Показатели коррозионной стойкости реферат

Обновлено: 30.06.2024

Коррозия приводит к изменению массы; механических, электрических, оптических, электрохимических свойств; состава и структуры, состояния поверхности металла. Эти изменения характеризует коррозионная стойкость (химическое сопротивление материалов). Коррозионная стойкость - способность металла сопротивляться коррозионному воздействию среды.

Коррозионная стойкость определяется качественно и количественно - на основе показателей коррозии (скорость коррозии в данных условиях, время до достижения заданной степени коррозионных поражений), полуколичественно - группой или баллом стойкости по принятой в СНГ 10-бальной шкале. На основе этих показателей определяется срок службы, долговечность и надежность металлоконструкций.

Коррозионным эффектам или интегральным показателям коррозии соответствуют скоростные или дифференциальные показатели. Дифференциальные показатели находят как отношение изменения коррозионного эффекта или первую производную от времени графическими или аналитическими методами.

К качественным показателям коррозии относятся:

- визуальная оценка коррозионной стойкости - наблюдение внешнего вида образцов с фотографированием, зарисовкой или кратким описанием и наблюдение за изменениями в коррозионно-активной среде;

- микроисследования с целью установления характера коррозионного разрушения, наличие или отсутствие локальных коррозионных поражений (межкристаллитной, питтинговой коррозии, коррозионного растрескивания и т.д.);

- применение специальных реактивов, вызывающих окрашивание анодных и катодных участков корродирующей поверхности металла.

Среди количественных показателей прямым и наиболее надежным способом определения коррозионной стойкости является гравиметрический (весовой) метод, основанный на изменении массы образцов при испытаниях. Гравиметрическим методом определяется скорость коррозии -коррозионные потери единицы поверхности металла в единицу времени.

(Скорость коррозии, или скорость реакции ионизации металла, определяется числом грамм–частиц, реагирующих на поверхности металла в единицу времени. Поскольку поверхность металла имеет определенный микрорельеф, площадь “видимой” поверхности S, рассчитанной по геометрическим размерам, меньше истинной поверхности S0, на которой протекает взаимодействие металла с коррозионной средой. Эти площади связаны соотношением: , где q – коэффициент шероховатости. Для идеально гладкой поверхности (например, жидкого металла) коэффициент равен единице и S=S0. Для твердых металлов q>1. Значения S0 и q трудно установить экспериментально, поэтому обычно в расчетах используют площадь “видимой” поверхности S, а число прореагировавших атомов заменяют массой окисленного металла.)

В зависимости от состояния продуктов коррозии используют различные варианты гравиметрического метода. Удельную потерю массы на единицу площадиопределяют по формуле:

, (1.2) где m0 – масса образца до испытаний [кг, г], mτ масса образца после испытаний и удаления продуктов коррозии [м 2 ]. Обычно удельную потерю массы выражают в . Для вычисления потери массы по увеличению массы образца необходимо знать состав продуктов коррозии.

При образовании легкоудалемых продуктов коррозии (механическими, химическими или электрохимическими методами), используют отрицательный показатель изменения массы, или скорость коррозии в данных условиях :

, (1.3) где m0 и mτ– масса образца до и после коррозионных испытаний и удаления продуктов коррозии соответственно, [г]; S площадь окисленной поверхности металла, [м 2 ]; τ время испытаний, [ч]. (Данным методом возможно определение скорости сплошной, равномерной и неравномерной, местной и подповерхностной коррозии).

Если на поверхности металла образуются хорошо сцепленные с поверхностью трудноудаляемые продукты коррозии, то по приросту массы образца можно определить положительный показатель скорости коррозии:

, (1.4) где m0 и mτ масса образца до и после коррозионных испытаний вместе с продуктами коррозии соответственно, г; S площадь окисленной поверхности металла, м 2 ; τ время испытаний, ч.

Определив состав продуктов коррозии металла, можно пересчитать положительный показатель изменения массы в отрицательный и наоборот:

, (1.5) где AМе , Aок – масса грамм–атома металла и окислителя соответственно; nМе и nок – валентность металла и окислителя соответственно.




Другим прямым и широко используемым на практике методом определения коррозионной стойкости является скорость проникновения коррозииили глубинный показатель коррозии КH:

где H - глубина коррозионного разрушения (проникновение коррозии) [мм], определяемая непосредственным измерением (штангенциркулем, микрометром, микроскопом, УЗК и т.п.), в единицу времени - τ [ч]. (При сплошной коррозии с постоянной скоростью показатель называется линейной скоростью коррозии, . Глубинные показатели носят более универсальный характер и ими определяют скорости локальной коррозии).

Зная отрицательный и глубинный показатель можно определить время до уменьшения массы на единицу площади на допустимую величину ( ), и время проникновения коррозии на допустимую глубину ( ).

При равномерной коррозии отрицательный показатель (в г/м 2. ч) и глубинный показатель связаны соотношением:

, (1.7) где dMe – плотность металла, [г/см 3 ].

Для качественной и количественной оценки коррозионной стойкости металла в конкретных условиях рекомендуется использовать шкалу коррозионной стойкости металлов (приложение, табл. 1), в которой единицей коррозионной стойкости является балл. Шкала имеет 10 баллов и носит сравнительный характер.

Волюметрический (объемный) метод основан на измерении объема выделившего газа в результате коррозии и позволяет определить водородный показатель коррозии (объем выделившегося в результате коррозионной реакции водорода), и кислородный показатель (объем поглощенного в результате коррозии кислорода). Объемные показатели представляют собой отношение объема ΔV выделившегося или поглощенного газа с единицы поверхности в единицу времени, приведенного к нормальным условиям (Т=273 К, Р=1,013·10 5 Па):

Объемный показатель коррозии связан с положительным соотношением:

, (1.9) где МГи VМ– молекулярная масса и объем моля газа (22400 см 3 ) при нормальных условиях; 10 4 – коэффициент пересчета см 3 в м 3 .

К интегральным показателям коррозии относятся механические показатели коррозии, КМ, отношение изменения механических свойств до и после коррозии в % (например, прочностной):

где ΔσВ = σσВ , σ и σВ – предел прочности металла до и после коррозионных испытаний соответственно.

Механические показатели применяются для оценки межкристаллитной коррозии, коррозионного растрескивания, коррозионной хрупкости, и т.п.

Изменение электрического сопротивления металла при коррозии в течение определенного времени применяют в качестве показателя коррозии:

где ΔR=Rτ – R0, R0 и Rτ – электрическое сопротивление образца до и после коррозионных испытаний в течение времени τ.

Данный показатель можно использовать как для общей коррозии, так и локальной (межкристаллитной, питтинговой). При использовании этого показателя важно учитывать, что электрическое сопротивление зависит структурного состояния металла (сплава), поэтому оно не должно изменяться в процессе коррозионных испытаний (например, распад твердого раствора какого–либо компонента сплава при высокотемпературных испытаниях).

Другими показателями могут быть ухудшение отражательной способности, время до появления первого коррозионного поражения и т.д.

При локальных видах коррозии (питтинговой, коррозии пятнами, расслаивающей коррозии), а также при коррозии изделий с покрытиями, в качестве показателей коррозионной стойкости используют степень поражения поверхности за определенное время или в единицу времени, или очаговый показатель коррозии:

где Si и ni – площадь и количество коррозионных поражений.

Для оценки коррозионной стойкости покрытий и питтинговой коррозии площадь коррозионных поражений определяют для каждого типоразмера коррозионного очага с последующим ранжированием результатов и оценкой по специальным 10-бальным шкалам коррозионной стойкости, в которых баллы присваиваются в зависимости от степени и количества коррозионных поражений.

Скорость электрохимической коррозии может быть выражена в виде токового показателя коррозии i – плотности анодного тока, соответствующего скорости данного коррозионного процесса, – применяют для исследования электрохимической коррозии. Связь между связь между величиной i (А/см 2 ) и отрицательным показателем изменения массы (г/м 2 ·ч) устанавливается на основе закона Фарадея:

где n – валентность металла, переходящего в раствор; F = 26,8 А·ч/г–экв – постоянная Фарадея, AMe – атомная масса металла, г; 10 4 – коэффициент пересчета.

Данный показатель определяется на основе поляризационных кривых или непосредственно – приборами коррозиметрами (например, типа “КМ-МИСиС” и др.) с автоматическим пересчетом на глубинный или весовой показатели.

Стандартизация в коррозии

- термины и определения (7 стандартов),

- методы испытаний металлических и неметаллических материалов (52),

- характеристики агрессивности природных условий (3),

- металлические и неметаллические неорганические покрытия с типовыми технологическими процессами (16),

- лакокрасочные и другие полимерные покрытия (19),

- средства и методы временной защиты (5),

- средства и методы защиты от воздействия биологических факторов (12),

- требования к электрохимической защите (1), и т.д.

Для группы стандартов ЕСЗКС зарезервирована нумерация: ГОСТ 9.ххх.

ЕСЗКС есть: комплекс взаимоувязанных межгосударственных стандартов, устанавливающих общие требования, правила, нормы и методы защиты изделий, конструкций и материалов от коррозии, старения и биоповреждений на всех стадиях жизненного цикла изделий и конструкций (исследование и обоснование разработки, разработка, производство и эксплуатация (хранение), капитальный ремонт), включая работы по сертификации.

Стандарты ЕСЗКС разрабатываются на базе национальных стандартов РФ, других стран, стандартов ISO с учетом требований стандартов международных и региональных организаций по стандартизации (IEC – международной электротехнической комиссии, СЕN – европейского комитета по стандартизации и др.). Кроме стандартов ЕСЗКС имеются другие национальные стандарты РФ по коррозии, не входящие в систему, межотраслевые и отраслевые нормы и правила.

Весьма авторитетными национальными стандартами по коррозии являются американские стандарты ASM (информационное общество по материалам), ASTM (общество по материалам и испытаниям), API (институт нефти и газа), NACE (ассоциация инженеров - коррозионистов), немецкие (DIN), британские (BS), французские, и др.

Такое обилие стандартов и нормативов обусловлено большими потерями от коррозии, которые составляют до 6 % валового национального продукта.

Ущерб от коррозии состоит из: 1) прямых потерь - безвозвратных потерь в виде продуктов коррозии, 2) стоимости изготовления металлических конструкций, требующих замены из-за коррозии, 3) косвенных потерь.

Прямые, или безвозвратные потери в виде продуктов коррозии - окалины, ржавчины, составляют незначительную часть от общих потерь, поскольку основная часть подвергшихся коррозии металлических изделий подвергается вторичной переплавке.

Основной вклад составляют косвенные потери: 1) ликвидация аварий и их экологических последствий, 2) стоимость изготовления прокорродировавших изделий, 3) убытки от простоев, ненадежности оборудования, утечки энергии, понижения производительности труда, 4) связанные с этим потери продукции, 5) потери мощности (из – за отложения продуктов коррозии на стенках теплообменной аппаратуры), 6) снижение качества выпускаемой продукции (из-за попадания продуктов коррозии), 7) преждевременный выход из строя металлоконструкций, 8) увеличение толщины металлоконструкций из – за допуска “на коррозию”, 9) затраты на профилактическое обслуживание, ремонт и замену деталей, 10) затраты на противокоррозионные мероприятия.

Экономический эффект затрат на мероприятия по защите от коррозии состоит из: 1) уменьшении загрязнения окружающей среды (поскольку основная часть используемых в промышленности металлов – экологически безвредны); 2) увеличения срока службы оборудования и сохранения материальных ресурсов; 3) улучшению качества продукции; 4) снижения стоимости защитных средств; 5) уменьшения количества и стоимости текущих и капитальных ремонтов и простоев оборудования.

  • Для учеников 1-11 классов и дошкольников
  • Бесплатные сертификаты учителям и участникам

3. Классификация коррозионных процессов по типу разрушений . 7

4.2 Методы защита от коррозии………………………………………. 10

Коррозия — это самопроизвольный процесс разрушения материалов и изделий из них под химическим воздействием окружающей среды.

Коррозия металлов — разрушение металлов вследствие физико-химического воздействия внешней среды, при котором металл переходит в окисленное (ионное) состояние и теряет присущие ему свойства.

В тех случаях, когда окисление металла необходимо для осуществления какого-либо технологического процесса, термин “коррозия” употреблять не следует. Например, нельзя говорить о коррозии растворимого анода в гальванической ванне, поскольку анод должен окислятся, посылая свои ионы в раствор, чтобы протекал нужный процесс. Нельзя также говорить о коррозии алюминия при осуществлении аллюмотермического процесса. Но физико-химическая сущность изменений, происходящих с металлом во всех подобных случаях, одинакова: металл окисляется.

Типы коррозии

Различают 4 основных вида коррозии, например: электрохимическая коррозия, водородная, кислородная коррозия и химическая.

Электрохимическая коррозии

Разрушение металла под воздействием возникающих в коррозионной среде гальванических элементов-называют электрохимической коррозией. Не следует путать с электрохимической коррозией коррозию однородного материала, например, ржавление железа или т. п. При электрохимической коррозии всегда требуется наличие электролита, с которым соприкасаются электроды — либо различные элементы структуры материала, либо два различных соприкасающихся материала с различающимися окислительно-восстановительными потенциалами. Если в воде растворены ионы солей, кислот, или т. п., электропроводность её повышается, и скорость процесса увеличивается.

Водородная коррозия - повреждение стали и ее страновление более хрупкой под влиянием длительного воздействия водородной среды при повышенных (gt; 200 °С) температурах эксплуатации в результате физико-химического взаимодействия водорода с отдельными компонентами и/или фазами сплава.

Водородное повреждение при повышенных температурах связано с образованием продуктов реакции между водородом и углеродом по типу: В углеродистой стали суммарная химическая реакция между углеродом, связанным в карбидах железа, и водородом может быть представлена в виде
образующийся в результате реакции метан покидает металл и/или образует внутренние полости и трещины, наполненные газообразным метаном под высоким давлением. В поверхностных слоях металла формируются обезуглероженные зоны. Водородная коррозия может протекать во всех сталях, если они содержат углерод в доступной для реакции форме и он достаточно подвижен, чтобы вступать в реакцию с водородом.
Восприимчивость стали к водородной коррозии зависит от легирующих элементов, которые воздействуют на активность углерода. Скорость водородной коррозии зависит от давления водорода и температуры, а также от размера зерен, состава их границ, степени наклепа стали и других факторов.

Кислородная коррозия возникает при питании парогенератора водой, содержащей кислород. Проявляется эта коррозия в виде язвин и питтингов на трубах. Причиной питтинговой коррозии является двойственное влияние кислорода на коррозионный процесс. С одной стороны, кислород является активным деполяризатором и ускоряет катодный процесс и коррозию в целом. С другой стороны, окисляя металл и образуя окислы, кислород играет роль пассиватора, снижающего скорость коррозии. В результате в присутствии кислорода уменьшается число анодных участков и возрастает площадь катодных участков. Коррозия становится местной, интенсивность её возрастает, разрушения идут, вглубь образуя язвы. Язвенный характер кислородной коррозии делает её особенно опасной.Наблюдается кислородная коррозия главным образом в экономайзерах. При значительном содержании кислорода в питательной воде (более 0,3 мг/кг) кислородная коррозия может протекать в пароводяном коллекторе и отпускных трубах парогенераторов с естественной циркуляцией.

Величина кислородной коррозии пропорциональна содержанию кислорода в питательной воде.

Подъёмные парообразующие трубы также могут разрушаться вследствие кислородной коррозии. Однако коррозионный процесс в них протекает менее интенсивно и практически мало зависит от содержания кислорода. Это обстоятельство связано с деаэрирующией способностью пара при кипении воды в подъёмных трубах.

Повышение давления и температуры при неизменном содержании кислорода приводит к усилению коррозии. Это связано с возрастанием скорости диффузии кислорода к катодным участкам.

Скорость кислородной коррозии зависит от плотности теплового потока, скорости циркуляции, наличия в воде солей. Если в питательной воде наряду с О 2 содержаться хлориды, то коррозия усиливается Химическая коррозия

Химическая коррозия — самопроизвольное взаимодействие металла с коррозионной средой, при котором окисление металла и восстановление окислительного компонента коррозионной среды протекают в одном акте. Как и любая химическая реакция, этот вид коррозии носит временной характер. Окислителями (корродирующими агентами) могут быть сухие газы (О 2 , СО 2 , SО 2 , HC1, оксиды азота и др.), перегретый водяной пар, жидкости, не являющиеся электролитами, а также расплавы органических и неорганических веществ, в том числе металлов. Наиболее часто химической коррозии подвергается металлургическое оборудование, сопла реактивных двигателей, детали газовых турбин и двигателей внутреннего сгорания, оболочки ракет и космических кораблей, т. е. изделия, работающие при высоких температурах.

Скорость коррозии

Скорость коррозии металлов и металлических покрытий в атмосферных условиях определяется комплексным воздействием ряда факторов: наличием на поверхности фазовых и адсорбционных пленок влаги, загрязненностью воздуха коррозионно-агрессивными веществами, изменением температуры воздуха и металла, образованием продуктов коррозии и так далее.
Оценка и расчет скорости коррозии должны основываться на учете продолжительности и материальном коррозионном эффекте действия на металл наиболее агрессивных факторов.
В зависимости от факторов, влияющих на скорость коррозии, целесообразно следующее подразделение условий эксплуатации металлов, подвергаемых атмосферной коррозии:
Закрытые помещения с внутренними источниками тепла и влаги (отапливаемые помещения);
Закрытые помещения без внутренних источников тепла и влаги (неотапливаемые помещения);
Открытая атмосфера.

Классификация коррозионных процессов по типу разрушений

Наиболее часто встречаются следующие виды коррозии металлов :

Равномерная – охватывает всю поверхность равномерно

Местная пятнами – корродируют отдельные участки поверхности

Язвенная (или питтинг)

Межкристаллитная – распространяется вдоль границ кристалла металла

Защита от коррозии

Для защиты металлов от коррозии применяются различные способы, которые условно можно разделить на следующие основные направления: легирование металлов; защитные покрытия; электрохимическая защита; изменение свойств коррозионной среды; рациональное конструирование изделий.

Легирование металлов. Это эффективный метод повышения коррозионной стойкости металлов. При легировании в состав сплава или металла вводят легирующие элементы (хром, никель, молибден и др.), вызывающие пассивность металла. Пассивацией называют процесс перехода металла или сплава в состояние его повышенной коррозионной устойчивости, вызванное торможением анодного процесса. Пассивное состояние металла объясняется образованием на его поверхности совершенной по структуре оксидной пленки (оксидная пленка обладает защитными свойствами при условии максимального сходства кристаллических решеток металла и образующегося оксида).

Широкое применение нашло легирование для защиты от газовой коррозии. Легированию подвергаются железо, алюминий, медь, магний, цинк, а также сплавы на их основе. В результате чего получаются сплавы с более высокой коррозионной стойкостью, чем сами металлы. Эти сплавы обладают одновременно жаростойкостью и жаропрочностью .

Жаростойкость – стойкость по отношению к газовой коррозии при высоких температурах. Жаропрочность – свойства конструкционного материала сохранять высокую механическую прочность при значительном повышении температуры. Жаростойкость обычно обеспечивается легированием металлов и сплавов, например, стали хромом, алюминием и кремнием. Эти элементы при высоких температурах окисляются энергичнее, чем железо, и образуют при этом плотные защитные пленки оксидов.

Легирование также используется с целью снижения скорости электрохимической коррозии, особенно коррозии с выделением водорода. К коррозионностойким сплавам, например, относятся нержавеющие стали, в которых легирующими компонентами служат хром, никель и другие металлы.

Защитные покрытия. Слои, искусственно создаваемые на поверхности металлических изделий для защиты их коррозии, называются защитными покрытиями. Нанесение защитных покрытий – самый распространенный метод борьбы с коррозией. Защитные покрытия не только предохраняют изделия от коррозии, но и придают поверхностям ряд ценных физико-химических свойств. Они подразделяются на металлические и неметаллические. Общими требованиями для всех видов защитных покрытий являются высокая адгезионная способность, сплошность и стойкость в агрессивной среде.

Металлические покрытия. Металлические покрытия занимают особое положение, так как их действие имеет двойственный характер. До тех пор, пока целостность слоя покрытия не нарушена, его защитное действие сводится к изоляции поверхности защищаемого металла от окружающей среды. Это не отличается от действия любого механического защитного слоя (окраска, оксидная пленка и т.д.). Металлические покрытия должны быть непроницаемы для коррозионных агентов.

При повреждении покрытия образуется гальванический элемент. Характер коррозионного разрушения основного металла определяется электрохимическими характеристиками обоих металлов. Защитные антикоррозионные покрытия могут быть катодными и анодными . К катодным покрытиям относятся покрытия, потенциалы которых в данной среде имеют более положительное значение, чем потенциал основного металла. Анодные покрытия имеют наиболее отрицательный потенциал, чем потенциал основного металла.

При повреждении никелевого покрытия на анодных участках происходит процесс окисления железа вследствие возникновения микрокоррозионных гальванических элементов. На катодных участках - восстановление водорода. Следовательно, катодные покрытия могут защищать металл от коррозии лишь при отсутствии пор и повреждения покрытия.

Местное повреждение защитного цинкового слоя ведет к дальнейшему его разрушению, при этом поверхность железа защищена от коррозии. На анодных участках происходит процесс окисления цинка. На катодных участках - восстановление водорода.

Электродные потенциалы металлов зависят от состава растворов, поэтому при изменении состава раствора может меняться и характер покрытия.

Для получения металлических защитных покрытий применяются различные способы: электрохимический (гальванические покрытия); погружение в расплавленный металл (горячее цинкование, лужение); металлизация (нанесение расплавленного металла на защищаемую поверхность с помощью струи сжатого воздуха); химический (получение металлических покрытий с помощью восстановителей, например гидразина).

Методы защита от коррозии

На скорость коррозии влияют как внутренние факторы (наличие дефектов кристаллической решетки металла, механические напряжения и др.), так и внешние: температура, природа и состав электролита. С повышением температуры скорость коррозии, как и большинства химических реакций, возрастает. Усиливают коррозию содержащаяся в атмосфере промышленных городов пыль, SO 2 , СO 2 и другие газы. Поэтому в городах коррозия протекает в 5-10 раз быстрее, чем в сельской местности. Ионы присутствующие в морской воде, являются катализаторами коррозии железа и его сплавов, так как адсорбируясь на поверхности металла, разрушают или препятствуют образованию на нем защитных слоев. Кроме того, скорость коррозии двух контактирующих металлов будет тем больше, чем больше разность потенциалов этих металлов. Полностью предотвратить процессы коррозии металлов практически не удается, однако существуют способы защиты металлов от коррозии.

1. Изменение коррозионной среды - этот метод пригоден для тех случаев, когда защищаемые изделия эксплуатируются в небольшом объеме. Суть метода состоит в удалении из электролита растворенного кислорода или добавлении к этому раствору веществ, замедляющих коррозию - ингибиторов.

2. Легирование металлов. Это введение в состав сплавов компонентов, повышающих химическую стойкость. Наибольшее применение находят нержавеющие стали, в состав которых входит хром , до 15 % и никель, до 10 %. Кроме того, в качестве легирующих компонентов используют марганец, кремний, вольфрам, молибден, титан и другие металлы.

3. Неметаллические покрытия . Механически защищают металлы от коррозии, изолируя их от влияния внешней среды. Неметаллические покрытия делятся на неорганические и органические. Из неорганических покрытий наиболее распространены оксидные и фосфатные пленки. Так, при кипячении железа в растворе солей фосфорной кислоты получают фосфатные пленки, хорошо защищающие от коррозии в атмосфере. Среди органических, покрытий наиболее распространенными являются масляные краски, лаки, полимерные пленки. Лакокрасочные покрытия - самый дешевый метод защиты от коррозии.

4. Металлические покрытия. По характеру защитного действия различают анодные и катодные покрытия. Анодным является покрытие металлом, электродный потенциал которого меньше, чем у защищаемого металла. Покрытие из металла менее активного (с большим электродным потенциалом), чем защищаемый металл, называется катодным. Если покрытие не нарушено и полностью изолирует основной металл от воздействия окружающей среды, принципиального различия между анодными и катодными покрытиями нет. При нарушении слоя защищающего металла возникают коррозионные гальванические элементы, в которых защищаемый металл может играть роль или инертного катода, или активного анода.

5. Электрохимическая защита:

а) катодная защита. Защищаемую конструкцию присоединяют к катоду внешнего источника тока, в результате она становится катодом, не окисляется, на ней идет восстановление компонентов среды. В качестве анода применяют любой металлический лом, который присоединяют к аноду внешнего источника тока. Таким способом защищают, например, подземные трубопроводы;

б) протекторная защита. Защищаемый металл соединяют с более активным металлом, имеющим меньший электродный потенциал. Последний служит анодом, растворяется и защищает основной металл.

Для более активной защиты металлических конструкций можно совмещать несколько способов защиты от коррозии, например, покрытие и катодную электрозащиту.

Коррозионная стойкость — способность материала противостоять действию агрессивных сред (коррозии).

Коррозия (от лат. соrrоsiо — разъедание) — разрушение материалов вследствие химического или электрохимического взаимодействия со средой.

Строительные материалы, и в первую очередь их поверхности, в течение длительной эксплуатации разрушаются в основном в результате двух видов воздействия: коррозионного, связанного с влиянием на материал внешней, агрессивной среды, и эрозионного, вызываемого механическим воздействием.

Эрозионное разрушение интенсивно протекает при относительно быстром перемещении среды или материала. Особенно большой величины эрозия достигает при контакте материала с расплавами металлов и шлаков, а также с газообразными окислителями и пр.

Явления коррозии и эрозии часто сопутствуют друг другу, и поэтому их не всегда удается разделить. В строительном материаловедении эти явления рассматривают раздельно. Эрозионные процессы рассматриваются при изучении эксплуатационных свойств покрытий полов, дорожных покрытий и пр.

Виды коррозии строительных материалов

Коррозия строительных материалов различается по виду коррозионной среды, характеру разрушения и процессам, происходящим в них:

коррозионная среда:

газовая: (инертный газ; химически активный газ);

жидкостная: (кислотная; соленая; щелочная, морская; речная; в расплаве металлов, силикатов)

характер разрушения: (равномерное, солевая, неравномерное, избирательное, поверхностное, растрескивание, местное, межкристаллитное);

виды воздействий (процессов):(химические; электрохимические; биологические).

Газовая коррозия представляет собой коррозию в газовой среде при полном отсутствии конденсации влаги на поверхности материала. Этому виду коррозии подвержены материалы, работающие в условиях высоких температур в среде осушенного газа (керамика). Газовая коррозия относится к химическим процессам разрушения. Скорость ее зависит от природы материала, его структуры и свойств новообразований на его поверхности.

Жидкостная коррозия природных и искусственных каменных материалов, происходящая под действием растворов электролитов и не электролитов, а также различных расплавов, носит в основном химический характер, хотя, в зависимости от вида и свойств жидкости отличается рядом особенностей. Важнейшей особенностью жидкостей является наличие в них сил межмолекулярного взаимодействия. Этим обусловлены два свойства жидкого состояния: молекулярное давление и связанное с ним поверхностное натяжение. Поверхностное натяжение жидкости оказывает большое влияние на интенсивность разрушения материала, которое определяется так же смачивающими свойствами жидкости.

Если вам нужна помощь в написании работы, то рекомендуем обратиться к профессионалам. Более 70 000 авторов готовы помочь вам прямо сейчас. Бесплатные корректировки и доработки. Узнайте стоимость своей работы.

Равномерная коррозия возникает в результате действия агрессивной среды при достаточной толщине изделия и равномерном распределении напряжений сжатия, изгиба или растяжения. Коррозия этого вида в отличие от других в значительно меньшей степени влияет на прочностные свойства материала.

Неравномерная, или местная коррозия (пятна, язвы, разводы) происходит при различной концентрации агрессивной среды на от дельных участках или неоднородности самого материала (его состава и структуры). Так, в результате неравномерного распределения кристаллической и стекловидной фаз в керамическом материале коррозионное разрушение на его отдельных участках протекает с разной скоростью. При этом в стекловидной фазе процесс развивается значительно быстрее, чем в кристаллической. Наличие в материале неоднородной пористости также способствует образованию в нем неравномерной коррозии.

Межкристаллитная коррозия возникает в результате разрушения материала по границам зерен и быстро распространяется в глубь материала, резко снижая его свойства. Этот вид коррозии присущ некоторым обжиговым материалам, при спекании которых образуются новые фазы, твердые растворы и пр. и, следовательно, границы раздела.

Коррозионное воздействие в общем случае может иметь два принципиально различных механизма: химическое взаимодействие и растворение.

Химическое взаимодействие сводится к реакции между средой и материалом с образованием новых соединений. При наличии в агрессивных средах примесей, а в материале — добавок химические реакции могут протекать между всеми элементами взаимодействия. Поскольку каменные материалы являются диэлектриками и взаимодействие их с агрессивной средой не сопровождается возникновением электрических токов, процесс разрушения материалов называют химической коррозией.

При воздействии агрессивных сред на металлы происходит электрохимический процесс передачи электронов из слоя металла с более низким электрическим потенциалом к слою с более высоким потенциалом и восстановление электроположительных ионов с последующим разрушением поверхностного слоя. Такой процесс разрушения принято называть электрохимической коррозией.

Биологическая коррозия — разрушение материала под непосредственным воздействием растительных и животных организмов, а также микроорганизмов. Высшие растительные организмы (корневая система, стебли, листья, семена и пр.) в процессе жизнедеятельности продуцируют различные виды веществ, большинство из которых по отношению к строительным материалам являются агрессивными. Животные организмы вызывают биоповреждения материалов как непосредственно своим механическим воздействием (грызуны, птицы и пр.), так и продуктами своей жизнедеятельности. Низшие растительные организмы и микроорганизмы (водоросли, лишайники, мхи, грибки, бактерии и пр.) разрушают поверхностные слои бетонов и создают условия для гниения конструкций из древесины.

Коррозию, возникающую в результате воздействия на строительные материалы продуктов технологической переработки органических веществ как биогенного (фрукты, овощи, растительные масла, кровь, соки, жиры и пр.), так и небиогенного происхождения (нефть, уголь, сланцы, известняки-ракушечники, выхлопные газы, копоть и пр.), принято называть органогенной коррозией.

Факторы, влияющие на коррозионную стойкость строительных материалов

Коррозионная стойкость строительных материалов зависит от многих факторов, которые подразделяются на внешние и внутренние.

Внешние факторы определяют агрессивность среды и ее влияние на материал. К ним можно отнести рН среды, температуру и ее перепад, а также интенсивность воздействия среды на материал.

Водородный показатель раствора электролита, характеризующий активность в нем ионов водорода, является весьма важным фактором, влияющим на процесс химической коррозии. Скорость коррозии силикатов в растворах электролитов в значительной степени зависит от характера растворов и протекает по-разному в кислых, щелочных или нейтральных средах.

Вода как участник технологического процесса рассматривается в двух аспектах: как нейтральный компонент, служащий для придания смеси необходимых свойств, и как растворитель и переносчик ионов.

Причиной коррозии многих строительных материалов в воде или в других электролитах является термодинамическая неустойчивость соединений, содержащихся в этих материалах, которая связана с развитием процессов гидратации, сопровождающихся экзотермическими или эндотермическими эффектами.

Экзотермический эффект свидетельствует о созидательном процессе в материале, например при гидратации цемента, а эндотермический эффект — о разрушительном, например при гидратации керамического черепка.

Поведение химических элементов в растворах во многом зависит от величины радиусов ионов и их валентности, а точнее, от величины отношения валентности иона к его радиусу, называемой ионным потенциалом:

где РI — ионный потенциал, Å-1 ;

V — валентность, ед.;

R — ионный радиус, Å..

Чем меньше ионный потенциал, тем сильнее проявляются основные свойства элементов, чем он больше — кислотные. Например, К и Na характеризующиеся малыми ионными потенциалами, соответственно 0,75 и 1,02, обладают резко выраженными щелочными свойствами. Элементы, имеющие ионный потенциал в пределах 4,7. 8,6, обладают амфотерными свойствами, а при РН> 8,6 кислотными свойств

Сравнивая активность элементов по ионному потенциалу, получим следующее распределение катионов в порядке убывания:

SiO2 → TiO2 → MgO → Fe → Cu

Высокий ионный потенциал катиона кремния обусловливает образование прочных анионных групп с ионами кислорода.

Температура — одна из важнейших переменных, влияющих на коррозионную и эрозионную стойкость. Повышение температуры, как правило, способствует усилению коррозионного воздействия за счет увеличения предельной растворимости, скорости диффузии и интенсивности химических реакций.

Перепады температур в системе вызывают термический перенос массы, что может сделать непригодным применение материала, который в нормальных условиях имеет малую растворимость.

Интенсивность воздействия среды влияет на скорость коррозионных процессов. Увеличение объема среды, находящейся в контакте с материалом, может усилить коррозионное воздействие за счет увеличения средней скорости растворения материала.

Внутренние факторы — это состав, структура материала и его свойства.

Ввиду особенностей строения различных материалов влияние на них внешних факторов неодинаково, и поэтому коррозионную стойкость обжиговых, плавленых, гидратационных материалов, а также металлов и древесины рассматривают раздельно. И мы с Вами начнем изучение свойств конкретных материалов со следующей лекции.

Общие принципы повышения коррозионной стойкости

Коррозионная стойкость определяется массой материала, превращенного в продукты коррозии в единицу времени с единицы площади, находящегося во взаимодействии с агрессивной средой, а также размером разрушенного слоя в мм за год.

Основными принципами повышения коррозионной стойкости строительных изделий и конструкций являются:

- подбор состава композиций, отличающегося низкой активностью в агрессивных средах;

- использование специальных покрытий для химической, тепловой и механической защиты изделий и конструкций от воздействия агрессивных сред.

Следует отметить, что основным критерием, определяющим эксплуатационные свойства строительных материалов, является время. Поэтому такие характеристики материала, как водостойкость, морозостойкость и коррозионная стойкость, являются не истинно физическими свойствами, а лишь условными показателями изменения состояния его структуры при продолжительном постоянном или циклическом воздействии на материал агрессивной среды.

Сохранение эксплуатационных характеристик во времени принято называть долговечностью строительных материалов.


Лекции


Лабораторные


Справочники


Эссе


Вопросы


Стандарты


Программы


Дипломные


Курсовые


Помогалки


Графические

Доступные файлы (1):


  1. Понятие стали.

  2. Классификация сталей.

  3. Коррозионно-стойкие (Нержавеющие) стали и сплавы.

  4. Хромистые нержавеющие стали.

  5. Хромоникелевые нержавеющие стали.

  6. Жаростойкие стали.

  7. Испытания на ползучесть.

  8. Литература.


Понятие стали.
Сталь (польск. stal, от нем. Stahl) — деформируемый (ковкий) сплав железа с углеродом (и другими элементами), содержание углерода в котором не превышает 2,14 %, но не меньше 0,02 %. Углерод придаёт сплавам железа прочность и твёрдость, снижая пластичность и вязкость.

Сталь — важнейший конструкционный материал для машиностроения, транспорта, строительства и прочих отраслей народного хозяйства. Широкое использование сталей обусловлено комплексом механических, физико-химических и технологических свойств.

Стали с высокими упругими свойствами находят широкое применение в машино- и приборостроении. В машиностроении их используют для изготовления рессор, амортизаторов, силовых пружин различного назначения; в приборостроении — для многочисленных упругих элементов: мембран, пружин, пластин реле, сильфонов, растяжек, подвесок.

Изменяя химический состав, можно получать стали с различными свойствами и использовать их во многих отраслях техники и народного хозяйства.


  • Конструкционные - качество конструкционных углеродистых сталей определяется наличием в стали вредных примесей фосфора (P) и серы (S). Фосфор — придаёт стали хладноломкость (хрупкость). Сера — самая вредная примесь — придаёт стали красноломкость.

  • Инструментальные - это углеродистые и легированные стали, обладающие высокой твердостью, прочностью и износостойкостью. Их применяют для изготовления режущих и измерительных инструментов, штампов. Необходимую твердость обеспечивает содержащийся в этих сталях углерод (в количестве от 0,8 до 1,3%). Основной легирующий элемент инструментальных сталей - хром; иногда в них вводят также вольфрам и ванадий.

  • со специальными свойствами.

К сталям с особыми свойствами относятся коррозионно-стойкие, нержавеющие и кислотоупорные; жаропрочные и жаростойкие.


  • углеродистые;

  • легированные;

  • малоуглеродистые (до 0,25 % С),

  • среднеуглеродистые(0,3—0,55 % С)

  • высокоуглеродистые(0,6—0,85 % С);

  • низколегированные,

  • среднелегированные,

  • высоколегированные.

Обозначение марки включает в себя цифры и буквы, указывающие на примерный состав стали. В начале марки приводятся двухзначные цифры (например, 12ХН3А), указывающие среднее содержание углерода в сотых долях процента. Буквы справа от цифры обозначают легирующие элементы:

хром-Х, никель-Н, молибден-М, вольфрам-В, кобальт-К, титан-Т, азот-А, марганец-Г, медь-Д, ванадий-Ф, кремний-С, фосфор-П, алюминий-Ю, бор-Р, ниобий-Б, цирконий-Ц. Следующие после букв цифры указывают примерное содержание (в целых процентах) соответствующего легирующего элемента (при содержании 1-1,5% и менее цифра отсутствует, например, 30ХГС).

Высококачественные стали обозначаются буквой А, а особовысококачественные- буквой Ш, помещёнными в конце марки (30ХГСА, 30ХГС-Ш). Если буква А расположена в середине марки (14Г2АФ), то это свидетельствует о том, что сталь легирована азотом. При обозначении автоматных сталей с повышенной обрабатываемостью резанием, буква А ставится в начале марки (А20, А40Г). Если автоматная сталь легирована свинцом, то обозначение марки начинается с сочетания букв АС (АС35Г2- где цифра 35 обозначает среднее содержание углерода в сотых долях процента). Маркировка шарикоподшипниковой стали начинается с буквы Ш (ШАХА15, где 15- среднее содержание хрома в десятых долях процента).

^ Нестандартные стали обозначают различным образом. Наиболее часто встречается обозначение буквами ЭИ и ЭП и номером. Такая маркировка показывает, что сталь выплавлена на заводе "Электросталь"(буква Э), сталь исследовательская (буква И) или пробная (буква П), например, стали ЭИ395, ЭИ347, ЭП398 и т.д. Состав таких сталей приведён в справочниках.
Коррозионно-стойкие (Нержавеющие) стали и сплавы.
Разрушение металлов и сплавов в результате химического или электрохимического воздействия на их поверхность внешней агрессивной среды называется коррозией.

Коррозионное разрушение является следствием взаимодействия металла с внешней средой и интенсивность его развития зависит от свойств самого металла, а также от природы окружающей среды. Большинство металлов, будучи стойкими в одних средах, довольно легко разрушаются при взаимодействии с другими средами. Стали, устойчивые против электромеханической коррозии, называются коррозионно-стойкими (нержавеющими). Устойчивость стали против коррозии достигается введением в нее элементов, образующих на поверхности плотные, прочно связанные с основой защитные пленки, препятствующие непосредственному контакту стали с агрессивной средой, а также повышающие ее электрохимический потенциал в данной среде.

^ Отличительной особенностью коррозионно-стойких сталей и сплавов является их повышенная стойкость против равномерной коррозии в широкой гамме коррозионно-активных сред различной степени агрессивности. Наряду с этим многие из них стойки против локальных видов коррозии (межкристаллитной, питтинговой, щелевой, коррозионного растрескивания) и имеют высокий уровень физико-механических свойств. По химическому составу нержавеющие стали делятся на:


  • Мартенситные;

  • Полуферритные;

  • Ферритные;

  • Аустенитные;

  • Аустенитно-ферритные

  • Аустенитно-мартенситные

  • Аустенитно-карбидные


Хромистые нержавеющие стали.
Хром - основной легирующий элемент, делающий сталь коррозионно-стойкой в окислительных средах. Коррозионная стойкость хромистых нержавеющих сталей объясняется образованием на поверхности защитной плотной пассивной плёнки окисла Cr2O3. Такая плёнка образуется только при содержании хрома более 12,5%. Чем больше содержание хрома, тем выше коррозионная стойкость хромистых сталей. Так, введение более 12-14% Cr резко повышает электрохимический потенциал стали с отрицательного на положительный и делает ее коррозийностойкой в атмосфере и во многих других промышленных средах. В настоящее время хромистые стали выплавляют 3-х типов:

1) содержащие 13% Cr;

Все хромистые стали подвергаются закалке с 1000-1100 С в масле с последующим отпуском (для сталей ферритного класса- при 700-750 С, мартенситного класса 200-250 С). Стали ферритного класса при нагреве не испытывают превращений, поэтому термическую обработку проводят для получения структуры более однородного твёрдого раствора, что увеличивает коррозионную стойкость.

Высокохромистые стали ферритного класса ( 12Х17, 15Х25Т, 15Х28) используют часто как окалиностойкие.

Мартенситные и мартенситно-ферритные стали обладают хорошей коррозионной стойкостью в атмосферных условиях, в слабоагрессивных средах (в слабых растворах солей, кислот) и имеют высокие механические свойства. В основном их используют для изделий, работающих на износ, в качестве режущего инструмента, в частности ножей, для упругих элементов и конструкций в пищевой и химической промышленности, находящихся в контакте со слабоагрессивными средами. К этому виду относятся, стали типа 30Х13, 40Х13 и т. д.

Ферритные стали применяют для изготовления изделий, работающих в окислительных средах (например, в растворах азотной кислоты), для бытовых приборов, в пищевой, легкой промышленности и для теплообменного оборудования в энергомашиностроении. Ферритные хромистые стали имеют высокую коррозионную стойкость в азотной кислоте, водных растворах аммиака, в аммиачной селитре, смеси азотной, фосфорной и фтористоводородной кислот, а также в других агрессивных средах. К этому виду относятся, стали 400 серии.
Хромоникелевые нержавеющие стали.
Никель относится к числу металлов, легко приобретающих пассивность, хотя его пассивирующая способность меньше хрома и молибдена. Добавление никеля к железу в количестве 1/8 моля скачкообразно улучшает коррозионную стойкость сплава в серной кислоте. При концентрации никеля 2/8 моля коррозионная стойкость повышается ещё больше. Никель – аустенитообразующий элемент. Различают аустенитные нержавеющие стали, склонные к межкристаллитной коррозии, и стабилизированные — с добавками Ti и Nb. Значительное уменьшение склонности нержавеющей стали к межкристаллитной коррозии достигается снижением содержания углерода (до 0,03 %).

Нержавеющие стали, склонные к межкристаллитной коррозии, после сварки, как правило, подвергаются термической обработке.

Нержавеющие стали, имеющие аустенитную структуру, обладают более высокой коррозионной стойкостью, лучшими технологическими свойствами по сравнению с хромистыми нержавеющими сталями, в частности лучше свариваются. Они сохраняют прочность до более высоких температур, менее склонны к росту зерна при нагреве и в то же время аустенитные стали не теряют пластичности при низких температурах. Как и хромистые, хромоникелевые стали коррозионностойки в окислительных средах. Основным элементом, повышающим потенциал железа, также является хром, поэтому его содержание должно быть >13%. Никель только дополнительно повышает коррозионную стойкость сталей. Большинство хромоникелевых нержавеющих сталей относятся к аустенитному классу: 04Х18Н10, 12Х18Н9Т, 09Х14Н16Б, 08Х10Н20Т2 и др. Эти стали пластичны, хорошо свариваются, обладают повышенной жаропрочностью, коррозионностойки во многих средах, имеющих среднюю активность. Дополнительное легирование хромоникелевых сталей молибденом и медью повышает их коррозионную стойкость и кислотостойкость. Иногда в эти стали вводят в небольших количествах титан и алюминий, которые, упрочняют аустенит. Никель - достаточно дорогой и дефицитный металл, поэтому создают нержавеющие стали с меньшим содержанием никеля, для этого вводят в состав нержавеющих сталей другие аустенитообразующие элементы, например, марганец или азот (стали 10Х14Г14Н4Т, 10Х14АГ15 и др.) Наибольшую коррозионную стойкость имеют хромистые нержавеющие стали мартенситного типа с полированной поверхностью. Аустеннитно-ферритные стали предложены как заменители хромоникелевых сталей типа Х18Н8 с целью экономии никеля. Эти стали не обладают стабильностью свойств: их свойства зависят от соотношения ферритной и аустенитной фаз, которое, в свою очередь, зависит от суммарного влияния ферритообразующих и аустенитообразующих элементов. Основным преимуществом сталей аустенитного класса являются их высокие служебные характеристики (прочность, пластичность, коррозионная стойкость в большинстве рабочих сред) и хорошая технологичность.

Преимущество сталей этой группы — повышенный предел текучести по сравнению с аустенитными однофазными сталями, отсутствие склонности к росту зёрен при сохранении двухфазной структуры, меньшее содержание остродефицитного никеля и хорошая свариваемость. Аустенито-ферритные стали находят широкое применение в различных отраслях современной техники, в различных отраслях машиностроения, особенно в химическом машиностроении, судостроении, авиации. К этому виду относятся, стали типа 08Х22Н6Т, 08Х21Н6М2Т, 08Х18Г8Н2Т. Потребности новых отраслей современной техники в коррозионностойких сталях повышенной прочности и технологичности привели к разработке сталей аустенито - мартенситного (переходного) класса. Это стали типа 07Х16Н6, 09Х15Н9Ю, 08Х17Н5М3.

Жаростойкие стали.
Жаростойкость (окалиностойкость)- способность металлов и сплавов сопротивляться газовой коррозии при высоких температурах в течение длительного времени. К жаростойким относятся стали, работающие в ненагруженном или слабонагруженном состоянии при температурах выше 550 С. В основном за жаростойкость отвечают поверхность металла и чистота её обработки. Полированные поверхности окисляются медленнее, т.к. оксиды распределены равномерно и более прочно сцеплены с поверхностью металла. Формирующаяся на поверхности оксидная плёнка достаточно хорошо защищает металл от дальнейшего окисления в том случае, если она плотная и не пропускает ионы кислорода, хорошо сцеплена с подложкой и не отслаивается при механических испытаниях.

Для повышения окалиностойкости сталь легируют элементами (хромом, алюминием, кремнием), имеющими большее сродство к кислороду, чем железо, и образующими по поверхности стали плотные оксидные плёнки типа (Cr,Fe)2O3, (Al,Fe)2O3 и др.

Стали, легированные Cr и Si, называют сильхромами; Cr и Al- хромалями, Cr-Al-Si- сильхромалями. Среди сильхромов широкое применение получили жаростойкие (с температурой окалинообразования 850 С) и одновременно жаропрочные (до 600 С) стали мартенситного класса 40Х9С2 и 40Х10С2М.

Сильхромы применяют для изготовления клапанов двигателей внутреннего сгорания и деталей печного отопления. Сталь 10х13СЮ(сильхромаль) окалиностойка до 950 С; она устойчива в серосодержащих средах. Однако высокое содержание алюминия и кремния вызывает их охрупчивание, в связи с чем эти элементы добавляют в небольших количествах.

Ферритная сталь 08Х17Т жаростойка до 900 С и применяется в теплообменниках.

Аустенитные стали 12Х18Н9Т и 36Х18Н25С2 обладают высокой технологичностью и достаточной прочностью при повышенных температурах. Они жаростойки соответственно до 800 и 1100 С. В зависимости от того, какова прочность сталей при различных температурах, эти стали условно можно разделить на 2 группы: стали теплопрочные, работающие до 350-500 С, и жаропрочные, работающие при более высоких температурах.
Жаропрочностью называют способность материала длительное время сопротивляться деформированию и разрушению при повышенных температурах. Длительное воздействие температуры приводит к существенным структурным изменениям: теряется прочность, полученная при термической обработке, происходит потеря упрочнения, вызванного пластической деформацией. Если при постоянной температуре нагрузить металл постоянно действующим напряжением даже ниже предела текучести и оставить его в этих условиях на длительное время, то металл со временем будет деформироваться с определённой скоростью. Это явление получило название ползучести.

Читайте также: