Приближенное решение уравнений реферат

Обновлено: 02.07.2024

  • Для учеников 1-11 классов и дошкольников
  • Бесплатные сертификаты учителям и участникам

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РФ

Кафедра информатики и вычислительной техники

РЕФЕРАТ
Возможности математического пакета MathCad. Приближенные решения уравнений и их систем

студентка группы МДИ-117
Рыбкина В. А.

При решении некоторых математических задач, при моделировании различных явлений, при автоматизации рабочего места пользователю приходится выбирать ту среду, которая бы позволяла реализовать с наибольшим комфортом многие варианты решений. До недавнего времени исследователю приходилось разрабатывать на основе алгоритма свои программные средства, пользуясь известными языками программирования. В настоящее время появилось много пакетов прикладных программ, в которых за счет встроенного процессора можно, легко освоив правила работы данной среды, проводить построение различных моделей, решать сложные математические задачи и находить значения выражений.

Система MathCad – пакет, предназначенный для проведения математических расчетов, который содержит текстовый редактор, вычислитель и графический процессор. Фирма MathSoft Inc (США) выпустила первую версию системы в 1986 г. Главная отличительная особенность системы MathCad заключается в её входном языке, который максимально приближён к естественному математическому языку, используемому как в трактатах по математике, так и вообще в научной литературе.

От других продуктов аналогичного назначения MathCad отличается ориентацией на создание высококачественных документов (докладов, отчетов, статей) в режиме WYSIWYG (What You See Is What You Get). Это означает, что, внося изменения, пользователь немедленно видит их результаты и в любой момент может распечатать документ во всем блеске. Преимущества MathCad состоит в том, что он не только позволяет провести необходимые расчеты, но и оформить свою работу с помощью графиков, рисунков, таблиц и математических формул. А эта часть работы является наиболее рутинной и мало творческой, к тому же она и время емкая и малоприятная.

1.1 Общая характеристика MathCad

Система MathCad содержит текстовый редактор, вычислитель и графический процессор.

Текстовый редактор служит для ввода и редактирования текстов. Текст может состоять из слов, математических выражений и формул, спецзнаков. Отличительная черта системы – это использование общепринятой в математике символики (деление, умножение, квадратный корень).

Вычислитель обеспечивает вычисление по сложным математическим формулам, имеет большой набор встроенных математических функций, позволяет вычислять ряды, суммы, произведения, определенный интеграл, производные, работать с комплексными числами, решать линейные и нелинейные уравнения, проводить минимизацию функции, выполнять векторные и матричные операции и т. д. Легко можно менять разрядность чисел и погрешность интеграционных методов.

Графический процессор служит для создания графиков. Он сочетает простоту общения с пользователем с большими возможностями графических средств. Графика ориентирована на решение типичных математических задач. Возможно быстрое изменение размеров графиков, наложение их на текстовые надписи и перемещение их в любое место документа.

Многие задачи, решаемые с помощью математических пакетов, сводятся к решению уравнений – алгебраических, степенных, тригонометрических, к поиску значений неизвестных, превращающих эти уравнения в тождества строго или приближенно. Успех в решении подобных задач зависит не только от мощности соответствующих инструментов, встроенных в MathCad , но и от знания пользователем их особенностей, нюансов, сильных и слабых сторон.

Задачи, решаемые в MathCad:

1) Подготовка научно-технической документации, содержащей текст и формулы в привычной для специалиста форме;

2) Вычисления результатов математических операций с константами, переменными и размерными физическими величинами;

3) Векторные и матричные операции;

4) Решение уравнений и систем уравнений;

5) Статистические расчеты и анализ данных;

6) Построение графиков;

7) Аналитические преобразования и аналитическое решение уравнений и систем;

8) Аналитическое и численное дифференцирование и интегрирование;

9) Решение дифференциальных уравнений.

1.2 Структура программы MathCad

Основное окно приложения имеет ту же структуру, что и большинство

приложений Windows. Сверху вниз располагаются заголовок окна, строка меню, панели инструментов (стандартная и форматирования) и рабочий лист,

или рабочая область, документа. Новый документ создается автоматически при запуске MathCad. Файлы документов в MathCad имеют расширение .mcd.

Большинство команд можно выполнить как с помощью меню (верхнего или контекстного), так и панелей инструментов или клавиатуры. Панель Math (Математика) предназначена для вызова на экран еще девяти панелей, с помощью которых происходит вставка математических операций в документы. Чтобы вызвать какую-либо из них, нужно нажать соответствующую кнопку на панели Математика.

В окне редактирования формируется документ MathCad. Новый документ получает имя Untitled (Без названия) и порядковый номер. Одновременно открыто может быть до восьми документов.

Документ состоит из трех видов областей: формульных, текстовых и графических. Расположение нетекстовых блоков в документе имеет принципиальное значение. Области просматриваются системой, интерпретируются и исполняются. Просмотр идет слева направо и сверху вниз.

Для ввода текстового комментария нужно выполнить команду Text Region (Текстовая область) из пункта меню Insert или нажать клавишу с двойной кавычкой (“), или нажать на кнопку текста на панели инструментов. Текстовая область служит для размещения текста между формулами и графиками. При этом в месте ввода появляется курсор в виде вертикального штриха, на место которого вводятся символы текста. Внутри текста курсор перемещается клавишами перемещения курсора. Переход на новую строку производится нажатием на клавишу Enter. Для окончания ввода нужно щелкнуть мышью вне текстовой области.

Для ввода формулы нужно установить указатель мыши в свободном месте окна редактирования и щелкнуть левой кнопкой мыши. Появится визир в виде красного крестика. Он указывает место, с которого начинается набор формулы.

Константами называются поименованные объекты, хранящие некоторые значения, которые не могут быть изменены.

В MathCad применяются десятичные, восьмеричные и шестнадцатеричные числовые константы. Десятичные константы могут быть целочисленными, вещественными, заданными с фиксированной точкой, и вещественными, заданными в виде мантиссы и порядка.

В MathCad содержится особый вид констант – размерные. Помимо своего числового значения они характеризуются еще и указанием на то, к какой физической величине они относятся. Для этого указания используется символ умножения. В системе MathCad заданы следующие основные типы физических величин: time (время), length (длина), mass (масса) и charge (заряд). При необходимости их можно изменить на другие.

Переменные являются поименованными объектами, которым присвоено некоторое значение, которое может изменяться по ходу выполнения программы. Тип переменной определяется ее значением; переменные могут быть числовыми, строковыми, символьными и т. д. Имена констант, переменных и иных объектов называют идентификаторами. Идентификаторы MathCad должны начинаться с буквы и могут содержать следующие символы:

1) латинские буквы любого регистра;

2) арабские цифры от 0 до 9;

3) символ подчеркивания (_), символ процент (%) и символ (.);

4) буквы греческого алфавита (набираются с использованием клавиши Ctrl или применяется палитра греческих букв).

Переменные могут использоваться в математических выражениях, быть аргументами функций или операндом операторов.

Переменные могут быть и размерными, т. е. характеризоваться не только своим значением, но и указанием физической величины, значение которой они хранят. Проведение расчетов с размерными величинами и переменными особенно удобно при решении различных физических задач.

Предопределенные (системные) переменные – особые переменные, которым изначально системой присвоены начальные значения.

Рисунок 1 Предопределенные переменные

Операторы – элементы языка, с помощью которых можно создавать математические выражения. Операторы, обозначающие основные арифметические действия, вводятся с панели Calculator (Калькулятор, Арифметика). Вычислительные операторы вставляются в документы при помощи панели инструментов Calculus (Матанализ). При нажатии любой из кнопок в документе появляется символ соответствующего математического действия, снабженный несколькими местозаполнителями. Результатом действия логических, или булевых, операторов являются только числа 1 (если логическое выражение, записанное с их помощью, истинно) или 0 (если логическое выражение ложно).

2.1 Особенности решения уравнений и их систем в MathCad

Алгоритм приближенного решения уравнения f(x)=0 состоит из двух этапов:

1. Нахождения промежутка, содержащего корень уравнения (или начальных приближений для корня);

2. Получения приближенного решения с заданной точностью с помощью функции root.

Нахождение корней полинома

Для нахождения корней выражения, имеющего вид v0+v1x+…+vn-1x n-1 + +vnx n , лучше использовать функцию polyroots, нежели root. В отличие от функции root, функция polyroots не требует начального приближения и возвращает сразу все корни, как вещественные, так и комплексные.

Функция Polyroots(v) – возвращает корни полинома степени n. Коэффициенты полинома находятся в векторе v длины n+1. Возвращает вектор длины n, состоящий из корней полинома.

Решение систем уравнений матричным методом

Рассмотрим систему n линейных алгебраических уравнений относительно n неизвестных х1, х2, …, хn:

Система линейных уравнений может быть записана в матричном виде: Ах = b, где:

Если det A ≠ 0 то система или эквивалентное ей матричное уравнение имеет единственное решение.

Системы линейных уравнений удобно решать с помощью функции lsolve. Функция lsolve(А, b) – возвращает вектор решения x такой, что Ах = b.

Решение системы уравнений методом Гаусса

Метод Гаусса, его еще называют методом Гауссовых исключений, состоит в том, что систему уравнений приводят последовательным исключением неизвестных к эквивалентной системе с треугольной матрицей. В матричной записи это означает, что сначала (прямой ход метода Гаусса) элементарными операциями над строками приводят расширенную матрицу системы к ступенчатому виду, а затем (обратный ход метода Гаусса) эту ступенчатую матрицу преобразуют так, чтобы в первых n столбцах получилась единичная матрица. Последний, (n+1) столбец этой матрицы содержит решение системы.

В MathCad прямой и обратный ходы метода Гаусса выполняет функция rref(A).

Решение систем уравнений с помощью функций Find или Minner

Для решения системы уравнений с помощью функции Find необходимо выполнить следующее:

1. Задать начальное приближение для всех неизвестных, входящих в систему уравнений. MathCad решает систему с помощью итерационных методов;

2. Напечатать ключевое слово Given. Оно указывает MathCad, что далее следует система уравнений;

3. Введите уравнения и неравенства в любом порядке. Используйте [Ctrl]= для печати символа =. Между левыми и правыми частями неравенств может стоять любой из символов , ≥ и ≤;

4. Введите любое выражение, которое включает функцию Find, например: х:= Find(х, у).

Ключевое слово Given, уравнения и неравенства, которые следуют за ним, и какое-либо выражение, содержащее функцию Find, называют блоком решения уравнений.

Символьное решение уравнений

Имеются некоторые задачи, для которых возможности MathCad позволяют находить решения в символьном (аналитическом) виде. Решение уравнений в символьном виде позволяет найти точные или приближенные корни уравнения:

• если решаемое уравнение имеет параметр, то решение в символьном виде может выразить искомый корень непосредственно через параметр. Поэтому вместо того чтобы решать уравнение для каждого нового значения параметра, можно просто заменять его значение в найденном символьном решении;

• если нужно найти все комплексные корни полинома со степенью меньше или равной 4, символьное решение даст их точные значения в одном векторе или в аналитическом или цифровом виде.

Команда Символы → Переменные → Вычислить позволяет решить уравнение относительно некоторой переменной и выразить его корни через остальные параметры уравнения.

2.2 Решения уравнений и их систем в MathCad

Пример 1. Построить график функции f(x) и приблизительно определить один из корней уравнения. Решить уравнение f(x) = 0 с помощью встроенной функции MathCAD root.

Пример 2. Для полинома g(x) выполнить следующие действия:

1. С помощью команды Символы → Коэффициенты полинома создать

вектор V, содержащий коэффициенты полинома;

2. Решить уравнение g(x) = 0 с помощью функции polyroots;

3. Решить уравнение символьно, используя команду Символы →

Пример 3. Решить систему линейных уравнений:

1. Матричным способом и используя функцию lsolve;

2. Методом Гаусса;

3. Используя функцию Find.

Пример 4. Решить систему нелинейных уравнений с помощью функции Minerr .

Пример 5. Символьно решить системы уравнений.

MathCad – это универсальная система, которая может использоваться в любой области науки и техники, везде, где применяются математические методы. Запись команд в системе MathCad на языке, очень близком к стандартному языку математических расчетов, упрощает постановку и решение задач.

И так, перечислим основные достоинства MathCad.

Во-первых, это универсальность пакета, который может быть использован для решения самых разнообразных инженерных, экономических, статистических и других научных задач.

Во-вторых, программирование на общепринятом математическом языке позволяет преодолеть языковой барьер между машиной и пользователем. Потенциальные пользователи пакета – от студентов до академиков.

И в-третьих, совместно применение текстового редактора, формульного транслятора и графического процессора позволяет пользователю в ходе вычислений получить готовый документ.

Но, к сожалению, популярный во всем мире пакет MathCad фирмы MathSoft, в России распространен еще слабо, как и все программные продукты подобно рода.

1. Белинская, С. И. Использование пакета Mathcad в информатике : учебное пособие / С. И. Белинская. – Иркутск : ИрГУПС, 2012. – 84 с.

2. Гурский, Д. А. Вычисления в MATCHCAD 12 / Д. А. Гурский,
Е. С. Турбина. – СПб.: Питер, 2006. – 544 с.

3. Дьяконов, В. Mathcad 2000. Учебный курс / В. Дьяконов. – СПб.: Питер, 2001. – 592 с.

4. Макаров, Е. Г. Инженерные расчёты в MATCHCAD 14 /
Е. Г Макаров. – СПб.: Питер, 2007. – 592 с.

5. Охорзин, В. А. Прикладная математика в системе Mathcad /
В. А. Охорзин. – Лань, 2009. – 352 с.

6. Очков, В. Mathcad 14 для студентов, инженеров и конструкторов / В. Очков. – BHV.: – Спб, 2007. – 368 с.

7. Поршнев, С. В. Численные методы на базе MATCHCAD /
С. В. Поршнев, И. В. Беленкова. – СПб.: БХВ-Питербург, 2005. – 464 с.

8. Шушкевич, Г. Компьютерные технологии в математике. Система Mathcad 14. Часть 1 / Г. Шушкевич, С. Шушкевич. – Издательство Гревцова. 2010. – 288 с.

Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.



Управление образования администрации г. Норильска средняя школа №36

Научная работа по математике

тема : " Приближенное вычисление корней в уравнениях ".

Выполнили: Мамедалиева Ирада и

Павлова Галина

ученицы 11"А" класса

средней школы №36
Научный руководитель:

учитель математики

средней школы № 36

Крайняя В.В..
Норильск 2000 г.

Содержание.

2.
Приближённое решение уравнений :

2
.1
Способ хорд (или способ линейной интерполяции).

2.2
Способ касательных (или способ Ньютона).

2.3
Комбинированный способ (комбинированное применение способов хорд и касательных).

3.
Заключение.

4.
Список литературы.

5.
Приложение :

а) рисунок № 1

б) рисунок № 2

в) рисунок № 3

г) рисунок № 4

д ) рисунок № 5

е ) рисунок № 6

ж) рисунок № 7

Приближённое решение уравнений.

Если квадратные уравнения решали уже древние греки, то способы решения алгебраических уравнений третьей и четвёртой степени были открыты лишь в XVI веке. Эти классические способы дают точные значения корней и выражают их через коэффициенты уравнения при помощи радикалов различных степеней. Однако эти способы приводят к громоздким вычислениям и поэтому имеют малую практическую ценность.

В отношении алгебраических уравнений пятой и высших степеней доказано, что в общем случае их решения не выражаются через коэффициенты при помощи радикалов. Не выражаются в радикалах, например, корни уже такого простого по виду уравнения, как:

х^5-4х -2=0

Сказанное, однако, не означает отсутствия в науке методов решения уравнения высших степеней. Имеется много способов приближенного решения уравнений - алгебраических и неалгебраических (или, как их называют, трансцендентных), позволяющих вычислять их корни с любой, заранее заданной степенью точности, что для практических целей вполне достаточно.

На простейших из таких способов мы и остановимся, причём речь будет идти о вычислении действительных корней.

Пусть нужно решить уравнение:

f(x)=0 (1)

Если обратиться к рисунку, то каждый корень уравнения (1) представляет собой абсциссу точки пересечения графика функции y=f (х)

C
осью Ох (рисунок №1)

С помощью графика функции или каким-нибудь иным способом обычно удаётся установить приблизительные значения корней. Это позволяет для каждого корня получить грубые приближения по недостатку и по избытку. Такого рода грубых приближений во многих случаях оказывается достаточно, чтобы, отправляясь от них, получить все значения корня с требуемой точностью. Об этом и пойдёт речь.

Итак, пусть корень
Е уравнения (1) " зажат " между двумя его приближениями а и b по недостатку и по избытку а . При этом будем предполагать, что
f(х), f`(х) ,f``(х)
непрерывны на отрезке
[ а, b ], причём f`(х)
и
f``(х)
сохраняют знак. Сохранение знака у
f`(х) говорит о монотонности f(х) (
и, следовательно,
f(a)

u f(b)
имеют разные знаки). Сохранение же знака у
f``(х) означает , что выпуклость кривой y=f (х)
для всех х отрезка
[ а, b ] обращена в одну сторону . На рисунке №2 изображены 4 случая , отвечающих возложенным комбинациям знаков у f`(х)
и
f``(х) .

Способ хорд (или способ линейной интерполяции).

Проведём хорду АВ (рисунок№3) и за первое приближённое значение корня примем абсциссу x1 точки С пересечения хорды с осью Ох.

Уравнение хорды имеет вид:

Поэтому в точке С:

Рассмотрение всех четырёх случаев, изображённых на рисунке №2, показывает, что точка x1 лежит между a и b с той стороны от Е, где f(х) имеет знак , противоположный знаку f``(х).

Остановим внимание на первом случае : f`(х)> 0, f``(х)> 0 (рисунок №3), - в остальных случаях рассуждение вполне аналогично. В этом первом случае x1 лежит между a и Е. С отрезком [x1, b] поступаем так же, как мы поступаем с отрезком [a, b] ( рисунок №4). При этом для нового приближённого значения корня получаем :

x1 = x2-(b- x1)*f(x1)/f(b)-f(x1)

( в формуле (2) заменяем x1 на x2 , а на x1 ); значение x2 оказывается между x 1 и Е. Рассматриваем отрезок [x2, b] и находим новое приближённое x3 , заключённое между x2 и Е и. т. д. В результате получим последовательность а xn , всё более и более точных приближённых значений корня, причём х n +1 через xn выражается формулой :

х n
+1=
xn -(b- xn )*f( xn )/f(b)-f( xn ) (4)

Для оценки погрешности соответсвующих приближений воспользуемся формулой Лагранжа:

f( xn )-f(E)=f`(c)*( xn -E) ( xn

f(E)=0: f( xn )=f`(c)( xn -E),

Если обозначить через m наименьшее значение | f`(х)| на рассматриваемом отрезке , то для оценки погрешности получим формулу :

Эта формула, заметим, совершенно не связана со способом отыскивания величин xn и, следовательно , приложила к приближённым значениям корня , получаемым любым методом . Формула (5) позволяет судить о близости xn к Е по величине значения f( xn ). Однако в большинстве случаев она даёт слишком грубую оценку погрешности , т. е. фактическая ошибка оказывается значительно меньше .

Легко доказать , что последовательность приближений :

для корня Е, получаемых по способу хорд , всегда сходится к Е. Из случая , рассматривающегося выше , мы видим , что последовательность (6) - монотонная и ограниченная . Поэтому она имеет некоторый предел n Переходя к пределу в равенстве (4), в силу непрерывности f(x) получим:

откуда F(n) =0. Так как f(x) возрастает на отрезке [a, b] , то уравнение f ( х )=0 имеет единственный корень, и этим корнем по условию является Е. Поэтому n=E , т. е . lim xn=E .

Пример № 1. Методом хорд найдём положительный корень уравнения

с точностью до 0,01.

Положительный корень будет находиться в промежудке (1; 1,7), так как f (1)=-5 0, а f (1,7)=0,952 > 0

Найдём первое приближённое значение корня по формуле (2):

х1=1-91,7-1)* f (1)/ f (1,7)- f (1)=1,588;

так как f (1,588)=-0,817 то , применяя вторично способ хорд к промежу т ку (1,588; 1,7), найдём второе приближённое значение корня:

Теперь найдём третье приближённое значение :

х3=1,639-(1,7-1,639) f (1,639)/ f (1,7)- f (1,639)=1,642;

Теперь найдём четвёртое приближённое значение :

х4= 1,642 -(1,7-1,642) f (1,642)/ f (1,7)- f (1,642)=1,643;

Следовательно, искомый корень с точностью до 0,01 равен 1,64.

2 .2 Способ касательных (или способ Ньютона).

В том из концов дуги АВ (рисунок №5), в котором знаки f(х) и f``(х) совпадают , проводим касательную и за первое приближённое значение корня принимаем абсциссу х1 ` точки Д пересечения этой касательной с осью Ох . Обратимся вновь к первому случаю , соответствующему первому рисунку №2 (f`(x)>0, f``(x)>0) , - в остальных случаях рассуждают опять-таки аналогично. Уравнение интересующей нас касательной имеет вид:

и поэтому в точке Д:

Из рисунка видно , что x1` лежит между Е и b. С отрезком [a, x1`] поступаем так же, как с отрезком [a, b] ( рисунок №5), и в результате для нового приближённого значения корня получим:

х2` = x1`- f( x1`)/ f`( x1`).

Значение х2` оказывается между Е и x1`. Рассматриваем отрезок [a, х2`] и находим новое приближение х3` и т. д. В результате получим последовательность:

b> x1`> х2`> х3`>…> xn `>…>E (7)

все более точных приближённых значений корня, причём:

xn+1`= xn `- f( xn `)/ f`( xn `) (8)

Эта формула справедлива для всех четырёх случаев , изображённых на рисунке 32. Для оценки погрешностей полученных приближений можно опять воспользоваться формулой (5), как и в первом случае , легко устанавливается сходимость последовальности x1`, х2`, х3`,…, xn `,… к значению Е

Пример №2. Методом касательных найдём положительный корень уравнения

с точностью до 0,01.

В этом уравнении f(х)=х^4-2x-4, f`(х)=4х^ 3-2,а f``(х)=12x^2. Так как f(х) и f``(х) при х0 = 1,7 имеют один и тот же знак , а именно :

f(1,7)=0,952> 0 и f``(1,7)> 0, то применяем формулу:

x1`= х0- f(х0)/ f`( х0), где f`(1,7)=4*1,7^ 3-2=17,652. Тогда

П р именяем второй раз способ касательн ы х:

х2= x1- f(x1)/ f` (x1), где f(x1)= f(1,646)=0,048, f` (1,646) =15,838;

f(1,643)=0,004, f` (1,643)=15,740;

Следовательно , искомый корень с точностью до 0,01 равен 1,64.

2.3 Комбинированный способ

(комбинированное применение способов хорд и касательных).

Этот способ состоит в одновременном использовании способов хорд и касательных. Остановим своё внимание опять на случае, отвечающем первому рисунку №2. Значения x1 и x1`, вычисляем по прежним формулам , т. е. принимаем :

x1`=b-f(b)/f`(b), причём : x1

Теперь вместо отрезка [a, b] рассматриваем отрезок [x1,x1`] ( рисунок №6). Это даёт :

х2= x1-( x1`- x1)f(x1)/f(x1`)-f(x1),

х2`=x1`- f(x1)/f(x1`), причём х2

Далее рассматриваем отрезок [х2, х2`] и т. д.

В результате получаем:

хn+1 = xn -( xn `- xn )f( xn )/f( xn `)-f( xn ), а хn+1`= xn` -f( xn `)/f`( xn `) (11)

В данном случае мы приближаемся к корню сразу с обеих сторон (рисунок №6), а не с одной стороны, как в способе хорд и способе касательных. Поэтому разность xn `- xn позволяет судить о качестве полученных приближений , и никакие формулы для оценки здесь не нужны .

Пример №3. Комбинированным способом способом вычислим с точностью до 0,0005 положительные корни уравнения

Решение: График многочлена f(x)= X^5-x-0,2 для х >0 изображён на рисунке №7. Из этого рисунка видно, что уравнение имеет положительный единственный корень, лежащий на отрезке 1 . Поскольку f`(x) = 5x^4-1, f``(x)=20x^3, постольку на интересующем нас отрезке f`(x0>0,f``(x)>0 т. е. знак производных сохраняется. Применяем комбинированный способ:

Формулы (10) дают:

При этом x1`- x1=0,012, т. е. точность недостаточна . Совершаем второй шаг :

При этом х2`- х2=0,00018, т. е. точность достаточна . Таким образом :

Любое из фигурирующих здесь чисел можно взять за приближённое значение Е, причём ошибка не превзойдёт 0,00018.

История метода

В 1879 году Артур Кэли в работе The Newton-Fourier imaginary problem (англ. Проблема комплексных чисел Ньютона-Фурье) был первым, кто отметил трудности в обобщении метода Ньютона на случай мнимых корней полиномов степени выше второй и комплексных начальных приближений. Эта работа открыла путь к изучению теории фракталов.

Отделение корней

Во многих приближённых методах нахождения корня уравнения заранее требуется знать какой-либо отрезок, на котором лежит искомый корень, и притом только один этот корень (то есть предъявляемый отрезок не должен содержать других корней уравнения). В этом случае говорят, что корень отделён на отрезке. Отделить корень - значит указать такой отрезок, на котором корень отделён. Заметим, что отделить корень можно не единственным образом: если корень отделён на каком-либо отрезке, то годится и любой меньший отрезок, содержащий этот корень. Вообще говоря, чем меньше отрезок, тем лучше, но при этом не следует забывать о том, что на отделение корня на меньших отрезках также тратятся вычислительные усилия, и, быть может, весьма значительные. Таким образом, часто для начала довольствуются весьма широким отрезком, на котором корень отделён.

Кроме того, часто нужно знать начальное приближение x0 к корню (который, заметим, неизвестен). В качестве этого начального приближения берут, как правило, любую точку отрезка, на котором отделён корень, например, его середину, если описание метода не предписывает поступить как-нибудь иначе.

Приведём некоторые утверждения, которые могут помочь при отделении корня.

Теорема 1 Если функция непрерывна на отрезке, причём значения её в концах отрезка и - это числа разных знаков, то на отрезке лежит по крайней мере один корень уравнения.

Практический смысл теоремы в том, что если мы, вычисляя значения функции в некоторых точках, видим, что вычисление в двух соседних точках даёт значения разных знаков, то на отрезке между этими точками лежит отыскиваемый корень. Если же известно заранее, что корень один, то получаем, что корень отделён на найденном отрезке. Этот же способ, когда мы наугад вычисляем значения функции в каких-то точках, может привести к отделению корней и в случае, когда корней несколько, но заранее известно их число или хотя бы оценка сверху для их количества. Рассмотрим иллюстрирующий сказанное пример.

Теорема 2 Если функция строго монотонна на отрезке, то есть возрастает или убывает на, то на этом отрезке уравнение не может иметь более одного корня.

Доказательство сразу следует из того, что строго монотонная функция принимает каждое своё значение ровно один раз. Если 0 является значением функции, то и значение 0 принимается один раз, то есть уравнение имеет один корень.

Тем самым, если отрезок, на котором заведомо имеется хотя бы один корень (например, если и - разного знака), - это отрезок строгой монотонности функции, то на отделён ровно один корень.

Заметим, что интервалы монотонности функции можно отыскивать, решая неравенства (что соответствует возрастанию функции) и (что соответствует убыванию).

Описание метода Ньютона (метода касательных)

Пусть корень уравнения f(x) = 0 отделён на отрезке, причем f(x) и f(x) непрерывны и сохраняют определённые знаки при . Найдя какое-нибудь n-e приближение корня n (), мы можем уточнить его по Методу Ньютона следующим образом. Пусть , где hn малая величина. Отсюда, применяя формулу Тейлора, получим:

Следовательно,

Внеся эту поправку в формулу (2), получим следующее по порядку приближение корня:

Геометрически метод Ньютона эквивалентен замене небольшой дуги кривой y=f(x) касательной, проведенной в некоторой точке кривой. в самом деле, положим для определённости, что f(x)>0 при и f(b)>0 (рис. 1).

Выберем, например, х0=b, для которого f(x)f(x)>0. Проведем касательную к кривой y=f(x) в точке B0 (x0, f(x0)).

В качестве 1-го приближения x1 корня возьмем абсциссу точки пересечения этой касательной с осью Ox. Через точку B1(x1, f(x1)) снова проведем касательную, абсцисса точки пересечения которой с Ox даст нам 2-е приближение x2 корня и т.д. (рис. 1). Очевидно, что уравнение касательной в точке Bn (xn, f(xn)) (где n=0,1,2…) есть

Полагая, что у=0, x=xn+1,получим формулу (3):

.

Заметим, что если в нашем случае положить х0=a и, следовательно, f(x)f(x) 0, f(x) >0, f(x)>0 при (остальные случаи рассматриваются аналогично). Согласно неравенству (4) имеем f(x0) >0 (например, можно принять х0 = b).

Методом математической индукции докажем, что все приближения xn>(n = 0, 1, 2. ) и, следовательно, f(xn)>0. В самом деле, прежде всего, x0 >.

Пусть теперь xn>. Положим

Применяя формулу Тейлора, получим:

где 0, то имеем:

и, следовательно,

что и требовалось доказать.

Из формулы (3), учитывая знаки f(xn) и f(хn), имеем хn+1 0 при , f"(x )>0 и х0 = с, где .

Если f(c) > 0, то справедливо приведенное выше рассуждение и процесс Ньютона с начальным значением с сходится к корню .

Наконец, если f(с) 0.

Кроме того, из условия f"(x) >0 вытекает, что f (х) -- возрастающая функция и, значит, f(x) > f (а) > 0 при х>а. Следовательно, х1 можно принять за начальное значение для процесса Ньютона, сходящегося к некоторому корню функции f(x) такому, что > с а. Так как в силу положительности производной f (х) при х > а функция f(x) имеет единственный корень на интервале (а, +), то =.

Аналогичное рассмотрение можно провести для других комбинаций знаков производных f(x)и f"(x).

Замечание 2. Из формулы (3) видно, что чем больше численное значение производной f(x) в окрестности данного корня, тем меньше поправка, которую нужно прибавить к n-му приближению, чтобы получить (n+l)-e приближение. Поэтому метод Ньютона особенно удобно применять тогда, когда в окрестности данного корня график функции имеет большую крутизну. Но если численное значение производной f(x) близ корня мало, то поправки будут велики, и вычисление корня по этому методу может оказаться очень долгим, а иногда и вовсе невозможным. Следовательно, если кривая y=f(x) вблизи точки пересечения с осью Ох почти горизонтальна, то применять метод Ньютона для решения уравнения f(x) = 0 не рекомендуется.

Оценка погрешности

где m1 -- наименьшее значение | f(x)|на отрезке [а, b].

Выведем еще одну формулу для оценки точности приближения xn. Применяя формулу Тейлора, имеем:

Сергеева Светлана Александровна

Работа посвящена исследованию методов приближенного решения уравнений. Рассмотрены следующие методы приближенногорешения уравнений: метод половинного деления, метод хорд, метод касательных, комбинированный метод, построены компьютерные модели всех изученных методов на языке программирования Free Pascal. Модели позволили провести сравнительный анализ изученных методов и выбрать среди них оптимальный.

ВложениеРазмер
start_v_nauku.docx 161.16 КБ

Предварительный просмотр:

Городская научно – практическая конференция

Исследование методов приближенного решения уравнений

Секция: современное программирование

Автор: Сергеева Мария Сергеевна,

Руководитель: Сергеева Светлана Александровна

Учитель информатики 1 категории,

  1. Теоретическая часть 4
  1. Метод половинного деления 5
  2. Метод хорд 7
  3. Метод касательных 8
  4. Комбинированный метод хорд и касательных 9
  1. Практическая часть 11
  1. Компьютерная модель построения графика функции на языке программирования Free Pascal 11
  2. Компьютерная модель метода половинного деления 13
  3. Компьютерная модель метода хорд 14
  4. Компьютерная модель метода касательных 15
  5. Компьютерная модель комбинированного метода хорд и касательных 16
  6. Сравнительный анализ методов 17

На уроке алгебры при решении уравнений возникают ситуации, когда путем алгебраических преобразований уравнение решить невозможно. Для решения данной проблемы, существуют методы приближенного решения уравнений.

Актуальность темы обоснована тем, что с развитием компьютерной техники методы решения уравнений, основанные на большом количестве повторов, получают возможность широкого применения.

Цель : нахождение оптимального метода приближенного решения уравнения.

  1. Изучить методы приближенного решения уравнения:
  1. метод половинного деления
  2. метод хорд
  3. метод касательных
  4. комбинированный метод
  1. Создать компьютерные модели приближенного решения уравнений с помощью всех методов на языке программирования Free Pascal.
  2. Провести сравнительный анализ методов.

Нелинейные уравнения можно разделить на 2 класса - алгебраические и трансцендентные. Алгебраическими уравнениями называют уравнения, содержащие только алгебраические функции (целые, рациональные, иррациональные). В частности, многочлен является целой алгебраической функцией. Уравнения, содержащие другие функции (тригонометрические, показательные, логарифмические и др.) называются трансцендентными.

Методы решения нелинейных уравнений делятся на две группы:

  1. точные методы;
  2. итерационные методы (за счет последовательных приближений получить решение уравнения с необходимой точностью).

Точные методы решения уравнений основываются на поиске равносильных преобразований алгебраических выражений, например, перенос слагаемых из одной части уравнения в другую с противоположным знаком, деление обеих частей уравнения на одинаковое число не равное 0, а также точные способы решений позволяют записать корни уравнения в виде некоторого конечного соотношения (формулы). Точные решения существуют только для некоторых уравнений определенного вида (линейные, квадратные, тригонометрические и др.), поэтому для большинства уравнений приходится использовать методы приближенного решения с заданной точностью (графические или численные). В первую очередь это относится к большинству трансцендентных уравнений. Доказано также, что нельзя построить формулу, по которой можно было бы решить произвольное алгебраическое уравнение выше четвертой степени.

Точные методы решения Приближенные методы решения

Например, уравнение x3+cos x=0 нельзя решить путем равносильных алгебраических преобразований. Но это уравнение можно решать приближенно графическими и численными методами.

Решение уравнения проводят численно в два этапа. На первом этапе производится отделение корней - поиск интервалов, на которых содержится только по одному корню. Второй этап решения связан с уточнением корня на выбранном интервале (определением значения корня с заданной точностью). Далее будут рассмотрены несколько численных методов и приведены алгоритмы нахождения корней уравнений.

Отделение корней уравнения может проводиться графически, т.е. путем построения графика функции y=f(x). Для уравнения вида f (x) = 0 , где f(x) – некоторая непрерывная функция, корень (или корни) этого уравнения являются точкой (или точками) пересечения графика функции с осью абсцисс.

Решение уравнений с заданной точностью

Метод половинного деления

f(x)=0,
где f(x) - непрерывная функция

Отделение корней уравнения можно осуществить путем построения компьютерных моделей:

  1. построение графика функции с помощью одного из языков программирования (в данном случае Free Pascal);
  2. построение графика функции в электронных таблицах Microsoft Excel путем построения диаграммы типа График .

Рассмотрим методы уточнения корней и их основные идеи. Отметим следующий момент: при прочих равных условиях, тот метод уточнения корней будет более эффективен, в котором результат с той же погрешностью найден за меньшее число раз вычисления функции f(x).

1.1. Метод половинного деления

Самый простой из них – метод половинного деления, или иначе метод дихотомии. Метод дихотомии получил свое название от древнегреческого слова διχοτομία, что в переводе означает деление надвое. Его мы используем довольно часто. Допустим, играя в игру "Угадай число", где один игрок загадывает число от 1 до 100, а другой пытается его отгадать, руководствуясь подсказками "больше" или "меньше". Логично предположить, что первым числом будет названо 50, а вторым, в случае если оно меньше - 25, если больше - 75. Таким образом, на каждом этапе неопределенность неизвестного уменьшается в 2 раза. Т.е. даже самый невезучий в мире человек отгадает загаданное число в данном диапазоне за 7 предположений вместо 100 случайных утверждений.

Алгоритм метода половинного деления основан на теореме Больцано - Коши о промежуточных значениях непрерывной функции и следствии из неё.

Теорема Больцано - Коши: если непрерывная функция принимает два значения, то она принимает любое значение между ними.

Следствие (теорема о нуле непрерывной функции): если непрерывная функция принимает на концах отрезка положительное и отрицательное значения, то существует точка, в которой она равна 0.

Читайте также: