Пропускная способность канала связи реферат

Обновлено: 05.07.2024

Задание.
В канале действует аддетивный белый гаусовский шум. Отношение сигнал/шум (Pc /Pш ) меняется с 25 до 15 дБ, с шагом 1дБ. F=1,5 кГц; Vк =8*10 3 сим/с.

1) Изменение пропускной способности канала.

2) Изменение избыточности κ двоичного кода, необходимой для сведения ошибки декодирования к сколь угодно малой величине.

Поставленная задача интересна тем, что мы сможем проследить изменение пропускной способности канала с изменением отношения сигнал/шум . Можно определить пропускную способность С канала в расчете на один символ

Ссимвол =maxI (A,B),бит/символ
или в расчете на единицу времени (например, на секунду):

С=maxI ’(A,B)=u Ссимвол , биит/с.

В данном случае мы будем рассчитывать относительно времени. Для этого мы воспользуемся формулой определяющей пропускную способность канала в расчете на единицу времени.

А для того чтобы определить избыточность передаваемой информации воспользуемся теоремой Шеннона. При условии если теорема Шеннона будет выполняться, то избыточность κ будет равняться 0, значит информация передаётся без потерь. Если нет, то κ будет больше нуля (κ>0). Т.е. чем меньше величина κ, тем меньше будет вероятность ошибки декодирования.

Пропускная способность канала связи.

В любой системе связи через канал передаётся информация. Её скорость определяется по формуле:

Величина H (A |B ) - это потери информации при передаче ее по каналу. Ее также называют ненадежностью канала. H (B |A ) - энтропия шума ; показывает, сколько бит шумовой информации примешивается к сигналу. Передачу сигнала по каналу иллюстрирует рис. 1.

Рис. 1. Передача информации по каналу с помехами

Здесь I ’(A ,B )=v *I (A ,B ) - скорость передачи информации по каналу.

Как видно из формулы (1), эта скорость зависит не только от самого канала, но и от свойств подаваемого на его вход сигнала и поэтому не может характеризовать канал как средство передачи информации.

Рассмотрим дискретный канал, через который передаются в единицу времени u символов из алфавита объёмом m. При передачи каждого символа в среднем по каналу проходит количество информации

где А и В- случайные символы на входе и выходе канала. Из четырёх фигурирующих здесь энтропий Н(А)- собственная информация передаваемого символа определяется источником дискретного сигнала и не зависит от свойств канала. Остальные три энтропии в общем случае зависят как от источника сигнала, так и от канала.

Величина I (A ,B ) характеризует не только свойства канала, но и свойства источника информации. Пусть на вход канала можно подавать сигналы от различных источников информации с различными распределениями P (A ). Для каждого источника I (A ,B ) примет свое значение. Максимальное количество информации , взятое по всевозможным Р (А ), характеризует только канал и называется пропускной способностью (ПС) канала в расчете на один символ:

где максимизация производится по всем многомерным распределениям вероятностей Р(А).

Также определяют пропускную способность С канала в расчете на единицу времени:

где v - количество символов, переданное в секунду.

В качестве примера вычислим пропускную способность дискретного симметричного канала без памяти (рис. 2) с вероятностью ошибочного перехода - p .

Рис. 2. Модель двоичного симметричного канала без памяти

Согласно свойству взаимной информации 2 можно записать: С сим =max(H (B )-H (B |A )). Распишем H (B |A ). Исходя из условий задачи вероятность правильной передачи символа по каналу - 1-p, а вероятность ошибочной передачи одного символа p /(1-m ), где m - число различных символов, передающихся по каналу. Общее количество верных передач - m ; общее количество ошибочных переходов - m *(m -1). Отсюда следует, что:

Следовательно, Н(В/А) не зависит от распределения вероятности в ансамбле А, а определяется только переходными вероятностями канала. Это свойство сохраняется для всех моделей канала с аддитивным шумом.

Максимальное значение Н (В )=log m . Отсюда следует:

Пропускная способность в двоичных единицах в расчете на единицу времени:

Для двоичного симметричного канала (m=2) пропускная способность в двоичных единицах в единицу времени

Зависимость С/u от р согласно (6) показана на рис.3


рис.3 Зависимость пропускной способности двоичного симметричного канала без памяти от вероятности ошибочного приёма символа.

При р=1/2 пропускная способность канала С=0, поскольку при такой вероятности ошибки последовательность выходных символов можно получить совсем не передавая сигнала по каналу, а выбирая их наугад, т.е. при р=1/2 последовательности на выходе и входе канала независимы. Случай С=0 называют обрывом канала .

Пропускная способность непрерывного канала связи.

Вычисляется аналогично пропускной способности дискретного канала. Непрерывный сигнал дискретизируется во времени с помощью отсчетов согласно теореме Котельникова и информация, проходящая по каналу за время Т , равна сумме количества информации, переданной за один отсчет. Поэтому общая ПС канала равна сумме ПС на один такой отсчет:

где U - переданный сигнал; Z - сигнал на выходе канала с наложенными на него шумами; N - шум; Z =U +N .

Пусть U и N - случайные величины с плотностью распределения вероятности w , распределенной по нормальному (гауссовскому) закону. Для таких сигнала и шума (см. вывод в [1, с. 114, 117-118]:

ПС в расчете на секунду будет равна:

поскольку при дискретизации сигнала по теореме Котельникова за одну секунду мы получим 2F отсчетов, где F - верхняя частота спектра сигнала.

Подчеркнем, что формула (8) имеет такой вид только при условии, что плотности распределения вероятностей w (U ) и w (N ) подчиняются нормальному закону.

Формула (8) имеет важное значение, т.к. указывает на зависимость ПС канала от его технических характеристик - ширины полосы пропускания и отношения мощности сигнала к мощности шума.

Чтобы выяснить как зависит пропускная способность от ширины полосы пропускания выразим мощность шума в канале через его одностороннюю спектральную мощность N 0 . Имеем Рш =N0 F; поэтому

При увеличении F пропускная способность С, бит/с, сначала быстро возрастает, а затем асимптотически стремится к пределу:

Результат (10) получается очень просто, если учесть, что при |e| * ) могут быть сколь угодно малы. Если же H ’(A )>С , то таких способов кодирования и декодирования не существует.

Н’(А) с, то такого кода не существует.

Теорема указывает на возможность создания помехоустойчивых кодов.

Производительность кодера H ’(B )=v к *H (B ) должна быть меньше пропускной способности канала С, иначе неизбежны потери информации в канале. Максимальное значение энтропии двоичного кодера H max =H (B )=log2=1 бит. Если С уменьшается, то для избежания потерь информации можно уменьшать H (B ) так, чтобы H ’(B ) оставалась все время меньше С. Если же H (B ) 3 сим/с

В численном виде это выглядит так:

В этих случаях энтропию Н(В) можно брать любой, вплоть до максимальной (Hmax =1 бит/сим).

Задание.
В канале действует аддетивный белый гаусовский шум. Отношение сигнал/шум (Pc /Pш ) меняется с 25 до 15 дБ, с шагом 1дБ. F=1,5 кГц; Vк =8*10 3 сим/с.

1) Изменение пропускной способности канала.

2) Изменение избыточности κ двоичного кода, необходимой для сведения ошибки декодирования к сколь угодно малой величине.

Поставленная задача интересна тем, что мы сможем проследить изменение пропускной способности канала с изменением отношения сигнал/шум . Можно определить пропускную способность С канала в расчете на один символ

Ссимвол =maxI (A,B),бит/символ
или в расчете на единицу времени (например, на секунду):

С=maxI ’(A,B)=u Ссимвол , биит/с.

В данном случае мы будем рассчитывать относительно времени. Для этого мы воспользуемся формулой определяющей пропускную способность канала в расчете на единицу времени.

А для того чтобы определить избыточность передаваемой информации воспользуемся теоремой Шеннона. При условии если теорема Шеннона будет выполняться, то избыточность κ будет равняться 0, значит информация передаётся без потерь. Если нет, то κ будет больше нуля (κ>0). Т.е. чем меньше величина κ, тем меньше будет вероятность ошибки декодирования.

Пропускная способность канала связи.

В любой системе связи через канал передаётся информация. Её скорость определяется по формуле:

Величина H (A |B ) - это потери информации при передаче ее по каналу. Ее также называют ненадежностью канала. H (B |A ) - энтропия шума ; показывает, сколько бит шумовой информации примешивается к сигналу. Передачу сигнала по каналу иллюстрирует рис. 1.

Рис. 1. Передача информации по каналу с помехами

Здесь I ’(A ,B )=v *I (A ,B ) - скорость передачи информации по каналу.

Как видно из формулы (1), эта скорость зависит не только от самого канала, но и от свойств подаваемого на его вход сигнала и поэтому не может характеризовать канал как средство передачи информации.

Рассмотрим дискретный канал, через который передаются в единицу времени u символов из алфавита объёмом m. При передачи каждого символа в среднем по каналу проходит количество информации

где А и В- случайные символы на входе и выходе канала. Из четырёх фигурирующих здесь энтропий Н(А)- собственная информация передаваемого символа определяется источником дискретного сигнала и не зависит от свойств канала. Остальные три энтропии в общем случае зависят как от источника сигнала, так и от канала.

Величина I (A ,B ) характеризует не только свойства канала, но и свойства источника информации. Пусть на вход канала можно подавать сигналы от различных источников информации с различными распределениями P (A ). Для каждого источника I (A ,B ) примет свое значение. Максимальное количество информации , взятое по всевозможным Р (А ), характеризует только канал и называется пропускной способностью (ПС) канала в расчете на один символ:

где максимизация производится по всем многомерным распределениям вероятностей Р(А).

Также определяют пропускную способность С канала в расчете на единицу времени:

где v - количество символов, переданное в секунду.

В качестве примера вычислим пропускную способность дискретного симметричного канала без памяти (рис. 2) с вероятностью ошибочного перехода - p .

Рис. 2. Модель двоичного симметричного канала без памяти

Согласно свойству взаимной информации 2 можно записать: С сим =max(H (B )-H (B |A )). Распишем H (B |A ). Исходя из условий задачи вероятность правильной передачи символа по каналу - 1-p, а вероятность ошибочной передачи одного символа p /(1-m ), где m - число различных символов, передающихся по каналу. Общее количество верных передач - m ; общее количество ошибочных переходов - m *(m -1). Отсюда следует, что:

Следовательно, Н(В/А) не зависит от распределения вероятности в ансамбле А, а определяется только переходными вероятностями канала. Это свойство сохраняется для всех моделей канала с аддитивным шумом.

Максимальное значение Н (В )=log m . Отсюда следует:

Пропускная способность в двоичных единицах в расчете на единицу времени:

Для двоичного симметричного канала (m=2) пропускная способность в двоичных единицах в единицу времени

Зависимость С/u от р согласно (6) показана на рис.3


рис.3 Зависимость пропускной способности двоичного симметричного канала без памяти от вероятности ошибочного приёма символа.

При р=1/2 пропускная способность канала С=0, поскольку при такой вероятности ошибки последовательность выходных символов можно получить совсем не передавая сигнала по каналу, а выбирая их наугад, т.е. при р=1/2 последовательности на выходе и входе канала независимы. Случай С=0 называют обрывом канала .

Пропускная способность непрерывного канала связи.

Вычисляется аналогично пропускной способности дискретного канала. Непрерывный сигнал дискретизируется во времени с помощью отсчетов согласно теореме Котельникова и информация, проходящая по каналу за время Т , равна сумме количества информации, переданной за один отсчет. Поэтому общая ПС канала равна сумме ПС на один такой отсчет:

где U - переданный сигнал; Z - сигнал на выходе канала с наложенными на него шумами; N - шум; Z =U +N .

Пусть U и N - случайные величины с плотностью распределения вероятности w , распределенной по нормальному (гауссовскому) закону. Для таких сигнала и шума (см. вывод в [1, с. 114, 117-118]:

ПС в расчете на секунду будет равна:

поскольку при дискретизации сигнала по теореме Котельникова за одну секунду мы получим 2F отсчетов, где F - верхняя частота спектра сигнала.

Подчеркнем, что формула (8) имеет такой вид только при условии, что плотности распределения вероятностей w (U ) и w (N ) подчиняются нормальному закону.

Формула (8) имеет важное значение, т.к. указывает на зависимость ПС канала от его технических характеристик - ширины полосы пропускания и отношения мощности сигнала к мощности шума.

Чтобы выяснить как зависит пропускная способность от ширины полосы пропускания выразим мощность шума в канале через его одностороннюю спектральную мощность N 0 . Имеем Рш =N0 F; поэтому

При увеличении F пропускная способность С, бит/с, сначала быстро возрастает, а затем асимптотически стремится к пределу:

Результат (10) получается очень просто, если учесть, что при |e| * ) могут быть сколь угодно малы. Если же H ’(A )>С , то таких способов кодирования и декодирования не существует.

Н’(А) с, то такого кода не существует.

Теорема указывает на возможность создания помехоустойчивых кодов.

Производительность кодера H ’(B )=v к *H (B ) должна быть меньше пропускной способности канала С, иначе неизбежны потери информации в канале. Максимальное значение энтропии двоичного кодера H max =H (B )=log2=1 бит. Если С уменьшается, то для избежания потерь информации можно уменьшать H (B ) так, чтобы H ’(B ) оставалась все время меньше С. Если же H (B ) 3 сим/с

В численном виде это выглядит так:

В этих случаях энтропию Н(В) можно брать любой, вплоть до максимальной (Hmax =1 бит/сим).

* Данная работа не является научным трудом, не является выпускной квалификационной работой и представляет собой результат обработки, структурирования и форматирования собранной информации, предназначенной для использования в качестве источника материала при самостоятельной подготовки учебных работ.

Казанский Государственный технический университет им. А.Н. Туполева

Пояснительная записка к курсовой

работе по курсу

ТЕОРИЯ ЭЛЕКТРИЧЕСКОЙ СВЯЗИ

Пропускная способность канала.

Выполнил студент гр.5313

Комиссия ________ ( _______ )

Задание.
В канале действует аддетивный белый гаусовский шум. Отношение сигнал/шум (Pc/Pш) меняется с 25 до 15 дБ, с шагом 1дБ. F=1,5 кГц; Vк=8*10 3 сим/с.

Изменение пропускной способности канала.

Изменение избыточности ? двоичного кода, необходимой для сведения ошибки декодирования к сколь угодно малой величине.

Поставленная задача интересна тем, что мы сможем проследить изменение пропускной способности канала с изменением отношения сигнал/шум . Можно определить пропускную способность С канала в расчете на один символ

Ссимвол=maxI(A,B),бит/символ
или в расчете на единицу времени (например, на секунду):

С=maxI’(A,B)= Ссимвол , биит/с.

В данном случае мы будем рассчитывать относительно времени. Для этого мы воспользуемся формулой определяющей пропускную способность канала в расчете на единицу времени.

А для того чтобы определить избыточность передаваемой информации воспользуемся теоремой Шеннона. При условии если теорема Шеннона будет выполняться, то избыточность ? будет равняться 0, значит информация передаётся без потерь. Если нет, то ? будет больше нуля (?>0). Т.е. чем меньше величина ?, тем меньше будет вероятность ошибки декодирования.

Пропускная способность канала связи.

В любой системе связи через канал передаётся информация. Её скорость определяется по формуле:

Величина H(A|B) - это потери информации при передаче ее по каналу. Ее также называют ненадежностью канала. H(B|A) - энтропия шума; показывает, сколько бит шумовой информации примешивается к сигналу. Передачу сигнала по каналу иллюстрирует рис. 1.

Рис. 1. Передача информации по каналу с помехами

Здесь I’(A,B)=v*I(A,B) - скорость передачи информации по каналу.

Как видно из формулы (1), эта скорость зависит не только от самого канала, но и от свойств подаваемого на его вход сигнала и поэтому не может характеризовать канал как средство передачи информации.

Рассмотрим дискретный канал, через который передаются в единицу времени  символов из алфавита объёмом m. При передачи каждого символа в среднем по каналу проходит количество информации

где А и В- случайные символы на входе и выходе канала. Из четырёх фигурирующих здесь энтропий Н(А)- собственная информация передаваемого символа определяется источником дискретного сигнала и не зависит от свойств канала. Остальные три энтропии в общем случае зависят как от источника сигнала, так и от канала.

Величина I(A,B) характеризует не только свойства канала, но и свойства источника информации. Пусть на вход канала можно подавать сигналы от различных источников информации с различными распределениями P(A). Для каждого источника I(A,B) примет свое значение. Максимальное количество информации, взятое по всевозможным Р(А), характеризует только канал и называется пропускной способностью (ПС) канала в расчете на один символ:

Рис. 2. Модель двоичного симметричного канала без памяти

Согласно свойству взаимной информации 2 можно записать: Ссим=max(H(B)-H(B|A)). Распишем H(B|A). Исходя из условий задачи вероятность правильной передачи символа по каналу - 1-p, а вероятность ошибочной передачи одного символа p/(1-m), где m - число различных символов, передающихся по каналу. Общее количество верных передач - m; общее количество ошибочных переходов - m*(m-1). Отсюда следует, что:

Для двоичного симметричного канала (m=2) пропускная способность в двоичных единицах в единицу времени

Зависимость С/ от р согласно (6) показана на рис.3

Если же Н’(А)>с, то такого кода не существует.

Теорема указывает на возможность создания помехоустойчивых кодов.

В численном виде это выглядит так:

В этих случаях энтропию Н(В) можно брать любой, вплоть до максимальной (Hmax=1 бит/сим).

Общая схема действия каналов связи, их классификация и характеристика. Дискретный, бинарный канал связи и определение их пропускной способности, особенности действия с помехами и без них по теореме Шеннона. Пропускная способность непрерывного канала.

Рубрика Программирование, компьютеры и кибернетика
Вид реферат
Язык русский
Дата добавления 14.07.2009
Размер файла 111,4 K

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

КАНАЛЫ СВЯЗИ

1. Классификация и характеристики канала связи

Для анализа информационных процессов в канале связи можно использовать его обобщенную схему, приведенную на рис. 1.

Существуют различные типы каналов, которые можно классифицировать по различным признакам:

По типу линий связи: проводные; кабельные; оптико-волоконные;

линии электропередачи; радиоканалы и т.д.

2. По характеру сигналов: непрерывные; дискретные; дискретно-непрерывные (сигналы на входе системы дискретные, а на выходе непрерывные, и наоборот).

3. По помехозащищенности: каналы без помех; с помехами.

Каналы связи характеризуются:

1. Емкость канала определяется как произведение времени использования канала Tк, ширины спектра частот, пропускаемых каналом Fк и динамического диапазона Dк., который характеризует способность канала передавать различные уровни сигналов

Vк = Tк Fк Dк. (1)

Условие согласования сигнала с каналом:

Vc Vk; Tc Tk; Fc Fk; Vc Vk; Dc Dk.

2. Скорость передачи информации - среднее количество информации, передаваемое в единицу времени.

Пропускная способность канала связи - наибольшая теоретически достижимая скорость передачи информации при условии, что погрешность не превосходит заданной величины.

4. Избыточность - обеспечивает достоверность передаваемой информации (R = 01).

Одной из задач теории информации является определение зависимости скорости передачи информации и пропускной способности канала связи от параметров канала и характеристик сигналов и помех.

Скорость передачи данных в значительной мере зависит от передающей среды в каналах связи, в качестве которых используются различные типы линий связи.

Проводные:

1. Проводные - витая пара (что частично подавляет электромагнитное излучение других источников). Скорость передачи до 1 Мбит/с. Используется в телефонных сетях и для передачи данных.

2. Коаксиальный кабель. Скорость передачи 10-100 Мбит/с - используется в локальных сетях, кабельном телевидении и т.д.

3. Оптико-волоконная. Скорость передачи 1 Гбит/с.

В средах 1-3 затухание в дБ линейно зависит от расстояния, т.е. мощность падает по экспоненте. Поэтому через определенное расстояние необходимо ставить регенераторы (усилители).

Радиолинии:

Радиоканал. Скорость передачи 100-400 Кбит/с. Использует радиочастоты до 1000 МГц. До 30 МГц за счет отражения от ионосферы возможно распространение электромагнитных волн за пределы прямой видимости. Но этот диапазон сильно зашумлен (например, любительской радиосвязью). От 30 до 1000 МГц - ионосфера прозрачна и необходима прямая видимость. Антенны устанавливаются на высоте (иногда устанавливаются регенераторы). Используются в радио и телевидении.

Микроволновые линии. Скорости передачи до 1 Гбит/с. Используют радиочастоты выше 1000 МГц. При этом необходима прямая видимость и остронаправленные параболические антенны. Расстояние между регенераторами 10-200 км. Используются для телефонной связи, телевидения и передачи данных.

3. Спутниковая связь. Используются микроволновые частоты, а спутник служит регенератором (причем для многих станций). Характеристики те же, что у микроволновых линий.

2. Пропускная способность дискретного канала связи

Дискретный канал представляет собой совокупность средств, предназначенных для передачи дискретных сигналов [5].

Пропускная способность канала связи - наибольшая теоретически достижимая скорость передачи информации при условии, что погрешность не превосходит заданной величины. Скорость передачи информации - среднее количество информации, передаваемое в единицу времени. Определим выражения для расчета скорости передачи информации и пропускной способности дискретного канала связи.

При передаче каждого символа в среднем по каналу связи проходит количество информации, определяемое по формуле

I (Y, X) = I (X, Y) = H(X) - H (X/Y) = H(Y) - H (Y/X), (2)

I(YT, XT) = H(XT) - H(XT/YT) = H(YT) - H(YT/XT) = n [H(X) - H (X/Y), (3)

Для символов равной длительности = , в случае неравновероятных символов неравной длительности

При этом скорость передачи информации

Скорость передачи информации зависит от статистических свойств источника, метода кодирования и свойств канала.

Пропускная способность дискретного канала связи

Максимально-возможное значение, т.е. максимум функционала ищется на всем множестве функций распределения вероятности p(x).

Пропускная способность зависит от технических характеристик канала (быстродействия аппаратуры, вида модуляции, уровня помех и искажений и т.д.). Единицами измерения пропускной способности канала являются: [bit/s], [Kbit/s], [Mbit/s], [Gbit/s].

2.1 Дискретный канал связи без помех

Если помехи в канале связи отсутствуют, то входные и выходные сигналы канала связаны однозначной, функциональной зависимостью.

При этом условная энтропия равна нулю, а безусловные энтропии источника и приемника равны, т.е. среднее количество информации в принятом символе относительно переданного равно

I (X, Y) = H(X) = H(Y); H (X/Y) = 0.

Если ХТ - количество символов за время T, то скорость передачи информации для дискретного канала связи без помех равна

где V = 1/ - средняя скорость передачи одного символа.

Пропускная способность для дискретного канала связи без помех

Т.к. максимальная энтропия соответствует для равновероятных символов, то пропускная способность для равномерного распределения и статистической независимости передаваемых символов равна:

Первая теорема Шеннона для канала: Если поток информации, вырабатываемый источником, достаточно близок к пропускной способности канала связи, т.е.

, где - сколь угодно малая величина,

Теорема не отвечает на вопрос, каким образом осуществлять кодирование.

p1 = 0,1; p2 = 0,2 и p3 = 0,7.

Решение: Энтропия источника равна

Средняя скорость передачи сигнала

V =1/2 = 500 [1/c].

Скорость передачи информации

C = vH = 500 1,16 = 580 [бит/с].

2.2 Дискретный канал связи с помехами

Мы будем рассматривать дискретные каналы связи без памяти.

I(YT, XT) = H(XT) - H(XT/YT) = H(YT) - H(YT/XT) = n [H(Y) - H (Y/X). (9)

Скорость передачи информации по дискретному каналу с помехами

Как видно из формулы, наличие помех уменьшает пропускную способность канала связи.

Из изложенного выше следует определение для емкости или пропускной способности канала с шумами: это максимальная скорость передачи информации на символ или в единицу времени при условии, что канал связи без шумов согласован с источником информации. Если передача информации происходит без помех, то пропускную способность канала (емкость канала) определяют как предельную скорость передачи… Читать ещё >

Пропускная способность канала связи без помех ( реферат , курсовая , диплом , контрольная )

Пропускная способность канала связи без помех.

Если передача информации происходит без помех, то пропускную способность канала (емкость канала) определяют как предельную скорость передачи информации по этому каналу по формуле:

Пропускная способность канала связи без помех.

В общем случае необходимо рассматривать отрезок времени Т->. В частном случае для повторяющихся циклических процессов Т равно времени цикла. Если сигналы передаются со скоростью S импульсов в секунду, т. е. S = 1/t, где t — время передачи одного импульса, то за время Т можно передать n = T/t = S*T импульсов.

Для двоичного (бинарного) канала максимальное число комбинаций элементарных сигналов, передаваемых за время Т:

Пропускная способность канала связи без помех.

Максимальное количество информации, передаваемое этими комбинациями определяется по формуле Хартли (6.2).

Пропускная способность канала связи без помех.

Тогда емкость бинарного канала связи (бит/с):

Пропускная способность канала связи без помех.

Пропускная способность канала связи при наличии помех

Пропускная способность канала связи без помех.

Если передача информации происходит при действии помех (шумов), то это существенно усложняет передачу. В этом случае канал характеризуется условными вероятностями p (yj/xi) того, что будет принят сигнал yj, если передан сигнал xi. Сам канал с шумами задается совокупностью этих вероятностей, представленных в виде канальной матрицы:

Пропускная способность канала связи без помех.

В этой матрице m — число букв алфавита принятого сигнала Y= равного числу букв алфавита переданного сигнала X=. При отсутствии помех все p (yj/xi) =0 при ji и при j=i равны 1.

Среднее количество информации на символ сигнала, получаемое при приеме одного элементарного сигнала равно:

Пропускная способность канала связи без помех.

где H (Y) — энтропия на входе линии. В случае независимости отдельных символов она равна:

Пропускная способность канала связи без помех.

а H (Y/X) — средняя условная энтропия:

Пропускная способность канала связи без помех.

Пропускная способность канала связи ищется по всем возможным распределениям вероятностей, характеризующих источник сигнала:

Пропускная способность канала связи без помех.

В качестве примера рассмотрим симметричный бинарный канал, т. е. такой канал, по которому передаются двоичные сигналы (со скоростью S) и в котором вероятность превращения (в результате действия помех) 1 в 0 и 0 в 1 одинакова и равна p (вероятность правильного приема, следовательно, равна 1 — p). В этом случае алфавит X и алфавит Y состоят из двух символов: X = и Y = . Диаграмма (рис. 6.3) показывает возможные варианты передачи и соответствующие им вероятности.

Диаграмма передачи по бинарному симметричному каналу.

Рис. 6.3 Диаграмма передачи по бинарному симметричному каналу.

Средняя условная энтропия:

Пропускная способность канала связи без помех.

Таким образом, средняя условная энтропия не зависит от характеристик источника, т. е. от p (x1) и p (x2). Следовательно, максимальное количество информации на один символ получается при таком распределении вероятностей p (xi), при котором оказывается максимальным член H (X). Но H (X) для бинарного канала не может превосходить величины: H (X) = log2 = 1, что достигается при p (x1) = p (x2) = ½. Поэтому имеем:

и пропускная способность бинарного симметричного канала связи равна:

Пропускная способность канала связи без помех.

Влияние шумов наглядно иллюстрируется двумя крайними случаями:

1. При очень больших шумах, когда p=½ пропускная способность.

Пропускная способность канала связи без помех.

2. При отсутствии шумов (p=0) пропускная способность максимальна: Cmax = S.

Из изложенного выше следует определение для емкости или пропускной способности канала с шумами: это максимальная скорость передачи информации на символ или в единицу времени при условии, что канал связи без шумов согласован с источником информации.

Читайте также: