Проектирование волоконно оптических систем реферат

Обновлено: 25.06.2024

Стойки телемеханики и служебной связи предназначена для сбора и отображения информации о положении датчиков на контролируемых ОП, ОРП, НРП по двум ОВ в цифровом виде в низкочастотной части спектра совместно с информационным сигналом, с также для организации оперативной телефонной связи между ОП, ОРП и НРП по двум ОВ совместно с информационным сигналом. Одна стойка обслуживает два линейных тракта при установке на ОП и четыре при установке на ОРП.

Комплект блоков НРП обеспечивает передачу по каждой паре ОВ цифровых сигналов совместно с сигналами СС и ТМ. Оптический сигнал поступает на оптический линейный регенератор (РЛ-О), в котором производится оптоэлектронное преобразование, после чего сигнал усиливается, из него выделяются низкочастотные сигналы ТМ и СС, которое подаются соответственно в блоки телемеханики и сервисного обслуживания (БТМ-О и БССС-О). Информационный сигнал поступает на видеорегенератор, где восстанавливается по амплитуде и временному положению и объединяется с сервисными сигналами ТМ и СС. Объединенный сигнал преобразуется в оптический с помощью ЛД и излучается в ОВ ОК.

Электропитание оборудования НРП рассчитано на работу от устройства дистанционного питания (УДП) по отдельно проложенному кабелю, либо по медным жилам ОК, либо от автономного источника питания . Стойка дистанционного питания (СДП-О) обеспечивает электропитание до двух НРП, по одному в каждую сторону. В качестве автономного источника питания НРП предполагается использовать термоэлектрический генератор (РИТЭГ).

Допустимые значения наведенных ЭДС на цепи дистанционного питания составляют: долговременно 150 В; грозовой импульс 3 кв.

Таблица 1 Характеристики аппаратуры ВОСП “Сопка-3М”

Число стандартных каналов ТЧ 480
Скорость передачи, Мбит/с 34,368
Линейный код 2В4В
Тип приемника излучения PIN-FET
Тип оптического волокна ООВ
Длина волны, мкм 1,55
Тип источника излучения ЛД
Энергетический потенциал, дБМ 38
Затухание ОВ, дБ/км 0,3
Максимальная длина регенерационного участка, км 70
Рекомендуемый кабель ОКЛ
Максимальная длина линейного тракта, км 600

Примечание: PIN-FET –p-i-n фотодиод, ЛД – лазерный диод, ООВ – одномодовое оптическое волокно.

Целью курсового проектирования является приобретение практических навыков проектирования и расчета локальных волоконно-оптических линий связи (ВОЛС).
Задачами курсового проекта являются: обоснование выбора необходимой элементной базы и расчет основных параметров проектируемой ВОЛС.

Содержание

Введение
1. Анализ исходных данных
1.1 Исходные данные
1.2 Требования к системе
1.3 Топология сети
1.4 Код передаваемого сигнала
2. Выбор элементной базы ВОСП
2.1 Выбор оптического кабеля
2.2 Выбор типа излучателя
2.3 Выбор типа фотодетектора
2.4 Выбор типов оптических соединителей и разветвителей
3. Расчет параметров цифровой ВОСП
3.1 Расчет энергетического потенциала системы
3.2 Расчет потерь в оптическом линейном тракте
3.3 Расчет эксплуатационного запаса системы
3.4 Расчет длины регенерационного участка, ограниченного затуханием оптического сигнала
3.5 Расчет длины регенерационного участка, ограниченного дисперсией
3.6 Расчет быстродействия системы
Выводы
Список использованной литературы

Вложенные файлы: 1 файл

проектирование ВОЛП.rtf

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ УКРАИНЫ

ХАРЬКОВСКИЙ НАЦИОНАЛЬНЫЙ УНИВЕРСИТЕТ РАДИОЭЛЕКТРОНИКИ

Факультет "Электронные аппараты"

К КУРСОВОМУ ПРОЕКТУ

по дисциплине: “Конструирование и технология систем обработки информации”

“Проектирование волоконно-оптических систем передачи ”

1. Анализ исходных данных

1.1 Исходные данные

1.2 Требования к системе

1.3 Топология сети

1.4 Код передаваемого сигнала

2. Выбор элементной базы ВОСП

2.1 Выбор оптического кабеля

2.2 Выбор типа излучателя

2.3 Выбор типа фотодетектора

2.4 Выбор типов оптических соединителей и разветвителей

3. Расчет параметров цифровой ВОСП

3.1 Расчет энергетического потенциала системы

3.2 Расчет потерь в оптическом линейном тракте

3.3 Расчет эксплуатационного запаса системы

3.4 Расчет длины регенерационного участка, ограниченного затуханием оптического сигнала

3.5 Расчет длины регенерационного участка, ограниченного дисперсией

3.6 Расчет быстродействия системы

Список использованной литературы

Целью курсового проектирования является приобретение практических навыков проектирования и расчета локальных волоконно-оптических линий связи (ВОЛС).

Задачами курсового проекта являются: обоснование выбора необходимой элементной базы и расчет основных параметров проектируемой ВОЛС.

Научно-технический прогресс в значительной мере определяется объемом и скоростью передачи информации. Возможность увеличения объемов передаваемой информации наиболее полно реализуется при использовании волоконно-оптических систем передачи (ВОСП). Применение ВОСП решает проблему электромагнитной совместимости, защиты цепей и трактов систем связи от разнообразных воздействий.

ВОСП представляет собой совокупность активных и пассивных устройств, предназначенных для передачи информации на расстояние по оптическим волокнам (ОВ), иначе - волоконным световодам (ВС), с помощью оптических волн. Таким образом, ВОСП - это совокупность оптических приборов и оптических линий передачи для создания, передачи и обработки оптических сигналов. В этом случае оптическим сигналом является модулированное оптическое излучение источника (лазера или светодиода), передаваемое по ОВ в виде совокупности различных типов оптических волн (мод). Средой передачи в ВОСП является оптическое волокно, а носителем информации - электромагнитные колебания оптического диапазона.

В современной технике связи утвердились цифровые средства передачи и обработки информации. Преимущества цифровых систем передачи по сравнению с аналоговыми - высокая помехоустойчивость, нечувствительность к нелинейным искажениям, независимость качества передачи от длины линии связи, стабильность параметров канала связи и др.

Во всем мире достигли значительного прогресса в развитии ВОЛС. В сетях связи Украины широко используются ВОСП для линий связи всех ступеней иерархии: магистральных, зоновых, местных.

Применение ВОСП целесообразно и экономически эффективно на всех участках Единой Национальной Сети Связи Украины. Это не только повышает технико-экономические показатели отрасли связи, но и обеспечивает возможность поэтапного перехода к цифровым сетям интегрального обслуживания.

В Украине ВОСП наиболее широко используются для организации соединительных линий городской телефонной сети и для зоновой связи.

Проектирование волоконно-оптической линии связи

Описание: Технологии локальных сетей, ориентированных на передачу данных, а не голоса, развивались не по линии уплотнения каналов, а по линии увеличения полосы пропускания каналов передачи данных, необходимой для передачи не только текстовых, но и графических данных

Дата добавления: 2014-12-21

Размер файла: 94.72 KB

Работу скачали: 100 чел.


Поделитесь работой в социальных сетях

Если эта работа Вам не подошла внизу страницы есть список похожих работ. Так же Вы можете воспользоваться кнопкой поиск

1. Введение стр. 3

2. Задание на проектирование стр. 5

3. Исходные данные для проектирования стр. 5

4. Выбор оптического кабеля связи и распределение ОВ в кабеле стр. 8

5. Расчет длин и затуханий мультиплексных секций стр. 10

6. Заключение стр. 1 4

7. Литература стр. 15

Сетевые цифровые технологии развивались до последнего времени параллельно для глобальных и локальных сетей. Технологии глобальных сетей были направлены в основном на развитие цифровых телефонных сетей, используемых для передачи голоса. Технологии локальных сетей – напротив, использовались, в основном, для передачи данных.

Развитие цифровых телефонных сетей шло по линии уплотнения каналов как за счет мультиплексирования низкоскоростных первичных каналов T 1, так и за счет использования более рациональных методов модуляции, например, использования дифференциальной ИКМ и ее модификаций, позволивших применять для передачи голосового сигнала более низкие, чем 64 кбит/с (основной цифровой канал – ОЦК) скорости: 40, 32, 24 ,16, 8 и 5,6 кбит/с.

Развитие схем мультиплексирования привело к возникновению трех цифровых иерархий с разными (для разных групп стран) уровнями стандартизированных скоростей передачи или каналов: DS 2 или T 2/ E 2, DS 3 или T 3/ E 3, DS 4 или T 4/ E 4. Эти иерархии, названные плезиохронными (т.е. почти синхронными) цифровыми иерархиями PDH (ПЦИ), широко использовались и продолжают использоваться как в цифровой телефонии, так и для передачи данных.

Развитие технологий скоростных телекоммуникаций на основе PDH привело к появлению в последнее время двух наиболее значительных новых цифровых технологий: синхронной оптической сети SONET (СОС), и синхронной цифровой иерархии SDH (СЦИ), иногда рассматриваемых как единая технология SONET / SDH , расширившая диапазон используемых скоростей передачи до 40 Гбит/с. Эти технологии были ориентированы на использование волоконно-оптических кабелей (ВОК) в качестве среды передачи.

Технологии локальных сетей, ориентированных на передачу данных, а не голоса, развивались не по линии уплотнения каналов, а по линии увеличения полосы пропускания каналов передачи данных, необходимой для передачи не только текстовых, но и графических данных, а сейчас и данных мультимедиа. В результате используемые на начальном этапе развития сетевые технологии ARCnet, Ethernet и Token Ring, реализующие скорости передачи 2-16 Мбит/с в полудуплексном режиме и 4-32 Мбит/с в дуплексном режиме, уступили место новым скоростным технологиям: FDDI, Fast Ethernet и 100VG-Any LAN, использующим скорость передачи данных 100 Мбит/с и ориентированных в большей части своей также на применение ВОК. Итогом Апофеозомастков и рческой связи,кой Федерации этого развития стала новая технология Gigabit Ethernet, использующая скорость передачи 1 Гбит/с

Создание компьютерных сетей масштаба предприятия, а также корпоративных, региональных и глобальных сетей передачи данных, связывающих множество ЛВС, в свою очередь привело к созданию таких транспортных технологий передачи данных, как: Х.25, ISDN (цифровая сеть интегрированного обслуживания ЦСИО, или цифровая сеть с интеграцией служб ЦСИС) и Frame Relay (технология ретрансляции кадров), решавших эти задачи первоначально на скоростях 64 кбит/с, 144 кбит/с (узкополосная ISDN) и 1,5/2 Мбит/с соответственно.

Дальнейшее развитие этих технологий также шло по линии увеличения скоростей передачи и привело к трем важным результатам:

- постепенному отмиранию (в плане бесперспективности развития) существующей еще

- увеличению скорости передачи данных, реализуемых технологией Frame Relay до скорости T3 (45 Мбит/с);

- появлению в недрах технологии ISDN (а именно широкополосной B-ISDN) новой технологии ATM (режима асинхронной передачи), которая принципиально может применяться на различных скоростях передачи (от 1.5 Мбит/с до 40 Гбит/с), причем она самостоятельно может использоваться как технология магистральной передачи трафика (не требуя промежуточной технологии переносчика) или может передавать свои трафик с использованием промежуточной технологии переносчика (например, PDH, SONET/SDH или WDM) благодаря использованию техники инкапсуляции ячеек в фреймы, виртуальные трибы или виртуальные контейнеры.

Из описанных технологий в литературе наибольшее внимание до недавнего времени уделялось только технологии ATM, хотя она и не была широко распространена в России (по сведениям автора и до сих пор существуют только изолированно функционирующие коммерческие сети ATM или экспериментальные корпоративные сети, на которых эта технология отрабатывается). В отличие ATM в России развернуты и полномасштабно функционируют практически в каждом регионе, начиная с 1993 года, десятки крупных сетей SDH. Технология SDH активно осваивается регионами. На её основе происходит крупномасштабное переоборудование старой аналоговой сети свези и относительно новой сети связи PDH России в цифровую Взаимоувязанную сеть связи (ВСС), использующие самые передовые технологии.

Использование SDH позволило резко повысить скорость передачи на сети РФ в целом, доведя ее сегодня ив отдельных участках до 2,5 Гбит/с, а также потенциально подготовив сеть к внедрению технологии WDM. Учитывая факт внедрения систем SDH уровня STM-64 (10 Гбит/с) отдельными западными компаниями, а также то, что WDM позволит многократно (от 2 до 160 раз) увеличить общую скорость передачи по одному волокну, не говоря о том, что далее она может быть также многократно (от 2 до 144 раз) увеличена за счет использования многоволоконного оптического кабеля, мы подучим впечатляющие перспективы максимально возможного в будущем более чем 92000-кратного увеличения пропускной способности наших кабелей, которое, в принципе доступно прямо сейчас.

В настоящее время ускорение технического прогресса невозможно без совершенствования средств связи, систем сбора, передачи и обработки информации. В вопросах развития сетей связи во всех странах большое внимание уделяется развитию систем передачи и распределения (коммутации) информации.

Наиболее широкое распространение в последнее время получили многоканальные телекоммуникационные системы (ТКС) передачи с импульсно-кодовой модуляцией (ИКМ), работающие по волоконно-оптическим кабелям (ОК).

В настоящее время волоконно-оптическая связь широко применяется не только для организации телефонной связи, но и для кабельного телевидения, видеотелефонии, радиовещания, передачи данных и т.д.

Таким образом, на сетях связи всех уровней на ВОЛС некоторое время будут совместно находиться на эксплуатации ВОСП Р DH и SDH . Такое положение сохранится до полного вытеснения систем Р DH системами SDH . Поэтому на данном этапе развития ВСС весьма важным является умение проектировать цифровые оптические линии передачи и оценивать качество их функционирования.
РАЗВИТИЕ СЕТЕВЫХ ЦИФРОВЫХ ТЕХНОЛОГИЙ
Благодаря технологиям наш мир может стать более равноправным, миролюбивым и справедливым. Развитие цифровых технологий может способствовать поддержанию и ускорению достижения каждой из 17 целей в области устойчивого развития — начиная с целей ликвидации крайней нищеты, снижения коэффициентов материнской и младенческой смертности и заканчивая целями поощрения устойчивого фермерского производства и обеспечения достойной работы, а также достижения всеобщей грамотности. Вместе с тем технологии могут ставить под угрозу неприкосновенность частной жизни, подрывать безопасность и усугублять неравенство. Использование технологий сказывается как на осуществлении прав человека, так и на обеспечении свободы его действий. Как и предыдущим поколениям, нам — членам правительств, представителям компаний и частным лицам — предстоит сделать выбор в отношении того, как мы используем новые технологии и контролируем их развитие.

Внедрение цифровых технологий происходит быстрее, чем внедрение любых других инновационных разработок в истории человечества: всего за два десятилетия цифровыми технологиями удалось охватить около 50 процентов населения развивающихся стран и преобразовать с их помощью общества. Использование технологий, способствующих расширению коммуникационных возможностей и доступа к финансовым, коммерческим и государственным услугам, может привести к значительному снижению уровня неравенства населения.
Сегодня цифровые технологии, такие как системы объединения данных и искусственный интеллект, используются для отслеживания и диагностики проблем в сельском хозяйстве, здравоохранении и окружающей среде или для выполнения повседневных задач, таких как объезд транспортных пробок или оплата счетов. Такие технологии могут использоваться как для защиты и осуществления прав человека, так и для их нарушения, например путем отслеживания наших перемещений, покупок, разговоров и поведения. Правительства и предприятия располагают все большим числом инструментов для поиска, анализа и использования данных в финансовых и других целях.
Оптическое волокно — диэлектрические волноводы, представляет собой прозрачную нить из стекла или пластика. Благодаря внутреннему отражению нити используются для переноса света внутри себя. Созданные из таких нитей кабели ложатся в основу волоконно-оптических линий связи (ВОЛС), отличающихся высокой скоростью передачи информации на большие расстояния.

Области, в которых применяется волоконно-оптическая связь, обширны: социальная сфера и сфера IT, коммуникационная отрасль, промышленность, инженерия, задача госбезопасности и т.д.


  • высокая пропускная способность за счет низкого уровня шума — до нескольких терабит за 1 секунду;

  • помехоустойчивость и надежность;

  • пожароустойчивость — кабель можно применять на объектах с повышенным классом пожарной опасности;

  • передача на большие расстояния (100, 200 км и выше) благодаря малому затуханию светового сигнала;

  • невосприимчивость к электромагнитному излучению — защищает систему от влаги и вызванных ею проблем (к примеру, плесени) и окисления;

  • защита от несанкционированного доступа — обеспечивается чувствительностью к колебаниям и отсутствием излучений в радиодиапазоне. За это свойство волоконно-оптические линии связи ценят госструктуры, банки и другие финансовые организации, а также те, кто работает с закрытой информацией;

  • большой срок службы и экономичность. При непрерывной эксплуатации сигналы начнут затухать примерно через четверть века, а значит 20-25 лет можно не бояться износа системы.

ВЫБОР И КРАТКОЕ ОПИСАНИЕ ВОЛОКОННО-ОПТИЧЕСКИХ СИСТЕМ ПЕРЕДАЧИ

В данной работе будет рассмотрен участок Б-З. его можно рассмотреть на рис.1

СРАВНИТЕЛЬНЫЕ ХАРАКТЕРИСТИКИ КАНАЛОВ СВЯЗИ

Схема участка А-З представлена на рис.1. Данные об участке А-З приведены в таблице 1.

Данные о необходимом количестве каналов (потоков данных) для каналов коммерческой связи приведены в таблице 2.

В таблице 3 задана строительная длина ОК, которую следует использовать при проектировании ВОЛС.

Читайте также: