Подземная выплавка серы реферат

Обновлено: 05.07.2024

Геологическое своеобразие этих месторождений можно объяснить только с позиций теории метасоматоза: первичные гипсы и ангидриты превратились во вторичные карбонатные руды с вкраплениями самородной серы. Важно не только соседство минералов – среднее содержание серы в руде этих месторождений равно содержанию химически связанной серы в ангидрите. А исследования изотопного состава серы и углерода в руде этих месторождений дали сторонникам теории метасоматоза дополнительные аргументы.

Все это означает, что разнообразие теорий и гипотез о происхождении самородной серы – результат не только и не столько неполноты наших знаний, сколько сложности явлений, происходящих в недрах. Еще из элементарной школьной математики все мы знаем, что к одному результату могут привести разные пути. Этот закон распространяется и на геохимию.

Добыча серы

Серные руды добывают разными способами – в зависимости от условий залегания. Но в любом случае приходится уделять много внимания технике безопасности. Залежам серы почти всегда сопутствуют скопления ядовитых газов – соединений серы. К тому же нельзя забывать о возможности ее самовозгорания.

Добыча руды открытым способом происходит так. Шагающие экскаваторы снимают пласты пород, под которыми залегает руда. Взрывами рудный пласт дробят, после чего глыбы руды отправляют на обогатительную фабрику, а оттуда – на сероплавильный завод, где из концентрата извлекают серу. Методы извлечения различны. О некоторых из них будет рассказано ниже. А здесь уместно кратко описать скважинный метод добычи серы из-под земли, позволивший Соединенным Штатам Америки и Мексике стать крупнейшими поставщиками серы.

В конце прошлого века на юге Соединенных Штатов были открыты богатейшие месторождения серной руды. Но подступиться к пластам было непросто: в шахты (а именно шахтным способом предполагалось разрабатывать месторождение) просачивался сероводород и преграждал доступ к сере. Кроме того, пробиться к сероносным пластам мешали песчаные плавуны. Выход нашел химик Герман Фраш, предложивший плавить серу под землей и через скважины, подобные нефтяным, выкачивать ее на поверхность. Сравнительно невысокая (меньше 120°C) температура плавления серы подтверждала реальность идеи Фраша. В 1890 г. начались испытания, приведшие к успеху.

В принципе установка Фраша очень несложна: труба в трубе. В пространство между трубами подается перегретая вода и по нему идет в пласт. А по внутренней, обогреваемой со всех сторон, трубе поднимается расплавленная сера. Современный вариант установки Фраша дополнен третьей – самой узкой трубой. Через нее в скважину подается сжатый воздух, который помогает поднять расплавленную Серу на поверхность. Одно из основных достоинств метода Фраша – в том, что он позволяет уже на первой стадии добычи получить сравнительно чистую серу. При разработке богатых руд этот метод весьма эффективен.

А руду, полученную в карьерах и шахтах, приходится перерабатывать (часто с предварительным обогащением), используя для этого различные технологические приемы.

Известно несколько методов получения серы из серных руд: пароводяные, фильтрационные, термические, центрифугальные и экстракционные.

Италия стала родиной и пароводяных методов извлечения серы из руд. В 1859 г. Джузеппе Джилль получил патент на свой аппарат – предшественник нынешних автоклавов. Автоклавный метод (значительно усовершенствованный, конечно) используется и сейчас во многих странах.

В России автоклавный способ был впервые применен инженером К.Г. Паткановым в 1896 г.

Современные автоклавы – это огромные аппараты высотой с четырехэтажный дом. Такие автоклавы установлены, в частности, на сероплавильном заводе Роздольского горно-химического комбината в Прикарпатье.

В последнее время все большее внимание уделяется скважинным геотехнологическим способам добычи серы. На Язовском месторождении в Прикарпатье серу – классический диэлектрик плавят под землей токами высокой частоты и выкачивают на поверхность через скважины, как в методе Фраша. Ученые Института горно-химического сырья предложили способ подземной газификации серы. По этому способу серу поджигают в пласте, а на поверхность выкачивают сернистый газ, который идет на производство серной кислоты и других полезных продуктов.

По-разному и удовлетворяют свои потребности в сере разные страны. Мексика и США используют в основном метод Фраша. Италия, занимающая по добыче серы третье место среди капиталистических государств, продолжает добывать и перерабатывать (разными методами) серные руды сицилийских месторождений и провинции Марке. У Японии есть значительные запасы серы вулканического происхождения. Франция и Канада, не имеющие самородной серы, развили крупное производство ее из газов. Нет собственных серных месторождений и в Англии и ФРГ. Свои потребности в серной кислоте они покрывают за счет переработки серусодержащего сырья (преимущественно пирита), а элементарную серу импортируют из других стран.

Советский Союз и социалистические страны полностью удовлетворяют свои потребности благодаря собственным источникам сырья. После открытия и освоения богатых Прикарпатских месторождений СССР и Польша значительно увеличили производство серы. Эта отрасль промышленности продолжает развиваться. В последние годы построены новые крупные предприятия на Украине, реконструированы старые комбинаты на Волге и в Туркмении, расширено производство серы из природного газа и отходящих газов.

Кристаллы и макромолекулы

В том, что сера – самостоятельный химический элемент, а не соединение, первым убедился великий французский химик Антуан Лоран Лавуазье в XVIII в.

С тех пор представления о сере как элементе изменились не очень сильно, но значительно углубились и дополнились.

Сейчас известно, что элемент №16 состоит из смеси четырех устойчивых изотопов с массовыми числами 32, 33, 34 и 36. Это типичный неметалл.

Лимонно-желтые кристаллы чистой серы полупрозрачны. Форма кристаллов не всегда одинакова. Чаще всего встречается ромбическая сера (наиболее устойчивая модификация) – кристаллы имеют вид октаэдров со срезанными углами. В эту модификацию при комнатной (или близкой к комнатной) температуре превращаются все прочие модификации. Известно, например, что при кристаллизации из расплава (температура плавления серы 119,5°C) сначала получаются игольчатые кристаллы (моноклинная форма). Но эта модификация неустойчива, и при температуре 95,6°C она переходит в ромбическую. Подобный процесс происходит и с другими модификациями серы.

Напомним известный опыт – получение пластической серы.

Если расплавленную серу вылить в холодную воду, образуется эластичная, во многом похожая на резину масса. Ее можно получить и в виде нитей. Но проходит несколько дней, и масса перекристаллизуется, становится жесткой и ломкой.

Молекулы кристаллов серы всегда состоят из восьми атомов (S8 ), а различие в свойствах модификаций серы объясняется полиморфизмом – неодинаковым строением кристаллов. Атомы в молекуле серы построены в замкнутый цикл, образующий своеобразный венец. При плавлении связи в цикле рвутся, и циклические молекулы превращаются в линейные.

Необычному поведению серы при плавлении даются различные толкования. Одно из них – такое. При температуре от 155 до 187°, по-видимому, происходит значительный рост молекулярного веса, это подтверждается многократным увеличением вязкости. При 187°C вязкость расплава достигает чуть ли не тысячи пуаз, получается почти твердое вещество. Дальнейший рост температуры приводит к уменьшению вязкости (молекулярный вес падает).

При 300°C сера вновь переходит в текучее состояние, а при 444,6°C закипает.

У паров серы с повышением температуры число атомов в молекуле постепенно уменьшается: S8 → S6 → S4 → (800°)

Метод ПВС применяют для разработки месторождений само¬родной серы. Самородная сера в природных условиях существует в основном в двух модификациях: α-сера и β-cepa. α-cepa кристал¬лизуется в ромбической сингонии, она устойчива при температуре ниже 95,5°С, ее плотность равна 2,06∙103 кг/м3. При температуре выше 95,5°С α-сера переходит в β-серу. Этот переход относится к фазовым переходам первого рода, так как при этом выделяется теплота перехода в количестве 10,9кДж/кг. β-сера кристаллизу¬ется в моноклинной сингонии в виде иголочек, ее плотность 1,96∙103 кг/м3, температура плавления 119°С, а скрытая теплота плавления 38,5 кДж/кг. При повышенных давлениях в процессе остывания сера остается в моноклинной сингонии вплоть до есте¬ственных температур. В природных условиях самородная серп в о .

Содержание

Метод ПВС применяют для разработки месторождений само¬родной серы. Самородная сера в природных условиях существует в основном в двух модификациях: α-сера и β-cepa. α-cepa кристал¬лизуется в ромбической сингонии, она устойчива при температуре ниже 95,5°С, ее плотность равна 2,06∙103 кг/м3. При температуре выше 95,5°С α-сера переходит в β-серу. Этот переход относится к фазовым переходам первого рода, так как при этом выделяется теплота перехода в количестве 10,9кДж/кг. β-сера кристаллизу¬ется в моноклинной сингонии в виде иголочек, ее плотность 1,96∙103 кг/м3, температура плавления 119°С, а скрытая теплота плавления 38,5 кДж/кг. При повышенных давлениях в процессе остывания сера остается в моноклинной сингонии вплоть до есте¬ственных температур. В природных условиях самородная серп в основном представлена β-серой и в меньшей степени β-серой

Введение

Метод ПВС применяют для разработки месторождений само¬родной серы. Самородная сера в природных условиях существует в основном в двух модификациях: α-сера и β-cepa. α-cepa кристал¬лизуется в ромбической сингонии, она устойчива при температуре ниже 95,5°С, ее плотность равна 2,06∙103 кг/м3. При температуре выше 95,5°С α-сера переходит в β-серу. Этот переход относится к фазовым переходам первого рода, так как при этом выделяется теплота перехода в количестве 10,9кДж/кг. β-сера кристаллизу¬ется в моноклинной сингонии в виде иголочек, ее плотность 1,96∙103 кг/м3, температура плавления 119°С, а скрытая теплота плавления 38,5 кДж/кг. При повышенных давлениях в процессе остывания сера остается в моноклинной сингонии вплоть до есте¬ственных температур. В природных условиях самородная серп в о сновном представлена β-серой и в меньшей степени β-серой

Фрагмент работы для ознакомления

Список литературы

Метод ПВС применяют для разработки месторождений само¬родной серы. Самородная сера в природных условиях существует в основном в двух модификациях: α-сера и β-cepa. α-cepa кристал¬лизуется в ромбической сингонии, она устойчива при температуре ниже 95,5°С, ее плотность равна 2,06∙103 кг/м3. При температуре выше 95,5°С α-сера переходит в β-серу. Этот переход относится к фазовым переходам первого рода, так как при этом выделяется теплота перехода в количестве 10,9кДж/кг. β-сера кристаллизу¬ется в моноклинной сингонии в виде иголочек, ее плотность 1,96∙103 кг/м3, температура плавления 119°С, а скрытая теплота плавления 38,5 кДж/кг. При повышенных давлениях в процессе остывания сера остается в моноклинной сингонии вплоть до есте¬ственных температур. В природных условиях самородная серп в основном представлена β-серой и в меньшей степени β-серой

Пожалуйста, внимательно изучайте содержание и фрагменты работы. Деньги за приобретённые готовые работы по причине несоответствия данной работы вашим требованиям или её уникальности не возвращаются.

* Категория работы носит оценочный характер в соответствии с качественными и количественными параметрами предоставляемого материала. Данный материал ни целиком, ни любая из его частей не является готовым научным трудом, выпускной квалификационной работой, научным докладом или иной работой, предусмотренной государственной системой научной аттестации или необходимой для прохождения промежуточной или итоговой аттестации. Данный материал представляет собой субъективный результат обработки, структурирования и форматирования собранной его автором информации и предназначен, прежде всего, для использования в качестве источника для самостоятельной подготовки работы указанной тематики.

Свойства серы и серных руд.
Метод ПВС применяют для разработки месторождений само­родной серы. Самородная сера в природных условиях существует в основном в двух модификациях: α-сера и β-cepa. α-cepa кристал­лизуется в ромбической сингонии, она устойчива при температуре ниже 95,5°С, ее плотность равна 2,06∙103 кг/м3. При температуре выше 95,5°С α-сера переходит в β-серу. Этот переход относится к фазовым переходам первого рода, так как при этом выделяется теплота перехода в количестве 10,9кДж/кг. β-сера кристаллизу­ется в моноклинной сингонии в виде иголочек, ее плотность 1,96∙103 кг/м3, температура плавления 119°С, а скрытая теплота плавления 38,5 кДж/кг. При повышенных давлениях в процессе остывания сера остается в моноклинной сингонии вплоть до есте­ственных температур. В природных условиях самородная серп в основном представлена β-серой и в меньшей степени β-серой.
Коэффициент объемного теплового расширения твердой серы (ω) в диапазоне температур от 15 до 100 °С изменяется от 1,7 ∙10 -5 до 3,5∙10 -5 1/°С, а для жидкой серы в диапазоне температур от 120 до 163 °С он изменяется следующим образом: при T=120°С ω =426∙10-6 1/°С, при T=151,7°С ω=493∙10 -6 1/°С и при T=163°С ω = 126∙10 -6 1/°С. Удельная теплоемкость твердой серы изменяется от 0,67 до 0,8 кДж/(кг∙°С), а у жидкой серы она значительно боль­ше. Максимальная удельная теплоемкость жидкой серы (1,86 кДж/(кг∙°С); имеет место при Т=158°С. Теплопроводность твердой серы в диапазоне температур от20°С до температуры плавления уменьшается с 0,27 до 0,128 Вт/(м∙оС); при дальнейшем нагревании жидкой серы ее теплопроводность не­значительно повышается и при Т=200°С становится равной 0,15 Вт/(м∙°С). Одним из важнейших свойств серы применительно к ее подзем­ной выплавке является вязкость. Способность жидкой серы при ее нагревании значительно понижать свою вязкость положена в осно­ву метода ПВС. При температуре плавления вязкость серы равна 0,011 Па∙с, при дальнейшем нагреве вязкость ее понижается и становится минимальной (0,0065 Па∙с) при Т=159°С. Дальней­шее нагревание серы сопровождается увеличением ее вязкости вплоть до Т=187°С, когда вязкость становится максимальной (93,1 Па∙с). При последующем нагревании серы ее вязкость снова уменьшается и при Т = 400°С становится равной 0,16 Н∙с/м2. При температуре 444,6 °С сера закипает. Температура воспла­менения серы в зависимости от степени ее чистоты изменяется в диапазоне от 214 до 280 °С. С увеличением примесей в сере повы­шается температура ее воспламенения и понижается вязкость. Смесь серных паров или пыли с воздухом при температуре воспла­менения может взрываться. Месторождения самородной серы имеют пластообразную, линзовидную или гнездообразную форму. Вмещающими породами для самородной серы являются известняки и реже гипсоангидриты. Текстура серных руд может быть полосчатая, вкрапленная, прожилковая, гнездовая, брекчиевидиая. В качестве покрывающих и подстилающих пород могут быть глины, мергели, нерудоносные плотные известняки, гипсоангидриты, каменная соль. Плотность серных руд изменяется от 2,38∙103 до 2,66∙103 кг/м3 и зависит от содержания серы. Плотность вмещающих известняков равна (2,7—2,8) ∙ 103 кг/м3. Прочность на сжатие серных руд изменяется в весьма широком диапазоне [(1—6) ∙ 10 7 Па] и увеличивается с уменьшением со­держания серы. Прочность на сжатие вмещающих пород изменя­ется от 7∙107 до 108 Па. После выплавления серы из руды проч­ность на сжатие образовавшегося при этом породного скелета в 30—40 раз уменьшается по сравнению с прочностью серной руды. В связи с этим при ПВС необходимо предусматривать мероприя­тия по предотвращению нежелательных явлений вокруг серодо-бычных скважин в результате сдвижения массива. Модуль упругости серных руд Е в среднем равен 4∙1010 Па, для серы Е=0,85 ∙1010 Н/м2, для вмещающих пород Е=(4—6) ∙1010 Н/м2. Коэффициент линейного теплового расширения серных руд в диапазоне температур от 20 до 110°С изменяется от 0,2 ∙10-5 до 2,5 ∙10-5 1/°С. Зависимость коэффициента линейного теплового рас­ширения серных руд в этом диапазоне температур имеет два ма­ксимума: первый при температуре около 70 °С, а второй при 110°С, причем второй по абсолютному значению гораздо больше, чем первый. Под действием термических напряжений, возникающих в сер­ной руде в связи с тепловым расширением, происходит разрушение каверн, что увеличивает проницаемость руды и способствует повы­шению извлечения серы. Удельная теплоемкость и теплопроводность серных руд в диа­пазоне температур 20—100 °С мало изменяются и соответственно равны с=0,7—1,8 кДж/(кг .°С) и λ=0,5—1,5 Вт/(м .°С). Удельная теплоемкость и теплопроводность известняка при этих же темпе­ратурах составляют с=0,67—1 кДж/(кг . °С) и λ=1—2,3 Вт/(м . °С). Удельная теплоемкость серных руд при нагреве до 70 °С прак­тически не изменяется, при дальнейшем нагреве до 90—100°С она возрастает, а затем с ростом температуры выше 100 °С наблюдает­ся незначительное ее снижение. Минимальное значение теплопроводности серных руд наблюда­ется при Т=50—70 °С, а максимальное при 90 °С. При дальней­шем увеличении температуры теплопроводность серных руд пони­жается. Применительно к ПВС важными характеристиками серных руд являются проницаемость и коэффициент фильтрации, которые за­висят от пористости, трещиноватости, степени кавернозности и других факторов. Коэффициент проницаемости и коэффициент фильтрации характеризуют одно и то же явление — способность пород пропускать сквозь себя, жидкость и газы. Различие между ними заключается в том, что коэффициент проницаемости (Кпр , м2) учитывает давление жидкости и ее вязкость, а коэф­фициент фильтрации (Кф , м/сут) — нет. Эти два коэффициента соответственно определяются из следующих формул: 14.1 14.2 где Q — объемное количество жидкости, проходящее через сечение породы S за время τ, м3; Р — перепад давления жидкости на уча­стке породы длиной l, Па; η — вязкость жидкости, Н∙ с/м2. Проницаемость серных руд изменяется в пределах от 0,3 до 1 Д. После выплавки серы из серной руды проницаемость пород­ного скелета увеличивается в 10—50 раз и достигает значений 10—20 Д. В монолитных некавернозных серных рудах проницаемость очень низкая. При подземной выплавке серы из таких руд перемещение теплоносителя в рудном теле происходит в основном по открытым порам и трещинам. Коэффициент фильтрации серных руд изменяется в пределах от 10 до 100 м/сут. Для покрывающих и подстилающих пород место­рождений самородной серы коэффициент фильтрации значительно меньше и не превышает десятых долей метра в сутки.

Метод подземной выплавки серы ( ПВС) дает возможность быстро и без больших капиталовложений увеличить производство серы при одновременном снижении себестоимости продукции и повышении производительности труда. Однако применение метода возможно только при определенных условиях эксплуатации залежей. [1]

Метод подземной выплавки серы ( метод Фраша) заключается в получении расплава серы непосредственно в местах залегания и подъема расплавленной серы на поверхность. [2]

В США распространен метод подземной выплавки серы . Сквозь слой песка к залеганию серы прокладывают колонну, состоящую из трех труб, вложенных одна в другую. Через наружную трубу нагнетают водяной пар с температурой 160 - 170 С, плавящий серу под землей, через внутреннюю - горячий воздух под давлением 10 - 18 атм. [3]

В США распространен метод подземной выплавки серы . Сквозь слой песка к залеганию серы прокладывают колонну, состоящую из трех труб, вложенных одна в другую. Через наружную трубу нагнетают водяной пар с температурой 160 - 170 С, плавящий серу под землей, через внутреннюю - горячий воздух под давлением 10 - 18 атм. По средней трубе расплавленная сера поднимается на поверхность земли. [4]

Применяемый в США метод подземной выплавки серы по Фрашу из богатых руд, залегающих на значительной глубине, состоит в том, что в буровую скважину опускают четыре концентрические трубы. Крайняя ( обсадная) труба служит для тепловой изоляции и доходит лишь до слоя известняка, покрывающего пласт серной руды. [5]

Раньше считалось, что метод подземной выплавки серы применим только в специфических, условиях соляных куполов тихоокеанского побережья США и Мексики. [6]

Раньше считалось, что метод подземной выплавки серы применим только в специфических условиях соляных куполов тихоокеанского побережья США и Мексики. Однако опыты, проведенные в Польше и СССР, опровергли это мнение. В народной Польше этим методом уже добывают большое количество серы; в 1968 году пущены первые серные скважины и в СССР. [7]

Широкое применение в последнее время нашел метод подземной выплавки серы перегретой водой с откачкой ее в расплавленном состоянии через скважины. [8]

В некоторых странах ( например, в США) распространен метод подземной выплавки серы . Обычно сквозь слой песка к залежам серы прокладывают колонну из трех труб, вложенных одна в другую. Тогда по средней трубе расплавленная сера поднимается на поверхность земли. [9]

Поэтому наряду с развитием открытого способа добычи руды на Гаурдакском месторождении проводятся работы по внедрению метода подземной выплавки серы . [10]

Читайте также: