Применение электромагнитной индукции в технике реферат

Обновлено: 04.07.2024

Практическое применение закона электромагнитной индукции Фарадея

После знакомства с публикациями 1821 года, описывающими опыты датского ученого Эрстеда об отклонениях магнитной стрелки около проводника с электрическим током, Майкл Фарадей поставил перед собой задачу: преобразовать магнетизм в электричество .

Через 10 лет исследований он сформулировал основной закон электромагнитной индукции, объяснив, что внутри любого замкнутого контура наводится электродвижущая сила. Ее величина определяется скоростью изменения магнитного потока, пронизывающего рассматриваемый контур, но взятую со знаком минус.

Передача электромагнитных волн на расстояние

Первая догадка, которая осенила мозг ученого, не увенчалась практическим успехом.

Он расположил рядом два замкнутых проводника. Около одного установил магнитную стрелку в качестве индикатора проходящего тока, а в другой провод подал импульс от мощного гальванического источника того времени: вольтова столба.

Исследователь предполагал, что при импульсе тока в первом контуре изменяющееся в нем магнитное поле наведет во втором проводнике ток, который отклонит магнитную стрелку. Но, результат оказался отрицательным — индикатор не сработал. Вернее, ему не хватило чувствительности.

Мозг ученого предвидел создание и передачу электромагнитных волн на расстояние, которые сейчас используются в радиовещании, телевидении, беспроводном управлении, Wi-Fi технологиях и подобных устройствах. Его просто подвела несовершенная элементная база измерительных устройств того времени.

После проведения неудачного опыта Michael Faraday видоизменил условия эксперимента.

Для опыта Фарадей использовал две катушки с замкнутыми контурами. В первый контур он подавал электрический ток от источника, а во втором наблюдал за появлением ЭДС. Проходящий по виткам обмотки №1 ток создавал вокруг катушки магнитный поток, пронизывающий обмотку №2 и образовывающий в ней электродвижущую силу.

Во время эксперимента Фарадей:

  • включал импульсом подачу напряжения в цепь при неподвижных катушках;
  • при поданном токе вводил в нижнюю катушку верхнюю;
  • закреплял стационарно обмотку №1 и вводил в нее обмотку №2;
  • изменял скорость перемещения катушек относительно друг друга.

Во всех этих случаях он наблюдал проявление ЭДС индукции во второй катушке. И лишь при прохождении постоянного тока по обмотке №1 и неподвижных катушках наведения электродвижущей силы не было.

Ученый определил, что наводимая во второй катушке ЭДС зависит от скорости, с которой меняется магнитный поток. Она пропорциональна его величине.

Эта же закономерность полностью проявляется при прохождении замкнутого витка сквозь силовые магнитные линии поля постоянного магнита. Под действием ЭДС в проводе образуется электрический ток.

Магнитный поток в рассматриваемом случае изменяется в контуре Sк, созданном замкнутой цепью.

Таким способом созданная Фарадеем разработка позволила поместить в магнитное поле вращающуюся токопроводящую рамку.

Ее затем сделали из большого количества витков, закрепили в подшипниках вращения. По концам обмотки вмонтировали токосъемные кольца и щетки, скользящие по ним, а через выводы на корпусе подключили нагрузку. Получился современный генератор переменного тока.

Его более простая конструкция создалась тогда, когда обмотку закрепили на стационарном корпусе, а вращать стали магнитную систему. В этом случае способ образования токов за счет электромагнитной индукции никак не нарушался.

Принцип работы электродвигателей

Закон электромагнитной индукции, который обсновал Michael Faraday, позволил создать различные конструкции электрических двигателей. Они имеют сходное устройство с генераторами: подвижный ротор и статор, которые взаимодействуют между собой за счет вращающихся электромагнитных полей.

Только через обмотку статора электродвигателя пропускают электрический ток. Он индуцирует магнитный поток, влияющий на магнитное поле ротора. В результате возникают силы, раскручивающие вал двигателя. Смотрите по этой теме - Принцип действия и устройство электродвигателя

Майкл Фарадей определил возникновение наведенной электродвижущей силы и индукционного тока в рядом расположенной обмотке при изменении магнитного поля в соседней катушке.

Ток внутри близлежащей обмотки наводится при коммутациях цепи выключателя в катушке 1 и всегда присутствует во время работы генератора на обмотку 3.

На этом свойстве, получившем название взаимоиндукции , основана работа всех современных трансформаторных устройств.

Трансформаторы передают за счет взаимоиндукции энергию переменного электромагнитного поля из одной обмотки в другую так, что при этом происходит изменение, трансформация величины напряжения на входных и выходных его клеммах.

Соотношение количества витков в обмотках определяет коэффициент трансформации , а толщина провода, конструкция и объем материала сердечника — величину пропускаемой мощности, рабочий ток.

Проявление электромагнитной индукции наблюдается в катушке во время изменения в ней величины протекающего тока. Этот процесс получил название самоиндукции .

При включении выключателя на приведенной схеме индукционный ток видоизменяет характер прямолинейного нарастания рабочего тока в цепи, как и во время отключения.

Когда же к проводнику, смотанному в катушку, прикладывается не постоянное, а переменное напряжение, то через нее протекает уменьшенное индуктивным сопротивлением значение тока. Энергия самоиндукции сдвигает по фазе ток относительно приложенного напряжения.

Это явление используется в дросселях, которые предназначены для уменьшения больших токов, возникающих при определенных условиях работы оборудования. Такие устройства, в частности, применяются в схеме зажигания люминесцентных ламп.

Конструктивная особенность магнитопровода у дросселя — разрез пластин, который создается для дополнительного повышения магнитного сопротивления магнитному потоку за счет образования воздушного зазора.

Дроссели с разрезным и регулируемым положением магнитопровода используются во многих радиотехнических и электрических устройствах. Довольно часто их можно встретить в конструкциях сварочных трансформаторов. Ими уменьшают величину электрической дуги, пропускаемой через электрод, до оптимального значения.

Явление электромагнитной индукции проявляется не только в проводах и обмотках, но и внутри любых массивных металлических предметов. Наводимые в них токи принято называть вихревыми. При работе трансформаторов и дросселей они вызывают нагрев магнитопровода и всей конструкции.

Для предотвращения этого явления сердечники изготавливают из тонких металлических листов и изолируют между собой слоем лака, препятствующим прохождению наведенных токов.

В обогревательных конструкциях вихревые токи не ограничивают, а создают для их прохождения наиболее благоприятные условия. Индукционные печи широко применяются в промышленном производстве для создания высоких температур.

Электротехнические измерительные устройства

В энергетике продолжает работать большой класс индукционных приборов. Электрические счетчики с вращающимся алюминиевым диском, аналогичные конструкции реле мощности, успокоительные системы стрелочных измерительных приборов функционируют на основе принципа электромагнитной индукции.

Газовые магнитные генераторы

Если вместо замкнутой рамки в поле магнита перемещать токопроводящий газ, жидкость или плазму, то заряды электричества под действием магнитных силовых линий станут отклоняться в строго определенных направлениях, формируя электрический ток. Его магнитное поле на смонтированных электродных контактных пластинах наводит электродвижущую силу. Под ее действием в подключенной цепи к МГД-генератору создается электрический ток.

Так закон электромагнитной индукции проявляется в МГД-генераторах.

Здесь нет таких сложных вращающихся частей, как ротор. Это упрощает конструкцию, позволяет значительно повышать температуру рабочей среды, а, заодно и эффективность выработки электроэнергии. МГД-генераторы работают в качестве резервных либо аварийных источников, способных вырабатывать значительные потоки электроэнергии в малые промежутки времени.

Таким образом, закон электромагнитной индукции, обоснованный Майклом Фарадеем в свое время продолжает оставаться актуальным в наши дни.

ВложениеРазмер
Исследовательский проект 89 КБ

Предварительный просмотр:

Управление образования Администрации г. Екатеринбурга

МБОУ ДОД Городской Дворец творчества детей и молодежи

Открытая городская научно-исследовательская конференция

2012-2013 учебный год

Направление: физика и химия

Электромагнитная индукция в быту

Автор: Сопова Екатерина Евгеньевна,

МБОУ СОШ №200, 9 класс

Научный руководитель: Негатина Вера Сергеевна,

учитель физики высшей категории

Глава 1. Электромагнитная индукция

1.1. Понятие электромагнитная индукция 4

1.2. Открытие электромагнитной индукции 5

1.3. Электромагнитная индукция в быту 6

1.3.1. Плиты на основе явления электромагнитной индукции 7

1.3.2. Зарядные устройства на основе явления электромагнитной индукции 8

1.3.3. Идея из прошлого для утюга будущего 9

Глава 2. Практическая часть

2.1. Изготовление модели 10

2.2. Сравнительный анализ продукции с использованием электромагнитной индукции и без неё 15

Список источников 19

Цель работы: выполнить сравнительную характеристику индукционных и неиндукционных электроприборов и разработать собственные модели индукционных устройств.

На основе поставленной цели были поставлены и сформулированы задачи :

  1. Изучить информацию по этой теме.
  2. Выяснить достоинства и недостатки индукционных устройств, которые в настоящее время наиболее распространены.
  3. Создать действующие модели устройств, в которых используется явление электромагнитной индукции.

Объект исследования – индукционные бытовые приборы.

Предмет исследования – достоинства и недостатки бытовых приборов, принцип действия которых основан на применении явления электромагнитной индукции.

Основными источниками по теме стали: учебная литература, интернет ресурсы. Методы работы: теоретический и практический.

Эта работа состоит из введения, 2 глав и заключения.

Глава 1. Электромагнитная индукция

Явление возникновения электрического тока в замкнутом проводящем контуре при изменениях магнитного поля, пронизывающего контур, называется электромагнитной индукцией.

В 1831 г. Фарадей (Приложение 1) обнаружил, что в замкнутом проводящем контуре при изменении магнитного поля возникает электрический ток. Этот ток назвали индукционным током.

Индукционный ток в катушке из металлической проволоки возникает при вдвигании магнита внутрь катушки и при выдвигании магнита из катушки (Приложение 2), а также при изменении силы тока во второй катушке, магнитное поле которой пронизывает первую катушку (Приложение 3).[1]

Открытие электромагнитной индукции

Следующим важным шагом в развитии электродинамики после опытов Ампера было открытие явления электромагнитной индукции. Открыл явление электромагнитной индукции английский физик Майкл Фарадей (1791 - 1867).

Фарадей, будучи еще молодым ученым, так же как и Эрстед, думал, что все силы природы связаны между собой и, более того, что они способны превращаться друг в друга. Интересно, что эту мысль Фарадей высказывал еще до установления закона сохранения и превращения энергии. Фарадей знал об открытии Ампера, о том, что он, говоря образным языком, превратил электричество в магнетизм. Раздумывая над этим открытием, Фарадей пришел к мысли, что если “электричество создает магнетизм”, то и наоборот, “магнетизм должен создавать электричество”. И вот еще в 1823 г. он записал в своем дневнике: “Обратить магнетизм в электричество”. В течение восьми лет Фарадей работал над решением поставленной задачи. Долгое время его преследовали неудачи, и, наконец, в 1831 г. он решил ее - открыл явление электромагнитной индукции.

Во-первых, Фарадей обнаружил явление электромагнитной индукции для случая, когда катушки намотаны на один и тот же барабан. Если в одной катушке возникает или пропадает электрический ток в результате подключения к ней или отключения от нее гальванической батареи, то в другой катушке в этот момент возникает кратковременный ток. Этот ток обнаруживается гальванометром, который присоединен ко второй катушке.

Затем Фарадей установил также наличие индукционного тока в катушке, когда к ней приближали или удаляли от нее катушку, в которой протекал электрический ток.

Наконец, третий случай электромагнитной индукции, который обнаружил Фарадей, заключался в том, что в катушке появлялся ток, когда в нее вносили или же удаляли из нее магнит. [2]

Электромагнитная индукция в быту

На одной из лекций Майкла Фарадея о новом явлении присутствовал будущий премьер-министр Англии Уильям Гладстон, который спросил:

— Скажите, сэр, какую практическую пользу может принести ваше открытие?

— Этого я и сам еще не знаю, — ответил Фарадей. — Но когда-нибудь вы сможете обложить его налогом.

Появление трансформаторов, электрических машин и прочих устройств, в которых используется электромагнитная индукция, не заставило долго себя ждать.

1.3.1. Плиты на основе явления электромагнитной индукции

Теплопередача в индукционной плите происходит при помощи электромагнитных волн. Внутри плиты находится мелкая катушка – проводник высококачественного электрического тока. Электромагнитные волны беспрепятственно проходят сквозь стеклокерамическую поверхность и продолжают вихревые циркулирующие токи в нижнем слое дна металлической посуды. Они-то и разогревают дно посуды, а вместе с ним – и пищу. При этом через стеклокерамику не происходит никакой теплопередачи. Если по завершению приготовления пищи поверхность и остается слегка теплой, то только по тому, что она нагрелась от дна кастрюли, а не наоборот.

Вывод: вредное воздействие индукционных плит абсолютно исключено, а с их преимуществами трудно спорить! [4]

1.3.2. Зарядные устройства на основе явления электромагнитной индукции

На данный момент идёт упорное развитие беспроводных зарядных устройств, и отказ от любого рода проводных. Скоро мы будем заряжать устройство любого рода, без проводов, в домашних условиях. Некоторые разработчики уже нашли решения для подключения практически всей техники без помощи проводов. И нам остаётся просто ждать пока эти технологий пойдут на рынки всех устройств. Так, например, беспроводные зарядки для мобильных телефонов и планшетов уже давно существуют, но данный сегмент рынка стал развиваться только в последнее время.

Метод электромагнитной индукции используется в аксессуарах для большинства последних гаджетов. Электричество поступает на устройство благодаря магнитному полю, создаваемому специальным передатчиком. При этом принимающая сторона (батарея смартфона) должна находится на очень близком расстоянии, что не позволяет полностью насладится свободой. Еще из минусов стоит отнести малую передаваемую энергию. Основная часть затраченных ресурсов тратится в пустую, тогда как до устройства доходит лишь небольшая часть.

Одной из основных причин малой распространенности беспроводных зарядных устройств является отсутствие единого стандарта. Для каждого отдельного устройства должна выпускаться отдельная зарядка, поддерживающая его частоту. Это не позволяет крупным производителям аксессуаров заняться созданием универсальных беспроводных зарядных устройств. Только в последнее время Wireless Power Consortium принял ряд промышленных норм для беспроводных зарядных устройств, получивший название Qi (произносится Чи). На данный момент эти стандарты поддерживают 84 производителя, но до массового выпуска данной продукции еще далеко.

Очевидно, что беспроводная передача энергии — очень перспективное направление. И хотя на данный момент эта технология еще не настолько популярна в мире как, например, Wi-Fi мы надеемся, что в скором времени все изменится. [5]

1.3.3. Идея из прошлого для утюга будущего

В начале прошлого века горничные в богатых домах, а у бедняков - сами хозяйки, для разглаживания замятин на белье или одежде пользовались тяжелым чугунным утюгом, который нужно было нагревать на плите или каминной решетке. Потом пришло время электрической бытовой техники, и об этих опасных девайсах благополучно забыли. Однако ненадолго. Ведь идея создания концептуального утюга Induction Iron, спроектированного дизайнером по имени Тереза Глимскар, родом как раз из прошлого.

Любопытно, как долго сохраняется тепло в "подошве" утюга, и до какой температуры она нагревается, однако ответ на эти вопросы можно будет получить не раньше, чем после того, как концепт пройдет тесты и проверки на прочность.

2.2. Сравнительный анализ продукции с использованием электромагнитной индукции и без неё

Электромагнитная индукция — явление возникновения электрического тока в замкнутом контуре при изменении магнитного потока, проходящего через него. Электромагнитная индукция была открыта Майклом Фарадеем 29 августа 1831 года. Он обнаружил, что электродвижущая сила, возникающая в замкнутом проводящем контуре, пропорциональна скорости изменения магнитного потока через поверхность, ограниченную этим контуром. Величина электродвижущей силы (ЭДС) не зависит от того, что является причиной изменения потока — изменение самого магнитного поля или движение контура (или его части) в магнитном поле. Электрический ток, вызванный этой ЭДС, называется индукционным током.

Майкл Фарадей

Майкл Фарадей (1791—1867) родился в Лондоне, в одной из беднейших его частей. Его отец был кузнецом, а мать — дочерью земледельца-арендатора. Когда Фарадей достиг школьного возраста, его отдали в начальную школу. Курс, пройденный Фарадеем здесь, был очень узок и ограничивался только обучением чтению, письму и началам счета.


Рис.1. Майкл Фарадей

Эти стремления доминировали в нем всю жизнь как основные черты его научной деятельности Физические и химические опыты Фарадей стал проделывать еще мальчиком при первом же знакомстве с физикой и химией. Однажды Майкл посетил одну из лекций Гэмфри Дэви, великого английского физика. Фарадей сделал подробную запись лекции, переплел ее и отослал Дэви. Тот был настолько поражен, что предложил Фарадею работать с ним в качестве секретаря. Вскоре Дэви отправился в путешествие по Европе и взял с собой Фарадея. За два года они посетили крупнейшие европейские университеты.

Вернувшись в Лондон в 1815 году, Фарадей начал работать ассистентом в одной из лабораторий Королевского института в Лондоне. В то время это была одна из лучших физических лабораторий мира. С 1816 по 1818 год Фарадей напечатал ряд мелких заметок и небольших мемуаров по химии. К 1818 году относится первая работа Фарадея по физике.

Добившись этого успеха, Фарадей на целых десять лет оставляет занятия в области электричества, посвятив себя исследованию целого ряда предметов иного рода. В 1823 году Фарадеем было произведено одно из важнейших открытий в области физики — он впервые добился сжижения газа, и вместе с тем установил простой, но действительный метод обращения газов в жидкость. В 1824 году Фарадей сделал несколько открытий в области физики. Среди прочего он установил тот факт, что свет влияет на цвет стекла, изменяя его. В следующем году Фарадей снова обращается от физики к химии, и результатом его работ в этой области является открытие бензина и серно-нафталиновой кислоты.

Опыты Фарадея

Одержимый идеями о неразрывной связи и взаимодействии сил природы, Фарадей пытался доказать, что точно так же, как с помощью электричества Ампер мог создавать магниты, так же и с помощью магнитов можно создавать электричество.

Логика его была проста: механическая работа легко переходит в тепло; наоборот, тепло можно преобразовать в механическую работу (скажем, в паровой машине). Вообще, среди сил природы чаще всего случается следующее соотношение: если А рождает Б, то и Б рождает А.

Строго говоря, важный отдел физики, трактующий явления электромагнетизма и индукционного электричества, и имеющий в настоящее время такое громадное значение для техники, был создан Фарадеем из ничего. К тому времени, когда Фарадей окончательно посвятил себя исследованиям в области электричества, было установлено, что при обыкновенных условиях достаточно присутствия наэлектризованного тела, чтобы влияние его возбудило электричество во всяком другом теле. Вместе с тем было известно, что проволока, по которой проходит ток и которая также представляет собою наэлектризованное тело, не оказывает никакого влияния на помещенные рядом другие проволоки.

– Хороший эксперимент имеет больше ценности, чем глубокомыслие такого гения, как Ньютон.

И тем не менее именно Фарадею суждены были великие открытия. Великий реалист, он стихийно рвал путы эмпирики, некогда навязанные ему Дэви, и в эти минуты его осеняло великое прозрение – он приобретал способность к глубочайшим обобщениям.

Первый проблеск удачи появился лишь 29 августа 1831 года. В этот день Фарадей испытывал в лаборатории несложное устройство: железное кольцо диаметром около шести дюймов, обмотанное двумя кусками изолированной проволоки. Когда Фарадей подключил к зажимам одной обмотки батарею, его ассистент, артиллерийский сержант Андерсен, увидел, как дернулась стрелка гальванометра, подсоединенного к другой обмотке.

Дернулась и успокоилась, хотя постоянный ток продолжал течь по первой обмотке. Фарадей тщательно просмотрел все детали этой простой установки – все было в порядке.

Но стрелка гальванометра упорно стояла на нуле. С досады Фарадей решил выключить ток, и тут случилось чудо – во время размыкания цепи стрелка гальванометра опять качнулась и опять застыла на нуле!

Гальванометр, оставаясь совершенно спокойным во все время прохождения тока, приходит в колебание при самом замыкании цепи и при размыкании ее. Оказалось, что в тот момент, когда в первую проволоку пропускается ток, а также когда это пропускание прекращается, во второй проволоке также возбуждается ток, имеющий в первом случае противоположное направление с первым током и одинаковое с ним во втором случае и продолжающийся всего одно мгновение.

Вот тут-то и открылись Фарадею во всей ясности великие идеи Ампера – связь между электрическим током и магнетизмом. Ведь первая обмотка, в которую он подавал ток, сразу становилась магнитом. Если рассматривать ее как магнит, то эксперимент 29 августа показал, что магнетизм как будто бы рождает электричество. Только две вещи оставались в этом случае странными: почему всплеск электричества при включении электромагнита стал быстро сходить на нет? И более того, почему всплеск появляется при выключении магнита?

На следующий день, 30 августа, – новая серия экспериментов. Эффект ясно выражен, но тем не менее абсолютно непонятен.

Фарадей чувствует, что открытие где-то рядом.

23 сентября он пишет своему другу Р.Филиппсу:

К следующему утру, 24 сентября, Фарадей подготовил много различных устройств, в которых основными элементами были уже не обмотки с электрическим током, а постоянные магниты. И эффект тоже существовал! Стрелка отклонялась и сразу же устремлялась на место. Это легкое движение происходило при самых неожиданных манипуляциях с магнитом, иной раз, казалось, случайно.

Следующий эксперимент – 1 октября. Фарадей решает вернуться к самому началу – к двум обмоткам: одной с током, другой – подсоединенной к гальванометру. Различие с первым экспериментом – отсутствие стального кольца – сердечника. Всплеск почти незаметен. Результат тривиален. Ясно, что магнит без сердечника гораздо слабее магнита с сердечником. Поэтому и эффект выражен слабее.

Фарадей разочарован. Две недели он не подходит к приборам, размышляя о причинах неудачи.

Эксперимент триумфальный – 17 октября.

Секрет – в движении магнита! Импульс электричества определяется не положением магнита, а движением!


Рис. 2. Опыт Фарадея с катушкой

28 октября Фарадей установил между полюсами подковообразного магнита вращающийся медный диск, с которого при помощи скользящих контактов (один на оси, другой – на периферии диска) можно было снимать электрическое напряжение. Это был первый электрический генератор, созданный руками человека. Так был найден новый источник электрической энергии, помимо ранее известных (трения и химических процессов), — индукция, и новый вид этой энергии — индукционное электричество.

Продолжая свои опыты, Фарадей открыл далее, что достаточно простого приближения проволоки, закрученной в замкнутую кривую, к другой, по которой идет гальванический ток, чтобы в нейтральной проволоке возбудить индуктивный ток направления, обратного гальваническому току, что удаление нейтральной проволоки снова возбуждает в ней индуктивный ток уже одинакового направления с гальваническим, идущим по неподвижной проволоке, и что, наконец, эти индуктивные токи возбуждаются только во время приближения и удаления проволоки к проводнику гальванического тока, а без этого движения токи не возбуждаются, как бы близко друг к другу проволоки ни находились.

Таким образом, было открыто новое явление, аналогичное вышеописанному явлению индукции при замыкании и прекращении гальванического тока. Эти открытия вызвали в свою очередь новые. Если можно вызвать индуктивный ток замыканием и прекращением гальванического тока, то не получится ли тот же результат от намагничивания и размагничивания железа?

Работы Эрстеда и Ампера установили уже родство магнетизма и электричества. Было известно, что железо делается магнитом, когда вокруг него обмотана изолированная проволока и по последней проходит гальванический ток, и что магнитные свойства этого железа прекращаются, как только прекращается ток.

Исходя из этого, Фарадей придумал такого рода опыт: вокруг железного кольца были обмотаны две изолированные проволоки; причем одна проволока была обмотана вокруг одной половины кольца, а другая — вокруг другой. Через одну проволоку пропускался ток от гальванической батареи, а концы другой были соединены с гальванометром. И вот, когда ток замыкался или прекращался и когда, следовательно, железное кольцо намагничивалось или размагничивалось, стрелка гальванометра быстро колебалась и затем быстро останавливалась, то есть в нейтральной проволоке возбуждались все те же мгновенные индуктивные токи — на этот раз: уже под влиянием магнетизма.


Рис. 3. Опыт Фарадея с железным кольцом

Таким образом, здесь впервые магнетизм был превращен в электричество. Получив эти результаты, Фарадей решил разнообразить свои опыты. Вместо железного кольца он стал употреблять железную полосу. Вместо возбуждения в железе магнетизма гальваническим током он намагничивал железо прикосновением его к постоянному стальному магниту. Результат получался тот же: в проволоке, обматывавшей железо, всегда возбуждался ток в момент намагничивания и размагничивания железа. Затем Фарадей вносил в проволочную спираль стальной магнит — приближение и удаление последнего вызывало в проволоке индукционные токи. Словом, магнетизм, в смысле возбуждения индукционных токов, действовал совершенно так же, как и гальванический ток.

В то время физиков усиленно занимало одно загадочное явление, открытое в 1824 году Араго и не находившее объяснения, несмотря на то, что этого объяснения усиленно искали такие выдающиеся ученые того времени, как сам Араго, Ампер, Пуассон, Бабэдж и Гершель. Дело состояло в следующем. Магнитная стрелка, свободно висящая, быстро приходит в состояние покоя, если под нее подвести круг из немагнитного металла; если затем круг привести во вращательное движение, магнитная стрелка начинает двигаться за ним.

В спокойном состоянии нельзя было открыть ни малейшего притяжения или отталкивания между кругом и стрелкой, между тем как тот же круг, находившийся в движении, тянул за собою не только легкую стрелку, но и тяжелый магнит. Это поистине чудесное явление казалось ученым того времени таинственной загадкой, чем-то выходящим за пределы естественного. Фарадей, исходя из своих вышеизложенных данных, сделал предположение, что кружок немагнитного металла, под влиянием магнита, во время вращения обегается индуктивными токами, которые оказывают воздействие на магнитную стрелку и влекут ее за магнитом. И действительно, введя край кружка между полюсами большого подковообразного магнита и соединив проволокою центр и край кружка с гальванометром, Фарадей получил при вращении кружка постоянный электрический ток.


Дальнейшие работы Фарадея в упомянутом направлении приобретали, с современной ему точки зрения, характер чего-то совершенно чудесного. В начале 1832 года он демонстрировал прибор, в котором возбуждались индуктивные токи без помощи магнита или гальванического тока. Прибор состоял из железной полосы, помещенной в проволочной катушке. Прибор этот при обыкновенных условиях не давал ни малейшего признака появления в нем токов; но лишь только ему давалось направление, соответствующее направлению магнитной стрелки, в проволоке возбуждался ток.

Затем Фарадей давал положение магнитной стрелки одной катушке и потом вводил в нее железную полосу: ток снова возбуждался. Причиною, вызывавшею в этих случаях ток, был земной магнетизм, вызывавший индуктивные токи подобно обыкновенному магниту или гальваническому току. Чтобы нагляднее показать и доказать это, Фарадей предпринял еще один опыт, вполне подтвердивший его соображения.

Он выяснил, что при замыкании или размыкании гальванического тока в самой проволоке, служащей проводником для этого тока, возбуждаются моментальные индуктивные токи.

Русский физик Эмиль Христофорович Ленц (1804—1861) дал правило для определения направления индукционного тока. «Индукционный ток всегда направлен так, что создаваемое им магнитное поле затрудняет или тормозит вызывающее индукцию движение, — отмечает А.А. Коробко-Стефанов в своей статье об электромагнитной индукции. — Например, при приближении катушки к магниту возникающий индукционный ток имеет такое направление, что созданное им магнитное поле будет противоположно магнитному полю магнита. В результате между катушкой и магнитом возникают силы отталкивания. Правило Ленца вытекает из закона сохранения и превращения энергии. Если бы индукционные токи ускоряли вызывающее их движение, то создавалась бы работа из ничего. Катушка сама собой после небольшого толчка устремлялась бы навстречу магниту, и одновременно индукционный ток выделял бы в ней теплоту. В действительности же индукционный ток создается за счет работы по сближению магнита и катушки.


Рис. 5. Правило Ленца

Почему возникает индукционный ток? Глубокое объяснение явления электромагнитной индукции дал английский физик Джемс Клерк Максвелл — творец законченной математической теории электромагнитного поля. Чтобы лучше понять суть дела, рассмотрим очень простой опыт. Пусть катушка состоит из одного витка проволоки и пронизывается переменным магнитным полем, перпендикулярным к плоскости витка. В катушке, естественно, возникает индукционный ток. Исключительно смело и неожиданно истолковал этот эксперимент Максвелл.

Изыскания в области индукции, производимой земным магнетизмом, дали Фарадею возможность высказать еще в 1832 году идею телеграфа, которая затем и легла в основу этого изобретения. А вообще открытие электромагнитной индукции недаром относят к наиболее выдающимся открытиям XIX века — на этом явлении основана работа миллионов электродвигателей и генераторов электрического тока во всем мире. [3]

Практическое применение явления электромагнитной индукции

Переменное магнитное поле, возбуждаемое изменяющимся током, создаёт в окружающем пространстве электрическое поле, которое в свою очередь возбуждает магнитное поле, и т.д. Взаимно порождая друг друга, эти поля образуют единое переменное электромагнитное поле - электромагнитную волну. Возникнув в том месте, где есть провод с током, электромагнитное поле распространяется в пространстве со скоростью света -300000 км/с.


В спектре частот разные места занимают радиоволны, свет, рентгеновское излучение и другие электромагнитные излучения. Их обычно характеризуют непрерывно связанными между собой электрическими и магнитными полями.


В настоящее время под магнитным полем понимают особую форму материи состоящую из заряженных частиц. В современной физике пучки заряженных частиц используют для проникновения в глубь атомов с целью их изучения. Сила, с которой действует магнитное поле на движущуюся заряженную частицу, называется силой Лоренца.


Метод основан на применении закона Фарадея для проводника в магнитном поле: в потоке электропроводящей жидкости, движущейся в магнитном поле наводится ЭДС, пропорциональная скорости потока, преобразуемая электронной частью в электрический аналоговый/цифровой сигнал.


5. Генератор постоянного тока

В режиме генератора якорь машины вращается под действием внешнего момента. Между полюсами статора имеется постоянный магнитный поток, пронизывающий якорь. Проводники обмотки якоря движутся в магнитном поле и, следовательно, в них индуктируется ЭДС, направление которой можно определить по правилу "правой руки". При этом на одной щетке возникает положительный потенциал относительно второй. Если к зажимам генератора подключить нагрузку, то в ней пойдет ток.


Трансформаторы широко применяются при передаче электрической энергии на большие расстояния, распределении ее между приемниками, а также в различных выпрямительных, усилительных, сигнализационных и других устройствах.

Преобразование энергии в трансформаторе осуществляется переменным магнитным полем. Трансформатор представляет собой сердечник из тонких стальных изолированных одна от другой пластин, на котором помещаются две, а иногда и больше обмоток (катушек) из изолированного провода. Обмотка, к которой присоединяется источник электрической энергии переменного тока, называется первичной обмоткой, остальные обмотки - вторичными.

Если во вторичной обмотке трансформатора намотано в три раза больше витков, чем в первичной, то магнитное поле, созданное в сердечнике первичной обмоткой, пересекая витки вторичной обмотки, создаст в ней в три раза больше напряжение.


Применив трансформатор с обратным соотношением витков, можно так же легко и просто получить пониженное напряжение [4].

Список использованной литературы

1. [Электронный ресурс]. Электромагнитная индукция.

2. [Электронный ресурс].Фарадей. Открытие электромагнитной индукции.

3. [Электронный ресурс]. Открытие электромагнитной индукции.

4. [Электронный ресурс]. Практическое применение явления электромагнитной индукции.

Электромагнитная индукция в современной технике

Введение Использование электромагнетизма играет ведущую роль во многих отраслях науки и техники

Введение Использование электромагнетизма играет ведущую роль во многих отраслях науки и техники

Использование электромагнетизма играет ведущую роль во многих отраслях науки и техники.
С электромагнетизмом связывают развитие энергетики, транспорта, вычислительной техники, физики плазмы, термоядерного синтеза и т.д. Магнитные разведка, дефектоскопия, магнитные линзы и магнитная запись информации, магнитная обработка воды, поезда на магнитной подушке – вот далеко не полный перечень перспективных областей промышленного применения магнитного поля. Неотъемлемой частью компьютерного томографа, без которого невозможна современная медицинская диагностика, является также источник магнитного поля.

ЭРСТЕД Ганс Христиан (1777-1851), датский физик, иностранный почетный член

ЭРСТЕД Ганс Христиан (1777-1851), датский физик, иностранный почетный член

ЭРСТЕД Ганс Христиан (1777-1851), датский физик, иностранный почетный член Петербургской АН (1830). Труды по электричеству, акустике, молекулярной физике. Открыл (1820) магнитное действие электрического тока.

Майкл Фарадей Английский физик, член

Майкл Фарадей Английский физик, член

Английский физик, член Лондонского королевского общества.
Исследования в области электричества, магнетизма, магнитооптики, электрохимии.
В 1821г. Фарадей впервые осуществил вращение магнита вокруг проводника с током и проводника с током вокруг магнита.

ЭЛЕКТРОМАГНИТНАЯ ИНДУКЦИЯ (лат

ЭЛЕКТРОМАГНИТНАЯ ИНДУКЦИЯ (лат

ЭЛЕКТРОМАГНИТНАЯ ИНДУКЦИЯ
(лат. inductio – наведение) – явление порождения вихревого электрического поля переменным магнитным полем. Если внести в переменное магнитное поле замкнутый проводник, то в нем появится электрический ток.

Магнитная левитация. Эффект магнитной левитации заключается в удерживании физического объекта в определённой точке пространства при помощи магнитного поля компенсирующего силу тяжести действующую на объект

Магнитная левитация. Эффект магнитной левитации заключается в удерживании физического объекта в определённой точке пространства при помощи магнитного поля компенсирующего силу тяжести действующую на объект

Эффект магнитной левитации заключается в удерживании физического объекта в определённой точке пространства при помощи магнитного поля компенсирующего силу тяжести действующую на объект.

Диск из сверхпроводящего материала отталкивает магнитное поле, что заставляет кубик парить над ними

Диск из сверхпроводящего материала отталкивает магнитное поле, что заставляет кубик парить над ними

Диск из сверхпроводящего материала отталкивает магнитное поле, что заставляет кубик парить над ними

Запись и воспроизведение информации

Запись и воспроизведение информации

Запись и воспроизведение
информации.

Жесткий диск компьютера.

Детектор металла в аэропортах.

Детектор металла в аэропортах.

Детектор металла в аэропортах.

Металлоискатели для проверки багажа

Поезда на магнитной подушке. В бурном процессе эксплуатации,

Поезда на магнитной подушке. В бурном процессе эксплуатации,

Поезда на магнитной подушке.

В бурном процессе эксплуатации,
Магнитного поля и левитации,
Движется плавно, без шума, без трения,
Результат достижения нашего поколения.
Недавно все думали, что нереально,
А это всё просто и гениально.
Быстрый, надёжный, удобный, простой,
Поезд не едет - летит над землёй.

Магнитоплан Магнитоплан или

Магнитоплан Магнитоплан или

Магнитоплан или Маглев (от англ. magnetic levitation)-это поезд на магнитной подвеске, движимый и управляемый магнитными силами. Такой состав, в отличие от традиционных поездов, в процессе движения не касается поверхности рельса. Так как между поездом и поверхностью движения существует зазор, трение исключается, и единственной тормозящей силой является сила аэродинамического сопротивления.

Как устроен такой поезд? Поезд-вагон как бы сидит верхом на эстакаде, охватывая ее с боков

Как устроен такой поезд? Поезд-вагон как бы сидит верхом на эстакаде, охватывая ее с боков

Как устроен такой поезд?

Поезд-вагон как бы сидит верхом на эстакаде, охватывая ее с боков. На ней с обеих сторон снизу тянутся горизонтальные стальные пластины - "феррорельсы". На дне вагона как раз под ними расположены мощные несущие электромагниты. Как только в них подается ток, возникают силы притяжения, и состав зависает над эстакадой.

Такая подвеска по своей сути неустойчива

Такая подвеска по своей сути неустойчива

Такая подвеска по своей сути неустойчива. Если почему-либо ток в несущих электромагнитах уменьшится, то ослабнут силы притяжения и состав может опуститься на эстакаду. Наоборот, при возможном увеличении тока силы притяжения возрастут, что тоже может привести к остановке движения.

Технология На данный момент существует 3 основных технологии магнитного подвеса поездов:

Технология На данный момент существует 3 основных технологии магнитного подвеса поездов:

На данный момент существует 3 основных технологии магнитного подвеса поездов:

На сверхпроводящих магнитах(электродинамическая подвеска, EDS)
На электромагнитах (электромагнитная подвеска, EMS)
На постоянных магнитах; это новая и потенциально самая экономичная система.

Состав левитирует за счёт отталкивания одинаковых полюсов магнитов и, наоборот, притягивания разных полюсов

Состав левитирует за счёт отталкивания одинаковых полюсов магнитов и, наоборот, притягивания разных полюсов

Состав левитирует за счёт отталкивания одинаковых полюсов магнитов и, наоборот, притягивания разных полюсов. Движение осуществляется линейным двигателем, расположенным либо на поезде, либо на пути, либо и там, и там.

Серьёзной проблемой проектирования является большой вес достаточно мощных магнитов, поскольку требуется сильное магнитное поле для поддержания в воздухе массивного состава

Серьёзной проблемой проектирования является большой вес достаточно мощных магнитов, поскольку требуется сильное магнитное поле для поддержания в воздухе массивного состава

Серьёзной проблемой проектирования является большой вес достаточно мощных магнитов, поскольку требуется сильное магнитное поле для поддержания в воздухе массивного состава.

По теореме Ирншоу, статичные поля, создаваемые одними только электромагнитами и постоянными магнитами, нестабильны, в отличие от полей диамагнетиков и сверхпроводящих магнитов

По теореме Ирншоу, статичные поля, создаваемые одними только электромагнитами и постоянными магнитами, нестабильны, в отличие от полей диамагнетиков и сверхпроводящих магнитов

По теореме Ирншоу, статичные поля, создаваемые одними только электромагнитами и постоянными магнитами, нестабильны, в отличие от полей диамагнетиков и сверхпроводящих магнитов.

Существуют системы стабилизации: датчики постоянно замеряют расстояние от поезда до пути и соответственно ему меняется напряжение на электромагнитах

Существуют системы стабилизации: датчики постоянно замеряют расстояние от поезда до пути и соответственно ему меняется напряжение на электромагнитах

Существуют системы стабилизации: датчики постоянно замеряют расстояние от поезда до пути и соответственно ему меняется напряжение на электромагнитах. Наиболее активные разработки маглев ведут Германия и Япония

Первая публичная система поездов на магнитной подушке (M-Bahn) построена в

Первая публичная система поездов на магнитной подушке (M-Bahn) построена в

Первая публичная система поездов на магнитной подушке (M-Bahn) построена в Берлине в 1980-х годах.

Заключение Таким образом, поезд на магнитной подушке, несмотря на своё короткое существование, уже является неотъемлемой частью нашего мира

Заключение Таким образом, поезд на магнитной подушке, несмотря на своё короткое существование, уже является неотъемлемой частью нашего мира

Таким образом, поезд на магнитной подушке, несмотря на своё короткое существование, уже является неотъемлемой частью нашего мира.
Ему характерны такие качества как высокая скорость, экологичность, безопасность, надежность и много других качеств, отличающих его от тепловых и электропоездов. К сожалению, в России и странах СНГ пока нет поездов на магнитной подушке.

Читайте также: