Потери в трансформаторе реферат

Обновлено: 05.07.2024

Трансформатор является прибором, который призван преобразовывать электроэнергию сети. Эта установка имеет две или больше обмоток. В процессе своей работы трансформаторы могут преобразовать частоту и напряжение тока, а также количество фаз сети.

В ходе выполнения заданных функций наблюдаются потери мощности в трансформаторе. Они влияют на исходную величину электричества, которую выдает на выходе прибор. Что собой представляют потери и КПД трансформатора, будет рассмотрено далее.

Устройство

Трансформатор представляет собой статический прибор. Он работает от электричества. В конструкции при этом отсутствуют подвижные детали. Поэтому рост затрат электроэнергии вследствие механических причин исключены.

При функционировании силовой аппаратуры затраты электроэнергии увеличиваются в нерабочее время. Это связано с ростом активных потерь холостого хода в стали. При этом наблюдается снижение нагрузки номинальной при увеличении энергии реактивного типа. Потери энергии, которые определяются в трансформаторе, относятся к активной мощности. Они появляются в магнитоприводе, на обмотках и прочих составляющих агрегата.

Понятие потерь

При работе установки часть мощности поступает на первичный контур. Она рассеивается в системе. Поэтому поступающая мощность в нагрузку определяется на меньшем уровне. Разница составляет суммарное снижение мощности в трансформаторе.

потери электроэнергии в трансформаторах

Существует два вида причин, из-за которых происходит рост потребление энергии оборудованием. На них влияют различные факторы. Их делят на такие виды:

Их следует понимать, дабы иметь возможность снизить электрические потери в силовом трансформаторе.

Магнитные потери

В первом случае потери в стали магнитопривода состоят из вихревых токов и гистериза. Они прямо пропорциональны массе сердечника и его магнитной индукции. Само железо, из которого выполнен магнитопривод, влияет на эту характеристику. Поэтому сердечник изготавливают из электротехнической стали. Пластины делают тонкими. Между ними пролегает слой изоляции.

Также на снижение мощности трансформаторного устройства влияет частота тока. С ее повышением растут и магнитные потери. На этот показатель не влияет изменение нагрузки устройства.

Электрические потери

Снижение мощности может определяться в обмотках при их нагреве током. В сетях на такие затраты приходится 4-7% от общего количества потребляемой энергии. Они зависят от нескольких факторов. К ним относятся:

  • Электрическая нагрузка системы.
  • Конфигурация внутренних сетей, их длина и размер сечения.
  • Режим работы.
  • Средневзвешенный коэффициент мощности системы.
  • Расположение компенсационных устройств.

Потери мощности в трансформаторах являются величиной переменной. На нее влияет показатель квадрата тока в контурах.

Потери и КПД трансформатора

В процессе трансформирования электрической энергии часть энергии теряется в трансформаторе на покрытие потерь. Потери в трансформаторе разделяются на электрические и магнитные.

Электрические потери. Обусловлены нагревом обмоток трансформаторов при прохождении по этим обмоткам электриче­ского тока. Мощность электрических потерь пропорциональна квадрату тока и определяется суммой электрических потерь в пер­вичной и во вторичной обмотках:

– число фаз трансформатора (для однофазного трансфор­матора
m
= 1, для трехфазного
m
= 3).

При проектировании трансформатора величину электрических потерь определяют по (1.73), а для изготовленного трансформато­ра эти потери определяют опытным путем, измерив мощность к.з. при номинальных токах в обмотках :

где – коэффициент нагрузки.

Электрические потери называют переменными, так как их ве­личина зависит от нагрузки трансформатора (рис. 44).

Магнитные потери. Происходят главным образом в магнито­проводе трансформатора. Причина этих потерь – систематическое перемагничивание магнитопровода переменным магнитным полем. Это перемагничивание вызывает в магнитопроводе два вида магнит­ных потерь: потери от гистерезиса , связанные с затратой энергии на уничтожение остаточного магнетизма в ферромагнитном материа­ле магнитопровода, и потери от вихревых токов , наводимых пере­менным магнитным полем в пластинах магнитопровода:

С целью уменьшения магнитных потерь магнитопровод транс­форматора выполняют из магнитно-мягкого ферромагнитного мате­риала – тонколистовой электротехнической стали. При этом магни­топровод делают шихтованным в виде пакетов из тонких пластин (полос), изолированных с двух сторон тонкой пленкой лака.

Магнитные потери от гистерезиса прямо пропорциональны частоте перемагничивания магнитопровода, т. е. частоте перемен­ного тока , а магнитные потери от вихревых токов про­порциональны квадрату этой частоты . Суммарные маг­нитные потери принято считать пропорциональными частоте тока в степени 1,3, т. е. . Величина магнитных потерь зависит также и от магнитной индук­ции в стержнях и ярмах маг­нитопровода . При неизменном первичном напря­жении магнитные потери постоянны, т. е. не за­висят от нагрузки трансфор­матора (рис. 44, а


Рис. 44. Зависимость потерь трансформатора от его нагрузки (а

и энергетическая диаграмма (б


Рис. 45. График зависимости КПД трансформатора от нагрузки

При проектировании транс­форматора магнитные потери определяют по значению удельных магнитных потерь , происходящих в 1 кг тонколистовой электротехнической стали при значениях магнитной индукции 1,0; 1,5 или 1,7 Тл и частоте перемагничивания 50 Гц:

где – фактическое значение магнитной индукции в стержне или ярме магнитопровода трансформатора, Тл; – магнитная индук­ция, соответствующая принятому значению удельных магнитных потерь, например = 1,0 или 1,5 Тл; – масса стержня или ярма магнитопровода, кг.

Значения удельных магнитных потерь указаны в ГОСТе на тонколистовую электротехническую сталь. Например, для стали марки 3411 толщиной 0,5 мм при = 1,5 Тл и = 50 Гц удельные магнитные потери = 2,45 Вт/кг.

Для изготовленного трансформатора магнитные потери опре­деляют опытным путем, измерив мощность х.х. при номинальном первичном напряжении .

Таким образом, активная мощность , поступающая из сети в первичную обмотку трансформатора, частично расходуется на электрические потери в этой обмотке . Переменный магнитный поток вызывает в магнитопроводе трансформатора магнитные потери . Оставшаяся после этого мощность, называемая электромагнитной мощностью

, передается во вторичную обмотку, где частично расходуется на электрические потери в этой обмотке . Активная мощность, поступающая в нагрузку трансформатора, , где – суммар­ные потери в трансформаторе. Все виды потерь, сопровождающие рабочий процесс трансформатора, показаны на энергетической диаграмме (рис. 44,
б
).

Коэффициент полезного действия

трансформатора определя­ется как отношение активной мощности на выходе вторичной об­мотки (полезная мощность) к активной мощности на входе пер­вичной обмотки (подводимая мощность):

Активная мощность на выходе вторичной обмотки трехфазно­го трансформатора (Вт)

где – номинальная мощность трансформато­ра, В·А; и – линейные значения тока, А, и напряжения В.

Учитывая, что , получаем выражение для расчета КПД трансформатора:

Анализ выражения (1.79) показывает, что КПД трансформато­ра зависит как от величины , так и от характера на­грузки. Эта зависимость иллюстрируется графиками (рис. 45). Максимальное значение КПД соответствует нагрузке, при которой магнитные потери равны электрическим: , отсюда значение коэффициента нагрузки, соответствующее максимально­му КПД,

Обычно КПД трансформатора имеет максимальное значение при = 0,45÷0,65. Подставив в (1.79) вместо значение по (1.80), получим выражение максимального КПД трансформатора:

Помимо рассмотренного КПД по мощности иногда пользуют­ся понятием КПД по энергии, который представляет собой отно­шение количества энергии, отданной трансформатором потреби­телю (кВт·ч) в течение года, к энергии , полученной им от питающей электросети за это же время:

КПД трансформатора по энергии характеризует эффектив­ность эксплуатации трансформации.

Лекция № 9

Узнать еще:

Методика расчета

Потери в трансформаторах можно рассчитать по определенной методике. Для этого потребуется получить ряд исходных характеристик работы трансформатора. Представленная далее методика применяется для двухобмоточных разновидностей. Для измерений потребуется получить следующие данные:

  • Номинальный показатель мощности системы (НМ).
  • Потери, определяемые при холостом ходе (ХХ) и номинальной нагрузке.
  • Потери короткого замыкания (ПКЗ).
  • Количество потребленной энергии за определенное количество времени (ПЭ).
  • Полное количество отработанных часов за месяц (квартал) (ОЧ).
  • Число отработанных часов при номинальном уровне нагрузки (НЧ).

Получив эти данные, измеряют коэффициент мощности (угол cos φ). Если же в системе отсутствует счетчик реактивной мощности, в расчет берется ее компенсация tg φ. Для этого происходит измерение тангенса угла диэлектрических потерь. Это значение переводят в коэффициент мощности.

потери в трансформаторе

Особенности силового трансформатора 100 кВА

  • В режиме холостого хода ТМ 1000 имеет потери порядка 1900 Вт, ток холостого хода составляет 1,4%, потери короткого замыкания составляют 10800 Вт.
  • Сфера применения ТМ — невзрывоопасная окружающая среда без содержания пыли в снижающих параметры изделий концентрациях. Не допускаются при использовании ТМ вибрации, удары, тряска. ТМ не предназначены для работы в химически активной среде и устанавливаются на высоте не более 1000 м над уровнем моря.
  • Основное отличие трансформатора 1000 кВА — наличие расширительного бака. В него поступает излишнее масло при температурных изменениях. Обычно в бак устанавливают воздухоосушитель с отстойником, заполняющимся силикагелем. Кроме того, в нем имеется маслоуказатель, с помощью которого можно следить за уровнем масла и состоянием маслобензостойких прокладок и корпуса — они могут дать течь в процессе эксплуатации.
  • При необходимости масляные или сухие трансформаторы 1000 кВА могут комплектоваться манометрическим сигнализирующим термодатчиком и газовым реле, а также транспортными роликами в продольном и поперечном направлениях для удобства перемещения.

Формула расчета

Коэффициент нагрузки в представленной методике будет определяться по следующей формуле:

К = Эа/НМ*ОЧ*cos φ, где Эа – количество активной электроэнергии.

Какие потери происходят в трансформаторе в период загрузки, можно просчитать по установленной методике. Для этого применяется формула:

П = ХХ * ОЧ * ПКЗ * К² * НЧ.

Таблица потерь в трансформаторе

Расчет для трехобмоточных трансформаторов

Представленная выше методика применяется для оценки работы двухобмоточных трансформаторов. Для аппаратуры с тремя контурами необходимо учесть еще ряд данных. Они указываются производителем в паспорте.

В расчет включают номинальную мощность каждого контура, а также их потери короткого замыкания. При этом расчет будет производиться по следующей формуле:

Э = ЭСН + ЭНН, где Э – фактическое количество электричества, которое прошло через все контуры; ЭСН – электроэнергия контура среднего напряжения; ЭНН – электроэнергия низкого напряжения.

потери мощности в трансформаторе

Пример расчета

Чтобы было проще понять представленную методику, следует рассмотреть расчет на конкретном примере. Например, необходимо определить увеличение потребления энергии в силовом трансформаторе 630 кВА. Исходные данные проще представить в виде таблицы.

ОбозначениеРасшифровкаЗначение
НННоминальное напряжение, кВ6
ЭаАктивная электроэнергия, потребляемая за месяц, кВи*ч37106
НМНоминальная мощность, кВА630
ПКЗПотери короткого замыкания трансформатора, кВт7,6
ХХПотери холостого хода, кВт1,31
ОЧЧисло отработанных часов под нагрузкой, ч720
cos φКоэффициент мощности0,9

На основе полученных данных можно произвести расчет. Результат измерения будет следующий:

% потерь составляет 0,001. Их общее число равняется 0,492%.

Диаграмма потерь в трансформаторе

Расчет потерь электроэнергии в трансформаторе тока формула

При передаче электрической энергии от генераторов электростанций до потребителя около 12-18% всей вырабатываемой электроэнергии теряется в проводниках воздушных и кабельных линий, а также в обмотках и стальных сердечниках силовых трансформаторов.

При проектировании нужно стремиться к уменьшению потерь электроэнергии на всех участках энергосистемы, поскольку потери электроэнергии ведут к увеличению мощности электростанций, что в свою очередь влияет на стоимость электроэнергии.

В сетях до 10кВ потери мощности в основном обусловлены нагревом проводов от действия тока.

Потери мощности в линии.

Потери активной мощности (кВт) и потери реактивной мощности (кВАр) можно найти по следующим формулам:

Формулы для расчета потери мощности в линии

Формулы для расчета потери мощности в линии

где Iрасч – расчетный ток данного участка линии, А;

Rл – активное сопротивление линии, Ом.

Потери мощности в трансформаторах.

Потери мощности в силовых трансформаторах состоят из потерь, не зависящих и зависящих от нагрузки. Потери активной мощности (кВт) в трансформаторе можно определить по следующей формуле:

Потери активной мощности в трансформаторе

где ?Рст – потери активной мощности в стали трансформатора при номинальном напряжении. Зависят только от мощности трансформатора и приложенного к первичной обмотке трансформатора напряжения. ?Рст приравнивают ?Рх;

?Рх— потери холостого хода трансформатора;

?Роб – потери в обмотках при номинальной нагрузке трансформатора, кВт; ?Роб приравнивают ?Рк.

?Рк– потери короткого замыкания;

Измерение полезного действия

При расчете потерь определяется также показатель полезного действия. Он показывает соотношение мощности активного типа на входе и выходе. Этот показатель рассчитывают для замкнутой системы по следующей формуле:

КПД = М1/М2, где М1 и М2 – активная мощность трансформатора, определяемая измерением на входном и исходящем контуре.

Выходной показатель рассчитывается путем умножения номинальной мощности установки на коэффициент мощности (косинус угла j в квадрате). Его учитывают в приведенной выше формуле.

В трансформаторах 630 кВА, 1000 кВА и прочих мощных устройствах показатель КПД может составлять 0,98 или даже 0,99. Он показывает, насколько эффективно работает агрегат. Чем выше КПД, тем экономичнее расходуется электроэнергия. В этом случае затраты электроэнергии при работе оборудования будут минимальными.

Рассмотрев методику расчета потерь мощности трансформатора, короткого замыкания и холостого хода, можно определить экономичность работы аппаратуры, а также ее КПД. Методика расчета предполагает применять особый калькулятор или производить расчет в специальной компьютерной программе.

Теоретическая мощность не соответствует реальной мощности, поставляемой трансформатором. Номинальная полная вторичная мощность трансформатора равна произведению. Мощность, отдаваемая трансформатором, где реальное выходное напряжение трансформатора. Можно сказать, что теоретическая мощность трансформатора отличается от реальной его мощности, так как напряжение отличается от напряжения… Читать ещё >

Потери электрической энергии в трансформаторе и коэффициент полезного действия трансформатора ( реферат , курсовая , диплом , контрольная )

В любом электромагнитном устройстве имеются потери электрической энергии. Количество и характер потерь энергии в устройстве определяют эффективность его работы. В случае трансформатора речь идет об эффективности преобразования электрической энергии. Проанализируем причины возникновения потерь энергии в трансформаторе.

В соответствии с принципом действия трансформатора его основными элементами являются магнитопровод и обмотки, поэтому обычно рассматривают потери в сердечнике и обмотках.

Потери электрической энергии в трансформаторе и коэффициент полезного действия трансформатора.

Потери электрической энергии в трансформаторе и коэффициент полезного действия трансформатора.

Вспомним природу появления магнитного потока сердечника. Ток первичной обмотки, проходя по виткам первичной обмотки, образует вместе с ней намагничивающую силу, равную произведению мгновенного значения тока на количество витков первичной обмотки. Так как ток вторичной обмотки равен нулю, никаких намагничивающих сил в магнитной цепи нет, поэтому напряженность магнитного поля в любой точке магнитопровода будет пропорциональна мгновенному значению тока. В зависимости от свойств магнитного материала каждому значению напряженности соответствует индукция магнитного поля в данной точке. Для электротехнической стали эта зависимость выражается петлей гистерезиса. Кривая намагничивания стали показывает, что каждому значению напряженности магнитного поля соответствует два значения индукции. Неоднозначность кривой намагничивания стали приводит к тому, что вектор магнитного потока и вектор тока не будут совпадать по фазе, так как магнитный поток сердечника пропорционален индукции магнитного поля. Поэтому ток холостого хода трансформатора опережает вектор магнитного потока на некоторый угол. Магнитный поток сердечника наводит в первичной обмотке ЭДС синусоидальной формы, вектор которой отстает от вектора магнитного потока на 90. Падение напряжения на первичной обмотке равно ЭДС по величине и противоположно по направлению. Таким образом, намагничивающий ток первичной обмотки отстает от напряжения не на 90, а на меньший угол. Если в дальнейших рассуждениях использовать математический аппарат электротехники, то можно определить активную мощность потерь в трансформаторе, работающем в режиме холостого хода. Активная мощность равна произведению тока на напряжение и на косинус угла сдвига фаз. Угол сдвига фаз. Так как, то и. Активная мощность не равняется нулю. Это доказывает наличие потерь энергии, связанных с перемагничиванием сердечника.

Кроме такого рода потерь, в сердечнике имеют место потери, связанные с вихревыми токами. Последний вид потерь объясняется следующим явлением. Электротехническая сталь является проводящим материалом и имеет свободные заряды. Поскольку магнитный поток изменяется по синусоидальному закону, заряды будут перемещаться под действием этого потока в соответствии с законом Ленца по замкнутому пути, пытаясь воспрепятствовать изменению магнитного потока. Но любое упорядоченное движение зарядов является током, который, проходя по проводнику — сердечнику с конечной проводимостью, рассеивает энергию на его нагревание. Такие токи называют токами Фуко.

Потери электрической энергии в трансформаторе и коэффициент полезного действия трансформатора.

Появление вихревых токов можно объяснить достаточно просто (рис. 5.3). Рассмотрим сердечник из сплошного проводящего материала, по которому проходит магнитный поток, изменяющийся по синусному закону. Мысленно вырежем из сердечника пластину в направлении, перпендикулярном магнитному потоку (см. рис. 5.3). Если далее удалить из полученной пластины среднюю часть, то получим короткозамкнутый виток из проводящего материала, сцепленный с магнитным потоком, изменяющимся по синусоидальному закону. Как и в любом проводнике, сцепленным с изменяющимся во времени магнитным потоком, в нем будет наведена электродвижущая сила, которая обеспечивает циркуляцию тока в короткозамкнутом проводнике. Произведение квадрата тока проводника на его сопротивление равно элементарной активной мощности потерь. Весь сердечник, таким образом, можно представить в форме совокупности большого количества короткозамкнутых витков. Если не принять специальных мер для уменьшения вихревых токов, то КПД трансформаторов резко снизится, ибо большое количество энергии будет потеряно в сердечнике.

Таким образом, потери энергии в сердечнике связаны с двумя явлениями: с потерями на перемагничивание сердечника и с потерями на вихревые токи. Считают, что потери на перемагничивание пропорциональны площади петли гистерезиса. Для уменьшения такого вида потерь необходимо создавать магнитные материалы с узкой петлей гистерезиса.

Уменьшения потерь на вихревые токи достигают путем увеличения удельного сопротивления магнитного материала и уменьшением магнитного потока элементарного сердечника. Последнее реализуется путем изготовления сердечников из изолированных друг от друга пластин электротехнической стали.

Третьей причиной возникновения потерь в трансформаторе является сопротивление проводов обмоток трансформатора. Мощность потерь в обмотке трансформатора пропорциональна квадрату тока обмотки, поэтому потери в обмотках называют переменными потерями.

Потери электрической энергии в трансформаторе и коэффициент полезного действия трансформатора.

Коэффициентом полезного действия трансформатора, как и других электрических машин, называют коэффициент, равный отношению активной выходной мощности, поставляемой трансформатором нагрузки, к активной мощности, потребляемой трансформатором из сети или .

Потери электрической энергии в трансформаторе и коэффициент полезного действия трансформатора.

Коэффициент полезного действия мощных трансформаторов очень велик, поэтому прямой метод его определения, заключающийся в измерении активной мощности на входе трансформатора и активной мощности на его выходе, неприемлем. Это объясняется прежде всего тем, что на величину коэффициента полезного действия оказывает большое влияние точность приборов измерения мощности. По этой причине для измерения КПД трансформатора используют косвенный метод.

Мощность, потребляемая из сети трансформатором, может рассматриваться в виде суммы мощностей нагрузки, мощности потерь в сердечнике и мощности потерь в обмотке на нагревание проводников, поэтому.

Потери электрической энергии в трансформаторе и коэффициент полезного действия трансформатора.

Потери электрической энергии в трансформаторе и коэффициент полезного действия трансформатора.

Мощность в формуле называется теоретической мощностью трансформатора. Она определяется из формулы.

Потери электрической энергии в трансформаторе и коэффициент полезного действия трансформатора.

где коэффициент нагрузки трансформатора;

номинальная мощность трансформатора;

Потери электрической энергии в трансформаторе и коэффициент полезного действия трансформатора.

Потери электрической энергии в трансформаторе и коэффициент полезного действия трансформатора.

коэффициент мощности нагрузки.

Потери электрической энергии в трансформаторе и коэффициент полезного действия трансформатора.

Потери электрической энергии в трансформаторе и коэффициент полезного действия трансформатора.

Потери электрической энергии в трансформаторе и коэффициент полезного действия трансформатора.

Потери электрической энергии в трансформаторе и коэффициент полезного действия трансформатора.

Теоретическая мощность не соответствует реальной мощности, поставляемой трансформатором. Номинальная полная вторичная мощность трансформатора равна произведению. Мощность, отдаваемая трансформатором, где реальное выходное напряжение трансформатора. Можно сказать, что теоретическая мощность трансформатора отличается от реальной его мощности, так как напряжение отличается от напряжения .

Потери электрической энергии в трансформаторе и коэффициент полезного действия трансформатора.

Из предыдущих рассуждений следует, что для определения КПД трансформатора необходимо определить мощность потерь в сердечнике и мощность потерь в меди (проводе обмотки).

Потери электрической энергии в трансформаторе и коэффициент полезного действия трансформатора.

Предположим, что трансформатор работает при номинальном напряжении в режиме холостого хода. Ток холостого хода меньше номинального в десятки раз, поэтому потери в трансформаторе практически равны потерям в сердечнике, т. е. мощность потерь трансформатора, работающего в режиме холостого хода. Мощность потерь в стали пропорциональна квадрату индукции или квадрату ЭДС.

Потери электрической энергии в трансформаторе и коэффициент полезного действия трансформатора.

Потери электрической энергии в трансформаторе и коэффициент полезного действия трансформатора.

Потери электрической энергии в трансформаторе и коэффициент полезного действия трансформатора.

Изменение ЭДС зависит от падения напряжения в первичной обмотке трансформатора. Ранее же было показано, что при индуктивной нагрузке напряжение уменьшается с увеличением тока, а при емкостном характере оно может увеличиться. Тогда при индуктивной нагрузке потери в сердечнике будут меньше потерь в сердечнике трансформатора без нагрузки и при емкостной нагрузке потери могут быть больше. Потери в сердечнике изменяются в пределах от 1 до 4%. Таким изменением можно пренебречь и предположить, что .

Мощность трансформатора в опыте короткого замыкания не отражает достаточно точно потерь в меди. При индуктивной нагрузке ток больше и потери в меди больше, при емкостной нагрузке потери в меди уменьшаются.

При известном коэффициенте мощности нагрузки можно предположить, что мощность потерь в меди пропорциональна квадрату коэффициента нагрузки и мощности короткого замыкания. Таким образом, величина коэффициента полезного действия определяется формулой.

Потери электрической энергии в трансформаторе и коэффициент полезного действия трансформатора.

Взяв производную от полученного выражения для КПД по коэффициенту нагрузки и приравняв ее нулю, получим:

Потери электрической энергии в трансформаторе и коэффициент полезного действия трансформатора.

Коэффициент полезного действия имеет максимальное значение тогда, когда потери в меди равны потерям в стали или когда переменные потери равны постоянным потерям. Общий вид зависимости КПД трансформатора от тока нагрузки приведен на рис. 5.4.

Рис. 5.4.

У реальных силовых трансформаторов КПД достигает своего максимального значения при токах вторичной обмотки, равной .

  • Для учеников 1-11 классов и дошкольников
  • Бесплатные сертификаты учителям и участникам

Снижение потерь электроэнергии в силовых трансформаторах

Современная энергетическая промышленность в настоящее время использует огромное количество трансформаторов, которые, ввиду своей значимости в распределении электрической энергии, могут приводить также к потерям электрической энергии.

Для работы любого силового трансформатора характерно наличие потерь, увеличивающиеся во время нерабочего времени, прежде всего, в результате возрастания потерь холостого хода. Здесь подразумеваются активные потери мощности трансформатора в стали, кВт. Кроме того, для потерь электроэнергии в силовых трансформаторах характерно уменьшение нагрузки относительно наименьшей, посредством возрастания потребления реактивной энергии. То есть, активные потери в меди обмоток трансформаторов [2] .

Но при правильном выборе оборудования и требуемого показателя рабочего напряжения можно прийти к сокращению общего количества трансформаторов, и это приведет к снижению электроэнергетических потерь. Данные меры в большинстве случае обусловливаются и тем, что в период значительной экономии топливных и энергетических ресурсов задачи по борьбе с потерями электрической энергии являются основными и требующими незамедлительного решения.

Важным методом борьбы с потерями можно назвать правильное проектирование и работоспособности электросетей, что в итоге даст возможность обеспечить и уменьшение расходов на производство электрической энергии. С целью снижения расхода электрической энергии на подстанциях, необходимо обратить внимание на эффективность работы систем охлаждения трансформаторов и шунтирующих реакторов [1].

Современные технологии не стоят на месте, развиваются с каждым днем. И в энергетической промышленности также нет отставаний. Крупные предприятия производят микропроцессорные устройства, которые могут в зависимости от температуры окружающей среды и масла внутри баков сделать продолжительной работы охладителей оптимальной, при этом уменьшив расходы электрической энергии на питание системы вентиляции (охлаждения.

Помимо всего прочего, сегодня ученые разрабатывают мероприятия по вторичному использованию тепла, выделяющегося от нагрева силовых трансформаторов и которое используется с целью отопления зданий ОПУ и ЗРУ на подстанциях.

Значительный фактор заключается также в разделении учета электрической энергии на собственные нужды ПС и хозяйственные, невозможности подключить к трансформаторам собственных нужд какие-либо потребители, которые не имеют никакого отношения к рабочему циклу подстанции. На огромные объемы уменьшить потери электрической энергии и, как правило, оптимизировать работу трансформаторов позволяет соблюдение определенных профилактических работ, которые выполняются под напряжением. В данном случае они не отключаются от сети, так как любой ремонтный режим может способствовать увеличению потерь в сети в сравнении с нормальными режимами.

Зная тот факт, что потери электрической энергии в силовых трансформаторах могут достигать огромных масштабов, нужно уделять особое внимание на их уменьшение до минимума при выполнении следующих мероприятий [3]:

- нужно правильно подобрать мощность и число трансформаторов, и количество одновременно работающих будет определяться при помощи дежурного персонала. При этом важно учитывать реальные нагрузки и условия низшего уровня потерь электрической энергии. Как показывает практика, для таких целей лучше всего воспользоваться трансформаторами с мощностью не более й МВА;

- сократить время холостого хода во время малых нагрузок. В ходе проведения анализа ежегодных издержек самым экономным режимом работы сети оказалось, что оптимальной оказывается работа силового трансформатора с перегрузкой во время самых мощных нагрузок. В ходе данного мероприятия появляется возможность получения минимальных потерь при одновременном выравнивании графика нагрузок. Но не стоит забывать, что следует грамотно выбирать показатели перегрузки с учетом температуры окружающей среды и начальной мощности.

Немаловажным будет отметить современную тенденцию к переходу от стандартных программ оптимизации работы трансформаторов и снижения потерь электрической энергии в сетях к бизнес-процессам управления потерями.

Решение подобного рода задач повлечёт за собой появление совершенно новых подходов в оценке технической и экономической эффективности от принятия любого решения в инвестиционных проектах развития сетей и от применения новых технологий в передачи электроэнергии [1].

Использование таких технологий и практическое осуществление перечисленных путей оптимизации работы сетей в перспективе принесут повышение эффективности нормирования потерь электрической энергии.

Также, в результате загрузки силового трансформатора почти на 35% нагрузочные потери будут приблизительно равны потерям холостого хода. Статистические данные свидетельствуют о том, что в среднем на каждой трансформаторной подстанции теряется примерно 10-13% энергии.

Если трансформатор будет работать длительное время в режиме холостого хода, или близкому к нему, то вызовет значительные потери электрической энергии не только в трансформаторе, но и во всей системе электрического снабжения (как правило, от источника питания до трансформатора непосредственно) в результате маленького коэффициента мощности. С целью экономии электрической энергии важно отключить мало загруженные трансформаторы, когда наблюдается сезонное снижение нагрузки.

Также, к некоторым причинам потери электрической энергии в трансформаторах следует отнести низкие коэффициенты мощности в придаток к огромным потерям напряжения в сети. В данном контексте важно исследовать электроэнергетическую систему, а также изучить способности применения конденсаторов для изменения показателей коэффициента мощности. Для трансформаторов, которые неэффективно работают, данные мероприятия позволяют снизить потери электрической энергии до 15-20% [2].

Коэффициент нагрузки также является важным параметром, который характеризует возможность трансформатора эффективно вырабатывать электрическую энергии. Уменьшив нагрузку, приблизив ее к единице без снижения уровня производственной деятельности, можно повысить экономичность работы трансформатора. Следовательно, на снижение потерь электрической энергии непосредственно влияет рабочий цикл самого трансформатора. Как было сказано, коэффициент нагрузки имеет особое значение, так как чем он больше, тем эффективнее работает трансформатор и меньше тратится энергии.

Главным условием работы электрической сети с наименьшими потерями энергии можно назвать ее рациональное построение. Немаловажное значение здесь приобретает правильное определение точек деления между трансформаторами, экономичное распределение активных и реактивных мощностей, внедрение замкнутых и полузамкнутых схем сети.

Как правило, электрические потери в рационально подобранных и эффективно работающих трансформаторах не должны быть больше обоснованного технологического расхода электричества при его распределении между трансформаторами. Мероприятия по снижению потерь нужно проводить там, где наблюдаются определенные отклонения от рациональной работы трансформаторов и оптимальных условиях эксплуатации [3].

Благодаря современным математическим методам расчета удается в большинстве случаев привести технологически расходы электрической энергии к минимуму и приблизить их к технически обоснованным величинам. Уменьшение потерь электрической энергии в трансформаторах достигается как в результате разработанных мероприятий по общей оптимизации работы, когда снижение потерь будет являться составляющей частью комплексного плана, так и в ходе реализации мероприятий, которые направлены только лишь на уменьшение потерь. Исходя из этих признаков, мероприятия по снижению потерь электрической энергии делятся на несколько групп, которые называются [3]:

- организационными, к которым следует отнести совершенствование эксплуатационного обслуживания трансформаторов и оптимизацию их режимов и схем работы;

- техническими, куда относят реконструкцию, модернизацию и строительство новых распределительных подстанций. Это приведет к тому, что между трансформаторами будет находится переточный узел, стабилизирующий напряжение;

- мероприятиями по модернизации системы учета электрической энергии, которые, в свою очередь, делятся на беззатратные и требующие дополнительных затрат.

Необходимо заменять силовые трансформаторы и трансформаторы собственных нужд в случае, если они обладают большими потерями электроэнергии на перемагничивание сердечников, на трансформаторы с меньшими потерями, а также токоограничивающие реакторы на современные с большими индуктивными сопротивлением к токам К3 и меньшими потерями в нормальном режиме. При разработке рабочих проектов на реконструкцию и техническое перевооружение должно закладываться оборудование, отвечающее требованиям энергосбережения.

Эффективное и рациональное использование мощности силовых трансформаторов достигается в случае равенства напряжений короткого замыкания. Но в процессе эксплуатации можно включить в параллельную работу трансформатор с отклонением показателя напряжения короткого замыкания от их номинального значения, но не больше 15%. Это связано с тем, что возможно отступление от заданных параметров при производстве трансформаторов в размерах обмоток, что может повлиять на напряжение короткого замыкания [1].

Таким образом, снижение потерь электроэнергии в электрических сетях – это сложная комплексная проблема, требующая значительных капитальных вложений, необходимых для оптимизации развития электрических сетей, совершенствования системы учета электроэнергии, внедрения новых информационных технологий в энергосбытовой деятельности и управления режимами сетей, обучения персонала и его оснащения средствами поверки средств измерений электроэнергии и так далее [2].

Трансформатор является прибором, который призван преобразовывать электроэнергию сети. Эта установка имеет две или больше обмоток. В процессе своей работы трансформаторы могут преобразовать частоту и напряжение тока, а также количество фаз сети.

В ходе выполнения заданных функций наблюдаются потери мощности в трансформаторе. Они влияют на исходную величину электричества, которую выдает на выходе прибор. Что собой представляют потери и КПД трансформатора, будет рассмотрено далее.

Устройство

Трансформатор представляет собой статический прибор. Он работает от электричества. В конструкции при этом отсутствуют подвижные детали. Поэтому рост затрат электроэнергии вследствие механических причин исключены.

При функционировании силовой аппаратуры затраты электроэнергии увеличиваются в нерабочее время. Это связано с ростом активных потерь холостого хода в стали. При этом наблюдается снижение нагрузки номинальной при увеличении энергии реактивного типа. Потери энергии, которые определяются в трансформаторе, относятся к активной мощности. Они появляются в магнитоприводе, на обмотках и прочих составляющих агрегата.

Понятие потерь

При работе установки часть мощности поступает на первичный контур. Она рассеивается в системе. Поэтому поступающая мощность в нагрузку определяется на меньшем уровне. Разница составляет суммарное снижение мощности в трансформаторе.

потери электроэнергии в трансформаторах

Существует два вида причин, из-за которых происходит рост потребление энергии оборудованием. На них влияют различные факторы. Их делят на такие виды:

Их следует понимать, дабы иметь возможность снизить электрические потери в силовом трансформаторе.

Магнитные потери

В первом случае потери в стали магнитопривода состоят из вихревых токов и гистериза. Они прямо пропорциональны массе сердечника и его магнитной индукции. Само железо, из которого выполнен магнитопривод, влияет на эту характеристику. Поэтому сердечник изготавливают из электротехнической стали. Пластины делают тонкими. Между ними пролегает слой изоляции.

Также на снижение мощности трансформаторного устройства влияет частота тока. С ее повышением растут и магнитные потери. На этот показатель не влияет изменение нагрузки устройства.

Электрические потери

Снижение мощности может определяться в обмотках при их нагреве током. В сетях на такие затраты приходится 4-7% от общего количества потребляемой энергии. Они зависят от нескольких факторов. К ним относятся:

  • Электрическая нагрузка системы.
  • Конфигурация внутренних сетей, их длина и размер сечения.
  • Режим работы.
  • Средневзвешенный коэффициент мощности системы.
  • Расположение компенсационных устройств.

Потери мощности в трансформаторах являются величиной переменной. На нее влияет показатель квадрата тока в контурах.

Методика расчета

Потери в трансформаторах можно рассчитать по определенной методике. Для этого потребуется получить ряд исходных характеристик работы трансформатора. Представленная далее методика применяется для двухобмоточных разновидностей. Для измерений потребуется получить следующие данные:

  • Номинальный показатель мощности системы (НМ).
  • Потери, определяемые при холостом ходе (ХХ) и номинальной нагрузке.
  • Потери короткого замыкания (ПКЗ).
  • Количество потребленной энергии за определенное количество времени (ПЭ).
  • Полное количество отработанных часов за месяц (квартал) (ОЧ).
  • Число отработанных часов при номинальном уровне нагрузки (НЧ).

Получив эти данные, измеряют коэффициент мощности (угол cos φ). Если же в системе отсутствует счетчик реактивной мощности, в расчет берется ее компенсация tg φ. Для этого происходит измерение тангенса угла диэлектрических потерь. Это значение переводят в коэффициент мощности.

потери в трансформаторе

Формула расчета

Коэффициент нагрузки в представленной методике будет определяться по следующей формуле:

К = Эа/НМ*ОЧ*cos φ, где Эа – количество активной электроэнергии.

Какие потери происходят в трансформаторе в период загрузки, можно просчитать по установленной методике. Для этого применяется формула:

П = ХХ * ОЧ * ПКЗ * К² * НЧ.

Таблица потерь в трансформаторе

Расчет для трехобмоточных трансформаторов

Представленная выше методика применяется для оценки работы двухобмоточных трансформаторов. Для аппаратуры с тремя контурами необходимо учесть еще ряд данных. Они указываются производителем в паспорте.

В расчет включают номинальную мощность каждого контура, а также их потери короткого замыкания. При этом расчет будет производиться по следующей формуле:

Э = ЭСН + ЭНН, где Э – фактическое количество электричества, которое прошло через все контуры; ЭСН – электроэнергия контура среднего напряжения; ЭНН – электроэнергия низкого напряжения.

потери мощности в трансформаторе

Пример расчета

Чтобы было проще понять представленную методику, следует рассмотреть расчет на конкретном примере. Например, необходимо определить увеличение потребления энергии в силовом трансформаторе 630 кВА. Исходные данные проще представить в виде таблицы.

ОбозначениеРасшифровкаЗначение
НННоминальное напряжение, кВ6
ЭаАктивная электроэнергия, потребляемая за месяц, кВи*ч37106
НМНоминальная мощность, кВА630
ПКЗПотери короткого замыкания трансформатора, кВт7,6
ХХПотери холостого хода, кВт1,31
ОЧЧисло отработанных часов под нагрузкой, ч 720
cos φКоэффициент мощности 0,9

На основе полученных данных можно произвести расчет. Результат измерения будет следующий:

% потерь составляет 0,001. Их общее число равняется 0,492%.

Диаграмма потерь в трансформаторе

Измерение полезного действия

При расчете потерь определяется также показатель полезного действия. Он показывает соотношение мощности активного типа на входе и выходе. Этот показатель рассчитывают для замкнутой системы по следующей формуле:

КПД = М1/М2, где М1 и М2 – активная мощность трансформатора, определяемая измерением на входном и исходящем контуре.

Выходной показатель рассчитывается путем умножения номинальной мощности установки на коэффициент мощности (косинус угла j в квадрате). Его учитывают в приведенной выше формуле.

В трансформаторах 630 кВА, 1000 кВА и прочих мощных устройствах показатель КПД может составлять 0,98 или даже 0,99. Он показывает, насколько эффективно работает агрегат. Чем выше КПД, тем экономичнее расходуется электроэнергия. В этом случае затраты электроэнергии при работе оборудования будут минимальными.

Рассмотрев методику расчета потерь мощности трансформатора, короткого замыкания и холостого хода, можно определить экономичность работы аппаратуры, а также ее КПД. Методика расчета предполагает применять особый калькулятор или производить расчет в специальной компьютерной программе.

Читайте также: