в упругопластической стадии развиваются большие деформации; при техническом отрыве пластические деформации малы; металл в этом месте ведет себя как более жесткий, а сопротивление внешним воздействиям повышается. Такое поведение металла приводит к началу разрушения (возникновению трещин) у мест концентрации напряжений.

При статических нагрузках и нормальной температуре концентрация напряжений существенного влияния на несущую способность не оказывает (не учитывая некоторого повышения разрушающей нагрузки). Поэтому при расчетах элементов металлических конструкций при такого вида воздействиях их влияние на прочность не учитывается.

При понижении температуры прочность на разрыв гладких образцов повышается во всем диапазоне отрицательных температур; прочность же образцов с надрезом повышается до некоторой отрицательной температуры, а затем понижается.

При длительном воздействии нагрузки сопротивление разрушению понижается.

3. Ударная вязкость. Склонность металла к хрупкому разрушению и чувствительность к концентрации напряжений проверяются испытанием на ударную вязкость - определением величины работы, затрачиваемой на разрушение надрезанного образца, на маятниковом копре. Ударная вязкость измеряется удельной работой, затрачиваемой на разрушение образца. В надрезанном образце напряжения распределены неравномерно, с пикой у корня надреза. Ударное действие на образец увеличивает возможность перехода металла образца в хрупкое состояние. Чтобы иметь сравнимые результаты, испытание производится на стандартных образцах с размерами: 2.20 2.21 2.22 . При испытании тонкого металла применяют образцы толщиной 5 мм, но при этом норма ударной вязкости обычно повышается по сравнению с ударной вязкостью стандартных образцов сечением 10Х10 мм.

Температура, при которой происходит спад ударной вязкости, или ударная вязкость снижается ниже 0,3 МДж/м 2 , принимается за порог хладоломкости.

4. Работа стали и алюминиевых сплавов при повторных нагрузках. При работе материала в упругой стадии повторное загружение не отражается на работе материала, поскольку упругие деформации обратимы.

При работе материала в упругопластической стадии повторная загружени ведет к увеличению пластических деформаций в результате необратимых искажений структуры металла предыдущим нагружением и увеличением числа дислокаций. При достаточно большом перерыве (отдыхе) упругие свойства материала восстанавливаются и достигают пределов предыдущего цикла. Это повышение упругих свойств называется наклепом. Наклеп связан со старением и искажением атомной решетки кристаллов и закреплением ее вI новом деформационном положении. При повторных нагружениях в пределах наклепа материал работает как упругий, но полное удлинение уменьшаетея в результате необратимых остаточных деформаций, полученных при первых нагружениях, т. е. металл становится как бы более жестким.

Повышение прочности благодаря наклепу используется в алюминиевых сплавах и арматуре железобетонных конструкций; в стальных конструкциях оно не используется, поскольку наклепанная сталь получается более жесткой и склонной к хрупкому разрушению.

При многократном непрерывном нагружении возникает явление усталости металла, выражающееся в понижении его прочности, приближающейся к некоторой величине ауст, ниже которой разрушения стали не происходит. Эта величина называется пределом усталостной прочности (выносливости). Пределу выносливости стали отвечает примерно 10 млн. циклов нагрузки.

5. Хрупкое разрушение. Несущая способность элементов металлических конструкций, изготавливаемых из малоуглеродистых сталей, зависит от условий нагружения и температуры эксплуатации. На рис. 2.27 приведены 3 области возможных видов разрушения - вязкое, квазихрупкое и хрупкое. Вязкое разрушение, как было сказано, определяется развитием пластических деформаций по части или всему сечению, а несущая способность элементов металлических конструкций - развитием больших перемещений (прогибов). Квазихрупкое (кажущееся хрупкое) разрушение находится как бы в промежутке между вязким и хрупким. Хрупкое разрушение определяется разрушением при малых деформациях, без ярко выраженного развития пластичности. На хрупкость стали оказывают существенное влияние в основном качество стали, старение, концентрация напряжений, температура эксплуатации, характер силового воздействия.


Препятствие образованию сдвигов в зернах феррита создают в стали более прочные зерна перлита, потому прочность стали выше прочности глетого железа. В первой стадии зависимость между σ и ξ линейное (закон Гука σ =Е*ξ) происходят упругие деформации, пропорционально действующим напряжениям. Это стадия упругой работы. Деформации удлинения происходят за счет упруговозвратного искажения атомной решетки. Поэтому после снятия нагрузки образец принимает начальные размеры.

Дальнейшее увеличение нагрузки приводит к тому, что дислокации сталкиваются около зерен феррита, пропорциональность нарушается.

Напряжение, при котором начинается отклонение от прямолинейной зависимости называется пределом пропорциональности σпц. Несколько выше этой точки лежит граница области упругой работы материала, соответственно деформации, которая полностью исчезает после разгрузки.

При дальнейшем нагружении выше придела пропорциональности прямая с небольшими колебаниями идет параллельно горизонтально оси. Увеличение напряжений приводит к росту плотности дислокации в зернах феррита, к развитию линии сдвига, которые приводят к развитию больших деформации при постоянных напряжениях - образовании площадки текучести.

Образец удлиняется без приращения нагрузок,т.е. материал течет. В этой он стадии отвечает напряжению текучести. Протяженность площадки текучести находится в приделах 0,2-25% для СтЗ.

развитие деформации происходит в результате необратимых сдвигов по плоскостям скольжения зерен феррита. Поэтому после снятия нагрузки упругая часть деформации возвращается (линия разгрузки идет параллельно линии нагрузки), а необратимая остаётся, приводя к остаточным деформации.

Дальнейшее развитие деформации затрудняется более прочными зернами перлита. Поэтому, чтобы образовались общие плоскости сдвига, сдвиги в зернах феррита должны обтекать зерна перлита, для чего необходимо повышение напряжения. Карбиды и нитриды приводят к дополнительному сопротивлению сдвигов.

Стадию работы материала, в котором происходит повышение сопротивления внешним воздействиям после площадки текучести до временного сопротивления, называется стадией сомоупрочнения. В этой стадии материал работает как упруго-пластический.

Во все время растяжения продольным деформациям удлинения сопутствуют поперечные деформации сужения. При подходе к врем. сопротивлении деформации удлинения и сужения начинает концентрироваться в слабом месте, образуя шейку. Сечение в месте шейки уменьшается, что приводит к повышению напряжений в месте сужения, несмотря на то, что нагрузка уменьшается, в результате происходит разрыв.

Основные характ. показатели - σт, σв, ξ.


Работу углеродистой стали Ст.З при растяжении можно представить в следующем виде:


Характеристики прочности и деформативности сталей устанавливают по диаграмме σs – εs, получаемой из испытаний образцов на растяжение. Горячекатаная арматурная сталь, имеющая на диаграмме площадку текучести, обладает значительным удлинением до разрыва (мягкая сталь) (рис. 13, а). Напряжение, при котором деформации развиваются без заметного увеличения нагрузки, называется физическим пределом текучести арматурной стали .


а) б)

Рис. 13. Диаграммы σs – εsпри растяжении арматурной стали:

а – мягкая малоуглеродистая сталь с площадкой текучести;

б – высокопрочная, легированная сталь с условным пределом текучести.

Повышение прочности сталей достигают следующими методами:

  • путем введения углерода и легирующих добавок (марганец, хром, кремний, титан и др.);
  • термическим упрочнением - закаливание стали (нагрев до 800…900 о С и быстрое охлаждение), затем частичный отпуск (нагрев до 300…400 о С и постепенное охлаждение);

· холодным деформированием – при вытяжке в холодном состоянии до напряжения сталь упрочняется; при повторной вытяжке пластические деформации уже выбраны, напряжение становится новым искусственно поднятым пределом текучести ;

· холодным волочением - волочение через несколько последовательно уменьшающихся в диаметре отверстий в холодном состоянии для получения высокопрочной проволоки.


Высоколегированные и термически упрочненные арматурные стали переходят в пластическую стадию постепенно без ярко выраженной площадки текучести (рис. 13, б). Для таких сталей устанавливают условный предел текучести , при котором относительные остаточные деформации составляют 0,2%.

К физическим свойствам сталей относятся:

  • пластические свойства – характеризуются относительным удлинением при испытании на разрыв. Снижение пластических свойств приводит к хрупкому (внезапному) разрыву арматуры;
  • свариваемость – характеризуется надежностью соединения, отсутствием трещин и других пороков металла в швах. Хорошо свариваются малоуглеродистые и низколегированные стали. Нельзя сваривать термически упрочненные и упрочненные вытяжкой стали, т.к. теряется эффект упрочнения;
  • хладноломкость - склонность к хрупкому разрушению при отрицательных температурах (ниже -30 о С);
  • реологические свойства – характеризуются ползучестью и релаксацией;
  • усталостное разрушение – наблюдается при действии многократно повторяющейся знакопеременной нагрузке и имеет характер хрупкого разрушения;
  • динамическая прочность – наблюдается при кратковременных нагрузках большой интенсивности.

Свойства сталей. Методы упрочнения. Свариваемость арматурных сталей.

Свойства сталей

прочность — способность материала выдерживать внешнюю нагрузку без разрушения. Количественно это свойство характеризуется пределом прочности и пределом текучести;

предел прочности — механическое напряжение, при превышении которого образец разрушается;

предел текучести — механическое напряжение, при превышении которого образец продолжает удлиняться при отсутствии нагрузки;

пластичность — способность стали изменять форму под действием нагрузки и сохранять ее после снятия нагрузки. Количественно характеризуется углом загиба и относительным удлинением при растяжении;

ударная вязкость — способность стали противостоять динамическим нагрузкам. Количественно оценивается работой, необходимой для разрушения специального образца, отнесенной к площади его поперечного сечения;

твердость — способность стали сопротивляться проникновению в нее других твердых тел. Количественно определяется нагрузкой, отнесенной к площади отпечатка при вдавливании стального шарика (метод Бринелля) или алмазной пирамиды (метод Виккерса).

плотность — масса вещества, заключенного в единичном объеме. Все металлы обладают высокой плотностью;

теплопроводность — способность передавать теплоту от более нагретых участков к менее нагретым;

электропроводность — способность пропускать электрический ток. Все металлы и их сплавы обладают высокой тепло- и электропроводностью.

окисляемость — способность вещества соединяться с кислородом. Окисляемость усиливается с повышением температуры металла. Низкоуглеродистые стали под действием влажного воздуха или воды окисляются с образованием ржавчины — оксидов железа;

коррозионная стойкость — способность металла не окисляться и не вступать в химические реакции с окружающими веществами;

жаростойкость — способность стали не окисляться при высокой температуре и не образовывать окалины;

жаропрочность — способность стали сохранять свои прочностные свойства при высокой температуре.

ковкость — способность стали принимать новую форму под действием внешних сил;

жидкотекучесть — способность стали в расплавленном состоянии заполнять узкие зазоры и пространства;

обрабатываемость резанием — свойство стали поддаваться механической обработке режущим инструментом;

свариваемость — способность стали образовывать высококачественное сварное соединение, не содержащее дефектов

*Механические свойства и свариваемость арматурной стали зависят от ее химического состава (горячекатаная арматура) и способа упрочнения (термомеханическая или термическая обработка, холодная деформация). Механические свойства, химический состав, способы прокатки и упрочнения, параметры и вид профиля в той или иной степени определяют коррозионную стойкость и усталостную прочность арматуры.

*В зависимости от механических свойств арматуру делят на классы:

-горячекатаную А-I – A-VI (старое обозначение) или с указанием предела текучести (в новой редакции) А240 – А1000

-термомеханически или термически упрочненную Aт-IIIC – Aт-VII или Aт400 – Aт1200.

Повышение прочности может быть достигнуто также термическим упрочнением и механической вытяжкой.

При термическом упрочении вначале осуществляют нагрев арматуры до 800…900°С и быстрое охлаждение, а затем нагрев до 300…400°С с постепенным охлаждением (закалка с отпуском)

При мех. вытяжке арматуры на 3-5% вследствие структурных изменений кристалл. решетки – наклепа, сталь упрочняется. При повторной вытяжке (нагрузке) диаграмма деформирования будет отличается от исходной, а предел текучести

*Методы упрочнения металла:

Термомеханическая обработка стали

Поверхностное упрочнение стальных деталей.

Закалка токами высокой частоты.

Обработка стали холодом.

Упрочнение методом пластической деформации.

Свариваемость арматурной стали обеспечивается химическим составом, технологией изготовления и компактностью сечения. Возможность применения горячекатаной и термомеханически упрочненной стержневой арматуры для различных способов сварки и конструкции соединений, регламентированных ГОСТ 14098, приведены в табл. 1.52.

*При использовании широко применяемой арматуры класса A-III из стали марки 35ГС запрещается выполнять крестообразные сварные соединения вручную дуговыми прихватками, так как это приводит к преждевременному разрушению таких стыков.

*Для монолитных железобетонных конструкций иногда используют арматуру из стальных прокатных профилей в виде уголков, двутавров и швеллеров, а также плоского или профилированного стального листа. Для дисперсного армирования тонкостенных бетонных конструкций применяют фибру, изготавливаемую из стали, стекловолокна или пластика. Для арматуры из стали марки 25Г2С ручная дуговая сварка крестообразных соединений прихватками допускается. Для арматуры классов Ат-lllc и Ат-IVc ванная сварка допускается при использовании удлиненных накладок.

*При изготовлении арматурных сеток и каркасов, а также сварке встык отдельных стержней следует преимущественно применять контактную точечную и стыковую сварку, а при изготовлении западных деталей - автоматическую сварку под флюсом и контактную рельефную сварку. Начато использование различных видов неметаллической арматуры в виде стержней и канатов для обычных и предварительно напряженных бетонных конструкций.

Виды и классы армитуры.

Стержневая горячекатаная арматура в зависимости от ее основных механических характеристик подразделяется на шесть классов с условным обозначением: А-I, А-II, А-III, А-IV, А-V, А-VI.

Высокопрочная арматурная проволока: гладкая класса – В-II, периодического профиля Вр-II

Обыкновенная арматура проволока периодического профиля класса Вр-I, В-I

Арматурные канаты: К-7, К-19.

Каждому классу арм. соот. определенные марки арматурной стали с одинаковыми механическими характеристиками, но различным хим. составом. В обозначении марки стали отражается содержание углерода и легирующих добавок. Например, в марке 25Г2С первая цифра обозн. содер углерода в сотых долях процента (0,25%) Г- что сталь легирована марганцем, 2- что его содержание может достигать 2%, С-наличие в стали кремния.

20ХГ2Ц Х- хром, Т-титан, Ц- цирконий.


Организация стока поверхностных вод: Наибольшее количество влаги на земном шаре испаряется с поверхности морей и океанов (88‰).

Поперечные профили набережных и береговой полосы: На городских территориях берегоукрепление проектируют с учетом технических и экономических требований, но особое значение придают эстетическим.

Работу стали при одноосном напряжении можно проследить по испытанию образца на растяжения (схема ниже).

В стадии 1 до предела пропорциональности Ơр связь между напряжением и деформациями подчиняется закону Гука (Ơ=Еε) – это стадия упругой работы.

Деформации происходят за счет упруго возвратных искажений кристаллической решетки и исчезают после снятия нагрузки.

Диаграмма растяжения стали и образование шейки


Диаграмма растяжения стали и образование шейки

При дальнейшем увеличении нагрузки (стадия 2) появляются отдельные сдвиги в зернах феррита, дислокации начинают скапливаться около границ зерен; прямая пропорциональность между напряжениями и деформациями нарушается (участок упруго пластической работы между Ơр и Ơy). Последующее увеличение напряжений приводит к интенсивному движению дислокаций и увеличению их плотности, развитию линий сдвига в зернах феррита; деформации растут при постоянной нагрузке. На диаграмме появляется площадка текучести (стадия 3).

Протяженность площадки текучести низкоуглеродистых и некоторых низколегированных сталей составляет 1,5 – 2,5%.

Развитие деформаций происходит в результате упругого деформирования и необратимых пластических сдвигов. При снятии нагрузки упругая часть деформаций исчезает, а необратимая остается, приводя к остаточным деформациям (линия разгрузки идет параллельно упругой части линии нагрузки).

Дальнейшее развитие деформации сдерживается у границ зерен. Линии сдвига искривляются, движение дислокации затрудняется, и рост деформаций возможен только при увеличении нагрузки (стадия 4 – самоупрочнение), материал работает как упругопластический.

При напряжениях, близких к временному сопротивлению ( Ơ u ) продольные и поперечные деформации локализуются в наиболее слабом месте, и в образце образуется шейка. Площадь сечения шейки интенсивно уменьшается, напряжения в месте сужения растут, поэтому, несмотря на то, что нагрузка на образец снижается, в месте образования шейки нарушаются силы межатомного сцепления и происходит разрыв.

Читайте также: