Плотность и мольный объем реферат

Обновлено: 07.07.2024

* Данная работа не является научным трудом, не является выпускной квалификационной работой и представляет собой результат обработки, структурирования и форматирования собранной информации, предназначенной для использования в качестве источника материала при самостоятельной подготовки учебных работ.

Плотность жидкости при нормальной температуре кипения

Аддитивный метод Шредера

При изучении свойств органических жидкостей Шредером было сформулировано правило, в соответствии с которым при прогнозировании мольного объема чистой жидкости при нормальной температуре кипения следует сосчитать число атомов углерода, водорода, кислорода и азота в молекуле, добавить по единице на каждую двойную связь и сумму умножить на семь. При этом получаем мольный объем жидкости в см 3 /моль. Правило Шредера дает удивительно хорошие результаты для нормальных жидкостей - погрешность, как правило, не превышает 3-4% тон. Плотности сильно ассоциированных жидкостей прогнозируются с меньшей точностью. В дальнейшем аддитивный метод Шредера модифицировался самим автором и другими учеными. В табл. 6.5 приведены значения групповых вкладов в последней редакции Шредера и Ле Ба.

Аддитивные составляющие для расчета молярных объемов Vb

Тип атома, группы, связи

Составляющая, см 3 /моль

Кислород (за исключением приведенных ниже случаев):

в метиловых сложных и простых эфирах

в этиловых сложных и простых эфирах

в высших сложных и простых эфирах

Тип атома, группы, связи

Составляющая, см 3 /моль

соединенный с S, P, N

с двойной связью

в первичных аминах

во вторичных аминах

Двойная связь между атомами углерода

Тройная связь между атомами углерода

Неаддитивный метод Тина и Каллуса

Величина мольного объема жидкости при нормальной температуре кипения представлена в качестве функции критического объема:

где может быть выполнено на основе некоторых уравнений состояния вещества, так, например, уравнения Бенедикта-Уэбба-Рубина для углеводородов. Однако целесообразнее использовать для этого специальные эмпирические корреляции, которые относительно просты и в большинстве случаев более точны.

Практически все корреляционные методы основаны на принципе соответственных состояний и требуют знания плотности насыщенной жидкости хотя бы при одной температуре. Поскольку даже такой минимум информации не всегда доступен, приходится прибегать к оценкам критической плотности вещества по его критическому объему. При отсутствии экспериментальных данных вычисление плотности может быть основано на коэффициенте сжимаемости жидкости при давлении насыщения, что рационально выполнять с использованием таблиц Ли-Кеслера (разд. 4). Ниже рассмотрены оба подхода.

Метод Ганна-Ямады

Метод предназначен для прогнозирования молярного объема и плотности неполярных или слабополярных жидкостей - ацентрический фактор. :

или ее плотность при приведенной температуре .

При наличии экспериментальных сведений о плотности интересующей насыщенной жидкости при некоторой температуре масштабирующий параметр ,(6.20)

где , а их участие в уравнении следует понимать как температурный уровень, при котором вычисляются = 298/650 = 0,458;

3. Рассчитываем плотность жидкого изобутилбензола, находящегося на линии насыщения. Для 298 К имеем

Молярный объем V m — является отношением объема вещества к его количеству, численно равен объему одного моля вещества.

  • температура;
  • давление;
  • агрегатное состояние вещества.

Молярный объем можно находить путем деления молярной массы M вещества на его плотность ρ .

Молярный объем вычисляют по формуле:

V m = V / n = M / ρ .

Молярный объем является характеристикой плотности упаковки молекул в рассматриваемом веществе. В случае простых веществ в некоторых ситуациях допустимо использовать понятие атомного объема.

Согласно Международной системе единиц ( С И ) , молярный объем измеряется в кубических метрах на моль (русское обозначение: м 3 / м о л ь ; международное: m 3 / m o l ) .

Исходя из того, что объем газа определяется температурой и давлением, в процессе расчетов принято использовать объемы газов при нормальных условиях (сокращенно — н. у.). За нормальные условия принимают:

  • температура 0 °С;
  • давление 101,325 кПа (1 атм.).

Известно, что при нормальных условиях отношение объема любой порции газа к химическому количеству газа есть величина постоянная и равная 22 , 4 д м 3 / м о л ь .

Молярный объем какого-либо газа при нормальных условиях:

Таким образом, молярный объем при н. у. равен 22 , 4 д м 3 и представляет собой объем, который занимает 1 моль какого-либо газа при нормальных условиях.

Молярный объем смеси

В том случае, когда рассматривается смесь веществ, в процессе вычисления молярного объема за количество вещества принимают сумму количеств всех веществ, входящих в состав смеси. Когда величина плотности смеси ρ c , мольные доли компонентов x i и их молярные массы M i известны, молярный объем смеси допустимо рассчитывать в виде отношения средней молярной массы смеси (суммы молярных масс ее компонентов, умноженных на их мольные доли) к плотности смеси.

Молярный объем смеси:

V m = V ∑ n i = M ¯ ρ c = ∑ i = 1 N x i M i ρ c . V m = V ∑ n i = M ¯ ρ c = ∑ i = 1 N x i M i ρ c .

Молярный объем газов

Закон Авогадро: одинаковые количества газов при одинаковых условиях занимают одинаковый объем.

Молярный объем идеального газа вычисляют с помощью формулы, которая является выводом из уравнения состояния идеального газа.

Молярный объем идеального газа:

V m = R T P V m = R T P ,

где T — является термодинамической температурой;

R — универсальная газовая постоянная.

R = 8,314 Д ж / ( К · м о л ь ) = 0,08205 л · а т м / ( К · м о л ь ) .

При нормальных условиях ( T = 273 , 15 K , P = 101 325 П а ) молярный объем газов V m = 22 , 41396954 … л / м о л ь . Молярные объемы в случае реальных газов, так или иначе, не совпадают с молярным объемом идеального газа. С другой стороны, нередко в процессе решения практических задач по химии отклонениями от идеальности допустимо пренебрегать.

Молярный объем кристаллов

Объем V я элементарной ячейки кристалла вычисляют с помощью характеристик кристаллической структуры, которые определяют на основании результатов рентгеноструктурного анализа.

Зависимость между объемом ячейки и молярным объемом:

V m = V я N A / Z

где Z — определяет, сколько формульных единиц в элементарной ячейке.

Значения молярного объема химических элементов

Уточнить величину молярного (атомного) объема, характерного для простых веществ, в с м 3 / м о л ь ( 10 − 6 м 3 / м о л ь , 10 − 3 л / м о л ь ) при нормальных условиях (для газообразных простых веществ), либо при температуре конденсации и нормальном давлении, можно в таблице:

Вычисление химического количества газа по его объему

Объем газа можно рассчитать по его химическому количеству. В этом случае необходимо преобразовать формулу молярного объема путем выражения из нее V :

Таким образом, объем газа равен произведению его химического количества на молярный объем. Продемонстрировать данное утверждение можно на примере. Допустим, что необходимо определить объем (н. у.) метана с химическим количеством 1,5 моль. Используя уравнение, записанное ранее, проведем вычисления:

При известном объеме газообразного вещества можно определить химическое количество рассматриваемого газа. В этом случае следует выразить из уравнения молярного объема n:

Таким образом, химическое количество газообразного вещества допустимо рассчитывать, как отношение его объема к молярному объему. Данное утверждение можно применить на практическом примере. Предположим, что необходимо вычислить химическое количество водорода, соответствующее при н. у. его объему 11,2 д м 3 . Выполним расчеты:

Определение объема веществ при химических реакциях

Перед тем, как приступить к расчетам объема веществ, следует ввести понятие плотности. Данный показатель определяется отношением массы вещества к его объему. Плотность измеряют в к г / м 3 (или г/л, г/мл). В случае газообразных веществ плотность принимает очень маленькие значения. Упростить расчеты химических реакций можно, если рассматривать отношение плотностей газов.

Относительной плотностью газа В по газу А называют величину, равную отношению плотностей рассматриваемых веществ или отношению молярных масс этих газов.

Данный параметр обозначают D A ( B ) и определяют по формуле:

В связи с тем, что в расчете относительной плотности используют величины одинаковой размерности, данный параметр является безразмерной величиной. Определить относительную плотность газообразных веществ по некому газу можно с помощью отношения молярных масс этих газов. Например, относительная плотность кислорода по водороду составляет:

Согласно закону Авогадро, в равных объемах различных газов, которые существуют при одинаковых температурах и давлениях, содержится одно и то же количество молекул. Данная гипотеза была представлена в 1811 году в Турине профессором физики Амедео Авогадро.

Подтверждение теория нашла во множестве экспериментальных опытах. Закон получил название закона Авогадро и стал в дальнейшем количественной основой современной химии. Закон Авогадро в точности реализуем в случае идеального газа. С увеличением разреженности газообразного вещества повышается точность расчетов по этому закону применительно к данному реальному газу.

Первое следствие из закона Авогадро: один моль (одинаковое количество молей) любого газа при одинаковых условиях занимает одинаковый объем.

Исходя из закона Авогадро, одинаковое число молекул какого-либо газа занимает при одинаковых условиях один и тот же объем. Наряду с тем, 1 моль какого-то вещества включает в себя (согласно определению) одинаковое количество частиц (к примеру, молекул). Таким образом, при определенных температуре и давлении 1 моль любого вещества в газообразном состоянии занимает один и тот же объем.

Если условия соответствуют нормальным, то есть температура равна 0 °C (273,15 К), и давление составляет 101,325 кПа, объем 1 моль газа соответствует 22,413 962(13) л. Данная физическая константа является молярным объемом идеального газа и обозначается Vm.

Вычислить молярный объем при температуре и давлении, отличных от нормальных условий, можно с помощью уравнения Клапейрона:

V m = R T p V m = R T p ,

где R ≈ 8 , 314 Д ж / ( м о л ь · К ) — является универсальной газовой постоянной.

Второе следствие из закона Авогадро: молярная масса первого газа равна произведению молярной массы второго газа на относительную плотность первого газа ко второму.

Благодаря данному положению, наука химия получила активное развитие. Причиной этому является открытие возможности для расчета молекулярной массы веществ, которые обладают способностью к переходу в газообразное или парообразное состояние. В том случае, когда молекулярная масса вещества равна μ , а ρ , является его относительной плотностью в газообразном состоянии по другому газу, отношение μ / ρ , должно быть постоянным для всех веществ, его значение зависит только от вида газа, по которому определяют относительную плотность данного вещества. Из результатов практического опыта можно сделать вывод о том, что для любых известных веществ, которые способны переходить в газообразное состояние без разложения, рассматриваемая постоянная составляет 28,9 а.е.м. (атомных единицы массы), если при определять относительную плотность по воздуху. С другой стороны, данная постоянная будет равна 2 а.е.м. в том случае, когда относительную плотность определяют по водороду.

Как найти объемные отношения газов в смеси

В процессе вычисления объемных отношений газов, участвующих в химических реакциях, используют закон Гей-Люссака (химический закон объемных отношений). В англоязычной литературе данный закон можно встретить под названием закона Шарля.

Закон Гей-Люссака — закон, демонстрирующий пропорциональную зависимость между объемом газообразного вещества и абсолютной температурой при постоянном давлении (то есть в изобарном процессе).

Закон получил название в честь французского физика и химика Жозефа Луи Гей-Люссака.

Математическое выражение закона Гей-Люссака:

V ~ T или V / T = c o n s t , P = c o n s t ,

где V — объем газа;

В том случае, когда известно состояние газа при постоянном давлении и двух разных температурах, закон допустимо записывать таким образом:

V 1 : T 1 = V 2 : T 2 и л и V 1 T 2 = V 2 T 1 .

По итогам химических реакций атомы не исчезают и не возникают. В результате таких процессов происходит их перегруппировка. Количество атомов до реакции и после ее протекания не меняется, что отличает их от молекул. Данное условие учитывают, расставляя стехиометрические коэффициенты в уравнениях химических реакций.

Коэффициенты в уравнениях реакций демонстрируют числа объемов газов, которые реагируют и образовываются. К примеру, 2 объема водорода и 1 объем кислорода дают 2 объема пара воды:

2 H 2 + O 2 = 2 H 2 O

В процессе, записанном в виде уравнения 3 Н 2 + N 2 = 2 N H 3 , объемы азота и водорода, между которыми протекает реакция, и объем образовавшегося аммиака связаны между собой, что можно выразить с помощью следующего соотношения:

V ( Н 2 ) : V ( N 2 ) : V ( N H 3 ) = 3 : 2 : 1

С другой стороны, данные соотношения справедливы лишь в случае веществ, которые участвуют в одной и той же химической реакции. Когда реагент принимает участие в двух параллельных реакциях, его химические количества в данных процессах не связаны и могут принимать любые значения.

Согласно первому следствию из закона Авогадро, при одинаковых условиях 1 моль любого газа занимает одинаковый объем. Объем газа количеством 1 моль в нормальных условиях носит название молярного объема и обозначается V m . Таким образом:

где V — объем газа,

n — количество газа.

Выразить молярный объем газов можно в л/моль:

V m = 22 , 4 л / м о л ь .

В данной таблице использованы следующие обозначения:

  • V — объем;
  • Р — давление;
  • Т — температура;
  • n — количество вещества;
  • m — масса вещества;
  • М — молярная масса вещества;
  • R — универсальная газовая постоянная.

R = 8 , 314 Д ж / ( К · м о л ь ) = 0 , 08205 л · а т м / ( К · м о л ь ) .

Описание плотности жидкостей, газов и древесины, зависимости плотности от температуры. Анализ приборов, которые используются для измерения плотности вещества: пикнометра, ареометра и бура Качинского. Изучение биографии и изобретений физика Паскаля Блеза.

Рубрика Физика и энергетика
Вид реферат
Язык русский
Дата добавления 12.02.2011
Размер файла 506,9 K

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

На тему: Плотность и единицы плотности

Плотность

Плотность -- скалярная физическая величина, определяемая для однородного вещества массой его единичного объёма. Для неоднородного вещества плотность в определённой точке вычисляется как предел отношения массы тела (m) к его объёму (V), когда объём стягивается к этой точке. Средняя плотность неоднородного вещества есть отношение .

Виды плотности и единицы измерения

Плотность измеряется в кг/м? в системе СИ и в г/см? в системе СГС.

Для сыпучих и пористых тел различают:

· истинную плотность, определяемую без учёта пустот;

· кажущуюся плотность, рассчитываемую как отношение массы вещества ко всему занимаемому им объёму.

Истинную плотность из кажущейся получают с помощью величины порозности -- доли объёма пустот в занимаемом объёме.

Зависимость плотности от температуры

Как правило, при уменьшении температуры плотность увеличивается, хотя встречаются вещества, чья плотность ведет себя иначе, например, вода, бронза и чугун. Так, плотность воды имеет максимальное значение при 4 C и уменьшается как с повышением, так и с понижением температуры.

При изменении агрегатного состояния плотность вещества меняется скачкообразно: плотность растёт при переходе из газообразного состояния в жидкое и при затвердевании жидкости. Правда, вода является исключением из этого правила, её плотность при затвердевании уменьшается.

Для различных природных объектов плотность меняется в очень широком диапазоне. Самую низкую плотность имеет межгалактическая среда (с ~ 10 ?33 кг/м?) [ источник не указан 534 дня ] . Плотность межзвёздной среды порядка 10 ?21 кг/м?. Средняя плотность Солнца примерно в 1,5 раза выше плотности воды, равной 1000 кг/м?, а средняя плотность Земли равна 5520 кг/м?. Наибольшую плотность среди металлов имеет осмий (22 500 кг/м?), а плотность нейтронных звёзд имеет порядок 10 17 ?10 18 кг/м?.

Плотности некоторых газов

Плотность газов и паров (0° С, 101325 Па), кг/м?

Водяной пар (100°С)

Плотности некоторых жидкостей

Плотность жидкостей, г/см?

Жидкий водород (?253°C)

Плотность некоторых пород древесины

Плотность древесины, г/см?

Измерение плотности

Для измерения плотности используются:

· Пикнометр -- прибор для измерения истинной плотности

· Ареометр (денсиметр, плотномер) -- измеритель плотности жидкостей.

· Бурик Качинского и бур Зайдельмана -- приборы для измерения плотности почвы.

Плотность с (ро) - это масса единицы объема.

Формула нахождения плотности

Плотность находится по формуле:

Для вычисления плотности газов можно пользоваться формулой:

где М -- молярная масса газа, Vm -- молярный объём (при нормальных условиях равен 22,4 л/моль).

В Международной системе единиц (СИ) основная единица плотности - кг/м 3 , остальные (г/мл, кг/л, 1 т/м 3 ) - производные.

При 4 °С масса 1 мл воды равна 1 г, 1 л - 1 кг, 1 м 3 - 1 т.Следовательно, с(Н2О) = 1 г/мл = 1 кг/л = 1 т/м 3 (при 4 °С).

Равные объемы веществ с разной плотностью имеют разные массы. Например:

Соответственно, равные массы веществ, отличающихся плотностью, занимают разные объемы:

Паскаль Блез

фр. Blaise Pascal

Блез Паскаль (автор Филипп де Шампень)

математик, философ, литератор, физик

19 июня 1623(1623-06-19)

плотность пикнометр ареометр физик

Блез Паскаль родился в Клермоне 19 июня 1623 года. Вся семья Паскалей отличалась выдающимися способностями. Что касается самого Блеза, он с раннего детства обнаруживал признаки необыкновенного умственного развития.

В 1631 году, когда маленькому Паскалю было восемь лет, его отец переселился со всеми детьми в Париж, продав по тогдашнему обычаю свою должность и вложив значительную часть своего небольшого капитала в Отель де-Вилль.

Имея много свободного времени, Этьен Паскаль специально занялся умственным воспитанием сына. Он сам много занимался математикой и любил собирать у себя в доме математиков. Раз в неделю математики, примыкавшие к кружку Этьена Паскаля, собирались, чтобы читать сочинения, предлагать разные вопросы и задачи. С шестнадцатилетнего возраста Блез стал принимать деятельное участие в этих занятиях. В это же время Паскаль написал трактат о конических сечениях, то есть о кривых линиях, получающихся при пересечении конуса плоскостью, - таковы эллипс, парабола и гипербола.

Со времени изобретения Паскалем арифметической машины имя его стало известным не только во Франции, но и за ее пределами.

В 1643 году один из учеников Галилея, Торричелли предпринял опыты по подъему различных жидкостей в трубках и насосах. Торричелли вывел, что причиною подъема как воды, так и ртути является вес столба воздуха, давящего на открытую поверхность жидкости. Таким образом, был изобретен барометр и явилось очевидное доказательство весомости воздуха.

Опыты Торричелли, убедили молодого ученого в том, что есть возможность получить пустоту, если не абсолютную, то, по крайней мере, такую, в которой нет ни воздуха, ни паров воды. Зная, что воздух имеет вес, Паскаль решил объяснить явления, наблюдаемые в насосах и в трубках, действием этого веса.

15 ноября 1647 года Паскаль провел первый эксперимент. По мере подъема на гору Пюи-де-Дом ртуть понижалась в трубке. Этот и другие опыты окончательно убедили Паскаля в том, что явление подъема жидкостей в насосах и трубках обусловлено весом воздуха. Паскаль показал, что давление жидкости распространяется во все стороны равномерно и что из этого свойства жидкостей вытекают почти все остальные их механические свойства; затем - что и давление воздуха по способу своего распространения совершенно подобно давлению воды.

После смерти отца Паскаль, став неограниченным хозяином своего состояния, в течение некоторого времени жил светской жизнью.

Светские развлечения способствовали одному из математических открытий Паскаля. Некто кавалер де Мере, хороший знакомый ученого, страстно любил играть в кости. Он и поставил перед Паскалем и другими математиками две задачи. Первая: как узнать, сколько раз надо метать две кости в надежде получить наибольшее число очков, то есть двенадцать; другая: как распределить выигрыш между двумя игроками в случае неоконченной партии.

Первая задача сравнительно легка: надо определить, сколько может быть различных сочетаний очков; лишь одно из этих сочетаний благоприятно событию, все остальные неблагоприятны, и вероятность вычисляется очень просто. Вторая задача значительно труднее. Обе были решены одновременно в Тулузе математиком Ферма и в Париже Паскалем. По этому поводу в 1654 году между Паскалем и Ферма завязалась переписка, и, не будучи знакомы лично, они стали лучшими друзьями. Ферма решил обе задачи посредством придуманной им теории сочетаний. Решение Паскаля было значительно проще: он исходил из чисто арифметических соображений.

Работы над теорией вероятностей привели Паскаля к другому замечательному математическому открытию, он составил так называемый арифметический треугольник, позволяющий заменять многие весьма сложные алгебраические вычисления простейшими арифметическими действиями.

Подобные документы

Способы измерения плотности вещества. Единицы ее измерения, обозначение и формула. Плотность как физическая величина, которая равна отношению массы тела к его объему. Классифицирующий признак плотности. Ее измерение с помощью ареометра и плотметра.

презентация [307,3 K], добавлен 21.11.2011

Решение экспериментальных задач по определению плотности твердых веществ и растворов, с различной массовой долей растворенного вещества. Измерение плотности веществ, оценка границ погрешностей. Установление зависимости плотности растворов от концентрации.

курсовая работа [922,0 K], добавлен 17.01.2014

Теории и методики измерения плотности горных пород способом гидростатического взвешивании. Метрологический контроль измерительного прибора. Плотность пород в естественном залегании. Определение плотности песчаника, гипса, аргиллита, гранита, алевролита.

лабораторная работа [401,7 K], добавлен 28.02.2016

Исходные данные и расчетные формулы для определения плотности твердых тел правильной формы. Средства измерений, их характеристики. Оценка границы относительной, абсолютной погрешностей результата измерения плотности по причине неровности поверхности тела.

лабораторная работа [26,9 K], добавлен 30.12.2010

Зависимость оптической плотности от концентрации вещества в растворе и толщины поглощающего слоя. Ознакомление с устройством и принципом работы спектрального прибора, его назначение; определение плотности и концентрации вещества на спектрофотометре.

лабораторная работа [34,1 K], добавлен 05.05.2011

Свойства объектов и методы измерения электронной плотности по упругому рассеянию. Экспериментальные методы исследования комптоновского рассеяния. Атомно-рассеивающий фактор, распределение радиальной электронной плотности в литии по комптоновским профилям.

дипломная работа [1,3 M], добавлен 06.06.2011

Исследование устройства и принципов работы приборов для измерения влажности и скорости движения воздуха, плотности жидкостей. Абсолютная и относительная влажность воздуха, их отличительные особенности. Оценка преимуществ и недостатков гигрометра.

лабораторная работа [232,2 K], добавлен 09.05.2011


Для того, чтобы узнать состав любых газообразных веществ необходимо уметь оперировать такими понятиями, как молярный объем, молярная масса и плотность вещества. В данной статье рассмотрим, что такое молярный объем, и как его вычислить?

Количество вещества

Количественные расчеты проводят с целью, чтобы в реальности осуществить тот или иной процесс или узнать состав и строение определенного вещества. Эти расчеты неудобно производить с абсолютными значениями массы атомов или молекул из-за того, что они очень малы. Относительные атомные массы также в большинстве случаев невозможно использовать, так как они не связаны с общепринятыми мерами массы или объема вещества. Поэтому введено понятие количество вещества, которое обозначается греческой буквой v (ню) или n. Количество вещества пропорционально числу содержащихся в веществе структурных единиц (молекул, атомных частиц).

моль – это такое количество вещества, которое содержит столько же структурных единиц, сколько атомов содержится в 12 г изотопа углерода.

Масса 1 атома равна 12 а. е. м., поэтому число атомов в 12 г изотопа углерода равно:

Физическая величина Na называется постоянной Авогадро. Один моль любого вещества содержит 6,02*10 в степени 23 частиц.

Закон Авогадро

Рис. 1. Закон Авогадро.

Молярный объем газа

Молярный объем газа – это отношение объема вещества к количеству этого вещества. Эту величину вычисляют при делении молярной массы вещества на его плотность по следующей формуле:

где Vm – молярный объем, М – молярная масса, а p – плотность вещества.


Рис. 2. Молярный объем формула.

В международной системе Си измерение молярного объема газообразных веществ осуществляется в кубических метрах на моль (м 3 /моль)

Молярный объем газообразных веществ отличается от веществ, находящихся в жидком и твердом состоянии тем, что газообразный элемент количеством 1 моль всегда занимает одинаковый объем (если соблюдены одинаковые параметры).

Объем газа зависит от температуры и давления, поэтому при расчетах следует брать объем газа при нормальных условиях. Нормальными условиями считается температура 0 градусов и давление 101,325 кПа. Молярный объем 1 моля газа при нормальных условиях всегда одинаков и равен 22,41 дм 3 /моль. Этот объем называется молярным объемом идеального газа. То есть, в 1 моле любого газа (кислород, водород, воздух) объем равен 22,41 дм 3 /м.

Молярный объем газа при нормальных условиях

Рис. 3. Молярный объем газа при нормальных условиях.

В следующей таблице представлен объем некоторых газов:

Газ Молярный объем, л
H2 22,432
O2 22,391
Cl2 22,022
CO2 22,263
NH3 22,065
SO2 21,888
Идеальный 22,41383

Что мы узнали?

Молярный объем газа, изучаемый по химии (8 класс) наряду с молярной массой и плотностью являются необходимыми величинами для определения состава того или иного химического вещества. Особенностью молярного газа является то, что в одном моле газа всегда содержится одинаковый объем. Этот объем называется молярным объемом газа.

Читайте также: