Пункты редуцирования газа реферат

Обновлено: 02.07.2024

АЗБУКА ПРОИЗВОДСТВА. Редуцирование газа

Схема редуцирования газа

Что это такое?

Редуцирование газа — это процесс снижения давления на входе в ГРС до заданного значения и поддержания его с определённой точностью.

Это интересно:

В зависимости от категории потребителя различают газопроводы низкого давления — для газоснабжения жилых домов, а также среднего и высокого — для подачи газа на промышленные предприятия.

Для чего это нужно?

Прежде чем газ загорится голубым пламенем на кухонной плите, он проходит тысячи километров по трубам. Нагнетаемый компрессорными станциями до определённых значений давления природный газ направляется по магистральному газопроводу к газораспределительной станции . Высокое давление в газовых магистралях (5,4 — 7,4 МПа) совершенно не подходит для бытового потребления. Поэтому одно из основных назначений газораспределительных станций — снижение этого параметра до необходимого значения.

В частности, на газораспределительные и газорегулирующие пункты голубое топливо подают с давлением 0,3–0,6 МПа. С давлением 1,2 МПа (в крайне редких случаях более) газ поступает к крупным потребителям, например, ТЭЦ, ГРЭС, АГНКС . На выходе ГРС подача голубого топлива обеспечивается с относительной погрешностью не более 10% от установленного рабочего давления.

Как это происходит?

Процесс редуцирования на ГРС голубое топливо проходит наряду с очисткой, подогревом, замером расхода и одоризацией. Снижение давления осуществляется в непрерывном режиме через узел редуцирования при помощи автоматических клапанов регуляторов различных модификаций. В качестве регуляторов давления на газораспределительных станциях используются регуляторы прямого и непрямого действия.

Узел редуцирования на газораспределительной станции

Технологические схемы ряда ГРС предполагают наличие двух и более линий редуцирования с обязательным наличием резервных. На каждом выходе из станции имеется блок предохранительных клапанов на случай превышения давления сверх установленных пределов.

При отклонении выходного давления газа от допустимого значения датчик, настроенный на определенный параметр, дает команду на переключение крана и автоматический пуск в работу другого регулятора. Одновременно с этим происходит оповещение обслуживающего персонала станции при помощи звуковой и световой сигнализации, позволяющей оперативно отреагировать и устранить сбой в работе оборудования.


Как у нас?

2. Гидратообразование при редуцировании газа. Методы по предотвращению гидратообразования.

3. Новые разработки для газорегулирующих систем

4. Регуляторы с теплогенераторами РДУ-Т

4.2 Технико-экономическое сравнение применения разных методов для решения задачи по недопущению и ликвидации гидратообразования (обмерзания) в процессе редуцирования на ГРС

Введение

Арматура - неотъемлемая часть любого трубопровода, предназначенного дляуправления потоками транспортируемой среды (в газопроводах газа).

Разнообразные условия, при которых работает арматура, специфичность требований, предъявляемых к ней, вопросы надежности и долговечности, большая разновидность конструкций затрудняют выбор арматуры для конкретных условий работы. Правильный выбор того или иного конструктивного типа арматуры в значительной степени предопределяет безаварийную работу как отдельных технологических процессов в целом, так и трубопроводов в частности.

В классификацию конструкций устройств трубопроводной арматуры с учетом функционального назначения [4] входят газовые регуляторы давления.

1. Регуляторы давления газа. Применение. Основные типы регуляторов давления газа. Принципы действия

Регуляторы давления газа применяют в автоматических и неавтоматических газорегулирующих системах. На ГРС регуляторы давления газа входят в качестве основного оборудования в блок редуцирования, который предназначен для снижения высокого входного давления газа Рвх = 12÷75 кгс/см 2 до низкого выходного Рвых = 3÷12 кгс/см 2 и автоматического поддержания заданного давления на выходе из узла редуцирования, а также для защиты газопровода потребителя от недопустимого повышения давления.

На ГРС применяются регуляторы давления прямого и непрямого действия.

Регуляторы прямого действия – перемещение регулирующего органа осуществляется за счёт энергии регулируемого потока газа. Регулятор давления прямого действия представляет собой дроссельное устройство, приводимое в действие мембраной, находящейся под воздействием регулируемого давления. Всякое изменение давления газа вызывает перемещение мембраны, а вместе с ней и изменение проходного сечения дроссельного устройства, что влечёт за собой уменьшение или увеличение количества газа, протекающего через регулятор. В регуляторах прямого действия чувствительный элемент, воспринимающий измерительный импульс, непосредственно осуществляет перемещение регулирующего органа.

Регуляторы давления непрямого действия – регуляторы, в которых производится перемещение регулирующего органа за счёт энергии от постороннего источника. В регуляторах давления непрямого действия с командными приборами уравновешивание усилий от давления газа на мембрану осуществляется не грузами, пружинами или постоянным давлением газа, а давлением газа, которое устанавливают вспомогательным устройством, называемым командным прибором. Они характеризуются наличием усилителя, воспринимающего и усиливающего измерительный импульс. Разделяются на пилотные и приборные.

На газораспределительных станциях Астраханского ЛУМГП используются регуляторы прямого и непрямого действия: РД-64,РД-32, РД-25, РДУ-80, РДУ-100, РДМ-150/300, РДГ-150.

2. Гидратообразование при редуцировании газа. Методы по предотвращению гидратообразования

Наибольшие трудности при редуцировании газа возникают из-за образования гидратов, которые в виде твердых кристаллов оседают на стенках трубопроводов в местах установки сужающих устройств, на клапанах регуляторов давления газа, в импульсных линиях контрольно-измерительных приборов (КИП).

Наиболее благоприятны для образования гидратов падение температуры и давления, что влечет за собой уменьшение как упругости водяных паров, так и влагоемкости газа, в результате чего происходит образование гидратов.

При редуцировании (дросселировании) газа происходит снижение его температуры, что приводит к отложению твердых кристаллогидратов на поверхности клапана и седла клапана регуляторов давления, вследствие чего они перестают работать, и что может привести к полной остановке ГРС.

Гидраты представляют собой белые кристаллы, похожие на плотную снегообразную кристаллическую массу, при уплотнении напоминающую лед. Кристаллогидраты состоят из одной или нескольких молекул газа (метана, этана и пр. по составу транспортируемого газа см.таблицу 1) и нескольких молекул воды.

Наименование параметра Состав транспортируемого газа
Метан Этан Пропан Бутан Пентан
Эмпирическая формула СН4 С2 Н6 С3 Н8 С4 Н10 С5 Н12
Долевая часть 0,95 0,04 0,007 0,002 0,001

- метан и этан образуют газовые гидраты с формулами и ;

- пропан и изобутан образуют гидраты и .

При транспорте газа образуются смешанные гидраты, которые являются нестабильными соединениями и при определенных условиях (понижение давления, повышение температуры) легко разлагаются на газ и воду.

Для определения зоны возможного гидратообразования необходимо знать давление газа и его температуру после редуцирования. На рис.1 представлен график границы гидратообразования от температуры и давления насыщенного парами воды природного газа [1].


Рис.1. Зависимость гидратообразования от температуры и давления насыщенного парами воды природного газа

Условия образования гидратов с различной относительной плотностью можно определить по графику [1] на рис.2.


Рис.2. График гидратообразования для природных газов с различной относительной плотностью.

Углеводороды характеризуются максимальной температурой, выше которой ни при каком повышении давления нельзя вызвать гидратообразование газов. Эта температура называется критической температурой гидратообразования и равна [1] , 0 С: для метана +21,5; этана +14,5; пропана +5,5; н-бутана +2,5 ; изобутана +1.

Например, газ редуцируют с Рн=54 кгс/см 2 (5,4 МПа) до 3 кгс/см 2 (3 МПа).

Определить конечную температуру газа tк, если начальная температура равна 10 0 С (окружающего воздуха).

Разница давлений ΔР = 54-3 = 51 кгс/см2

Снижение температуры при дросселировании :Δt= 51*0,55=28,05 0 С

Конечная температура газа tк = +10-28,05= - 18,05 0 С.

В качестве методов по предотвращению гидратообразования (обмерзания) в настоящее время применяют:

- общий или частичный подогрев газа;

- местный обогрев корпусов регуляторов давления;

- ввод метанола в коммуникации газопровода.

Наиболее широко применим первый метод, второй – менее эффективен, третий дорогостоящий.

Основными наиболее распространенными мероприятиями по недопущению обмерзания регуляторов являются:

1. размещение регуляторов в специальном помещении с обогревом с температурой в помещении не ниже 8 0 С,

2. применение установки подогрева входного газа в зимний период,

3. применение электрического ленточного обогревателя путём обматывания регулятора (местный обогрев),

4. установка системы подачи метанола в газопровод.

Каждый из данных методов имеет свои положительные и отрицательные стороны, но все эти методы объединяет одно – высокая стоимость применяемого дополнительного оборудования, трудозатраты при обслуживании и эксплуатации дополнительного оборудования, повышенные требования промышленной безопасности при обслуживании и эксплуатации.

Так, например: метанол – это сильный яд, который может быть смертельным для человека, и использование которого в технологических процессах должно быть ограничено до минимума, а по возможности исключено, хотя данный метод очень эффективен при ликвидации образовавшихся гидратных пробок.

3. Новые разработки для газорегулирующих систем

На сегодняшний день на рынке предлагается трубопроводная арматура (ТПА) нового поколения как отечественного, так и импортного производства.

Были разработаны, выпущены и рекомендованы к эксплуатации:

- регуляторы давления газа РДС-ПС, применяемые в качестве блока управления совместно с осевыми клапанами. Регулятор работает при температуре окружающей среды от -30 до 50 0 С; срок службы 10 лет и др.

4. Регуляторы с теплогенераторами РДУ-Т

Одним из направлений усовершенствования трубопроводных систем является новый подход в обеспечении стабильной и безопасной эксплуатации редуцирующих узлов существующих ГРС, исключающих в ряде случаев необходимость подогрева газа или создания систем отопления регуляторов давления газа для недопущения гидратообразования при редуцировании газа.

Установка на ГРС регуляторов с теплогенераторами (РДУ-Т) позволит исключить гидратообразование и обмерзание запорно-регулирующего узла регулятора, которое происходит в процессе редуцирования. Регуляторы РДУ-Т отличаются от регуляторов РДУ того же класса подогревом запорно-регулирующего устройства, в зоне дросселирования газа с помощью специального вмонтированных теплогенераторов, которые работают без постороннего источника энергии, за счет отбора части кинетической и потенциальной энергии сжатого магистрального газа. Температура нагрева достаточна для предотвращения процессов гидратообразования. Таким образом, отпадает необходимость комплектования ГРС дорогими подогре­вателями газа (ПГ или ПГА). Экономия средств при таком подходе совершенно очевидна.

Чтобы оценить преимущества данного предлагаемого типа регуляторов, рассмотрим подробнее область применения, основные характеристики, принцип работы регуляторов давления газа типа РДУ-Т.

Регуляторы давления газа типа РДУ-Т применяются на объектах магистральных газопроводов (газораспределительных станциях, компрессионных станциях и др.)


1 - Исполнительный механизм

2 - Теплогенератор (ТГ),

3,4 - Трубопроводы подачи газа в ТГ (Ду 10)

5 - Запорная арматура,

6 - Трубопроводы сброса газа из ТГ (Ду 16) 1 - Крышка

Рисунок 3. Схема регулятора РДУ-Т

Отличительные особенности РДУ-Т:

- повышение надежности работы за счет исключения примерзания подвижных

частей (затвора) к уплотнителям,

- исключение подогрева входного газа в зимний период.

Принцип работы вмонтированного теплогенератора.

Теплогенератор (поз.2) рис. 3, разрез А-А монтируется в районе узла уплотнителя затвора исполнительного устройства регулятора на крышке (поз. 1).

Тепло выделяется за счет создания в теплорегуляторе процесса вихревого энергоразделения. Ввод газа в теплогенератор осуществляется по трубопроводу, соединяющему теплогенератор с магистралью высокого давления (или соответствующей полостью регулятора давления), снабженной запорной аппаратурой (рис.4) и контрольно-измерительными приборами. Сброс газа, расширенного до давления 1,1 * Рвых . осуществляется в камеру низкого давления регулятора или газопровод низкого давления.


Рис.4 .Схема монтажа регулятора РДУ-Т

1 - Исполнительный механизмКР1..2-Кран

2 - Теплогенератор (ТГ),ВН1,2 – вентиль;

3,4 - Трубопроводы подачи газа в ТГ (Ду 10)Ф - Фильтр

5 - Запорная арматура,ЗУ - Задающее устройство

6 - Трубопроводы сброса газа из ТГ (Ду 16)

Теплогенераторы могут работать как постоянно - в режиме автоматического управления, так и эпизодически - в ручном режиме управления для отогрева примерзшего затвора.

Основные характеристики предлагаемых регуляторов типа РДУ-Т

Технико-экономическое сравнение применения разных методов для решения задачи по недопущению и ликвидации гидратообразования (обмерзания) в процессе редуцирования на ГРС

Цены на оборудование и применяемые вещества

826 руб./м 1250 т. руб. Метанольная установка с расходным бачком 2 м3

I-вариант: применение прямого регулятора РД-100-64 и подогревателя входного газа

II-вариант: применение прямого регулятора РД-100-64 и метанольной установки с учетом расхода метанола на 5 лет службы регулятора

при данном варианте надо учитывать, что метанол является сильным ядом, и требуются дополнительные затраты на средства защиты для работающих с данным веществом.

III-вариант: применение прямого регулятора РД-100-64 и саморегулирующей электрической нагревательной ленты

Данный вариант может показаться экономически выгодным, но на самом деле практика показала, что при отрицательных температурах способ местного обогрева не эффективен, кроме того требуется источник электроэнергии.

Вывод: из сравнения стоимости применяемого оборудования видно, что применение регулятора типа РДУ-Т дает экономию затрачиваемых средств. Кроме того, вмонтированные теплогенераторы работают без постороннего источника энергии, они могут работать как постоянно - в режиме автоматического управления, так и эпизодически - в ручном режиме управления для отогрева.

Заключение

Расширяющийся рынок трубопроводной арматуры в стране при существующей масштабности газораспределительных систем дает возможность выбора более качественного оборудования нового поколения, которое разрабатывается и внедряется к выпуску, решая существующие проблемы при эксплуатации газорегулирующих систем.

Внедрение новых разработок в существующие газорегулирующие системы при видимом экономическом эффекте дают повышение надежности системы в целом, возможности автоматизации отдельных процессов, упрощение в обслуживании и повышение безопасности при эксплуатации.

Использованная литература

1. Данилов А.А. Автоматизированные газораспределительные станции: Справочник.-СПб.:ХИМИЗДАТ,2004;

3. Газоснабжение: Учеб.для вузов – 4-еизд., переаб. и доп.-М.:Стройиздат,1989;

* Данная работа не является научным трудом, не является выпускной квалификационной работой и представляет собой результат обработки, структурирования и форматирования собранной информации, предназначенной для использования в качестве источника материала при самостоятельной подготовки учебных работ.

Содержание

1. Регуляторы давления газа. Применение. Основные типы регуляторов давления газа. Принципы действия

2. Гидратообразование при редуцировании газа. Методы по предотвращению гидратообразования.

3. Новые разработки для газорегулирующих систем

4. Регуляторы с теплогенераторами РДУ-Т

4.2 Технико-экономическое сравнение применения разных методов для решения задачи по недопущению и ликвидации гидратообразования (обмерзания) в процессе редуцирования на ГРС

Введение

Арматура - неотъемлемая часть любого трубопровода, предназначенного для управления потоками транспортируемой среды (в газопроводах газа).

Разнообразные условия, при которых работает арматура, специфичность требований, предъявляемых к ней, вопросы надежности и долговечности, большая разновидность конструкций затрудняют выбор арматуры для конкретных условий работы. Правильный выбор того или иного конструктивного типа арматуры в значительной степени предопределяет безаварийную работу как отдельных технологических процессов в целом, так и трубопроводов в частности.

В классификацию конструкций устройств трубопроводной арматуры с учетом функционального назначения [4] входят газовые регуляторы давления.

1. Регуляторы давления газа. Применение. Основные типы регуляторов давления газа. Принципы действия

Регуляторы давления газа применяют в автоматических и неавтоматических газорегулирующих системах. На ГРС регуляторы давления газа входят в качестве основного оборудования в блок редуцирования, который предназначен для снижения высокого входного давления газа Рвх = 12ч75 кгс/см2 до низкого выходного Рвых = 3ч12 кгс/см2 и автоматического поддержания заданного давления на выходе из узла редуцирования, а также для защиты газопровода потребителя от недопустимого повышения давления.

На ГРС применяются регуляторы давления прямого и непрямого действия.

Регуляторы прямого действия – перемещение регулирующего органа осуществляется за счёт энергии регулируемого потока газа. Регулятор давления прямого действия представляет собой дроссельное устройство, приводимое в действие мембраной, находящейся под воздействием регулируемого давления. Всякое изменение давления газа вызывает перемещение мембраны, а вместе с ней и изменение проходного сечения дроссельного устройства, что влечёт за собой уменьшение или увеличение количества газа, протекающего через регулятор. В регуляторах прямого действия чувствительный элемент, воспринимающий измерительный импульс, непосредственно осуществляет перемещение регулирующего органа.

Регуляторы давления непрямого действия – регуляторы, в которых производится перемещение регулирующего органа за счёт энергии от постороннего источника. В регуляторах давления непрямого действия с командными приборами уравновешивание усилий от давления газа на мембрану осуществляется не грузами, пружинами или постоянным давлением газа, а давлением газа, которое устанавливают вспомогательным устройством, называемым командным прибором. Они характеризуются наличием усилителя, воспринимающего и усиливающего измерительный импульс. Разделяются на пилотные и приборные.

На газораспределительных станциях Астраханского ЛУМГП используются регуляторы прямого и непрямого действия: РД-64,РД-32, РД-25, РДУ-80, РДУ-100, РДМ-150/300, РДГ-150.

2. Гидратообразование при редуцировании газа. Методы по предотвращению гидратообразования

Наибольшие трудности при редуцировании газа возникают из-за образования гидратов, которые в виде твердых кристаллов оседают на стенках трубопроводов в местах установки сужающих устройств, на клапанах регуляторов давления газа, в импульсных линиях контрольно-измерительных приборов (КИП).

Наиболее благоприятны для образования гидратов падение температуры и давления, что влечет за собой уменьшение как упругости водяных паров, так и влагоемкости газа, в результате чего происходит образование гидратов.

При редуцировании (дросселировании) газа происходит снижение его температуры, что приводит к отложению твердых кристаллогидратов на поверхности клапана и седла клапана регуляторов давления, вследствие чего они перестают работать, и что может привести к полной остановке ГРС.

Гидраты представляют собой белые кристаллы, похожие на плотную снегообразную кристаллическую массу, при уплотнении напоминающую лед. Кристаллогидраты состоят из одной или нескольких молекул газа (метана, этана и пр. по составу транспортируемого газа см.таблицу 1) и нескольких молекул воды.

При транспорте газа образуются смешанные гидраты, которые являются нестабильными соединениями и при определенных условиях (понижение давления, повышение температуры) легко разлагаются на газ и воду.

Для определения зоны возможного гидратообразования необходимо знать давление газа и его температуру после редуцирования. На рис.1 представлен график границы гидратообразования от температуры и давления насыщенного парами воды природного газа [1].

Углеводороды характеризуются максимальной температурой, выше которой ни при каком повышении давления нельзя вызвать гидратообразование газов. Эта температура называется критической температурой гидратообразования и равна [1] ,0С: для метана +21,5; этана +14,5; пропана +5,5; н-бутана +2,5 ; изобутана +1.

Основными наиболее распространенными мероприятиями по недопущению обмерзания регуляторов являются:

1. размещение регуляторов в специальном помещении с обогревом с температурой в помещении не ниже 80С,

2. применение установки подогрева входного газа в зимний период,

3. применение электрического ленточного обогревателя путём обматывания регулятора (местный обогрев),

4. установка системы подачи метанола в газопровод.

Каждый из данных методов имеет свои положительные и отрицательные стороны, но все эти методы объединяет одно – высокая стоимость применяемого дополнительного оборудования, трудозатраты при обслуживании и эксплуатации дополнительного оборудования, повышенные требования промышленной безопасности при обслуживании и эксплуатации.

Так, например: метанол – это сильный яд, который может быть смертельным для человека, и использование которого в технологических процессах должно быть ограничено до минимума, а по возможности исключено, хотя данный метод очень эффективен при ликвидации образовавшихся гидратных пробок.

3. Новые разработки для газорегулирующих систем

На сегодняшний день на рынке предлагается трубопроводная арматура (ТПА) нового поколения как отечественного, так и импортного производства.

Были разработаны, выпущены и рекомендованы к эксплуатации:

регуляторы давления газа РДС-ПС, применяемые в качестве блока управления совместно с осевыми клапанами. Регулятор работает при температуре окружающей среды от -30 до 500С; срок службы 10 лет и др.

4. Регуляторы с теплогенераторами РДУ-Т

Одним из направлений усовершенствования трубопроводных систем является новый подход в обеспечении стабильной и безопасной эксплуатации редуцирующих узлов существующих ГРС, исключающих в ряде случаев необходимость подогрева газа или создания систем отопления регуляторов давления газа для недопущения гидратообразования при редуцировании газа.

Установка на ГРС регуляторов с теплогенераторами (РДУ-Т) позволит исключить гидратообразование и обмерзание запорно-регулирующего узла регулятора, которое происходит в процессе редуцирования. Регуляторы РДУ-Т отличаются от регуляторов РДУ того же класса подогревом запорно-регулирующего устройства, в зоне дросселирования газа с помощью специального вмонтированных теплогенераторов, которые работают без постороннего источника энергии, за счет отбора части кинетической и потенциальной энергии сжатого магистрального газа. Температура нагрева достаточна для предотвращения процессов гидратообразования. Таким образом, отпадает необходимость комплектования ГРС дорогими подогре¬вателями газа (ПГ или ПГА). Экономия средств при таком подходе совершенно очевидна.

Чтобы оценить преимущества данного предлагаемого типа регуляторов, рассмотрим подробнее область применения, основные характеристики, принцип работы регуляторов давления газа типа РДУ-Т.

Регуляторы давления газа типа РДУ-Т применяются на объектах магистральных газопроводов (газораспределительных станциях, компрессионных станциях и др.)

Отличительные особенности РДУ-Т:

- повышение надежности работы за счет исключения примерзания подвижных

частей (затвора) к уплотнителям,

- исключение подогрева входного газа в зимний период.

Принцип работы вмонтированного теплогенератора.

Теплогенератор (поз.2) рис. 3, разрез А-А монтируется в районе узла уплотнителя затвора исполнительного устройства регулятора на крышке (поз. 1).

Тепло выделяется за счет создания в теплорегуляторе процесса вихревого энергоразделения. Ввод газа в теплогенератор осуществляется по трубопроводу, соединяющему теплогенератор с магистралью высокого давления (или соответствующей полостью регулятора давления), снабженной запорной аппаратурой (рис.4) и контрольно-измерительными приборами. Сброс газа, расширенного до давления 1,1 * Рвых. осуществляется в камеру низкого давления регулятора или газопровод низкого давления.

Теплогенераторы могут работать как постоянно - в режиме автоматического управления, так и эпизодически - в ручном режиме управления для отогрева примерзшего затвора.

Технико-экономическое сравнение применения разных методов для решения задачи по недопущению и ликвидации гидратообразования (обмерзания) в процессе редуцирования на ГРС

Данный вариант может показаться экономически выгодным, но на самом деле практика показала, что при отрицательных температурах способ местного обогрева не эффективен, кроме того требуется источник электроэнергии.

Вывод: из сравнения стоимости применяемого оборудования видно, что применение регулятора типа РДУ-Т дает экономию затрачиваемых средств. Кроме того, вмонтированные теплогенераторы работают без постороннего источника энергии, они могут работать как постоянно - в режиме автоматического управления, так и эпизодически - в ручном режиме управления для отогрева.

Заключение

Расширяющийся рынок трубопроводной арматуры в стране при существующей масштабности газораспределительных систем дает возможность выбора более качественного оборудования нового поколения, которое разрабатывается и внедряется к выпуску, решая существующие проблемы при эксплуатации газорегулирующих систем.

Внедрение новых разработок в существующие газорегулирующие системы при видимом экономическом эффекте дают повышение надежности системы в целом, возможности автоматизации отдельных процессов, упрощение в обслуживании и повышение безопасности при эксплуатации.

Использованная литература

1. Данилов А.А. Автоматизированные газораспределительные станции: Справочник.-СПб.:ХИМИЗДАТ,2004;

3. Газоснабжение: Учеб.для вузов – 4-еизд., переаб. и доп.-М.:Стройиздат,1989;

Ознакомление с бытовым и производственным газовым оборудованием. Системами отопления и водоснабжения

Для чего нужны ПРГ

Устройство и эксплуатация пунктов редуцирования газа ПРГ

Устройство и эксплуатация пунктов редуцирования газа:

ПРГ -технологическое устройство прежде всего предназначенное для снижения давления газа и поддержания его на заданном уровне, не зависимо от изменений расхода газа у потребителей.

В ПРГ имеются устройства выполняющие следующие функции

  1. Снижение входного давления газа и поддержания выходного давления на заданном уровне. (РДГ).”Регулятор давления газа”. Ссылка
  2. Поддержание выходного давления в допустимых пределах (ПСК, ПЗК).
  3. Очистка газа от механических частиц (фильтр).
  4. Контроль входного и выходного давления (манометры).
  5. Учет расхода газа (счетчики).
  6. Дистанционный контроль параметров работы ПРГ (СТМ)–система телеметрии.

5-6 пункты необязательные

Классификация:

К ПРГ-можно отнести все ГРП, ГРПБ, ГРУ, ГРПШ, ШРП . Газовое оборудование

По месту положению в газораспределительной системе ПРГ как правило бывают, “Тупиковые и Закольцованные”. Количество линий редуцирования газа, в результате может быть одна или несколько.

ГГРП (РС)-головной газорегуляторный пункт или регуляторная станция.

Размещение ГРП или ГРПБ.

ГРП могут размещаться:

  1. Отдельно-стоящими.
  2. Пристроенными.
  3. Встроенными.
  4. На крышах зданий.
  5. Рабочее давление до 0,6 МПа.

Размещение ШРП.

  • на отдельно-стоящей опоре
  • на стене газифицированного здания.
  • на крышах зданий, и рабочим давлением до 0,6 МПа. Классификация газопроводов

ШРП– пропускной способностью до 50 m³/ч, разрешается размещать на любых стенах, даже деревянных.

Размещение ГРУ.

Читайте также: