Перспективы развития мировой энергетики реферат

Обновлено: 02.07.2024

Содержание

Введение
История развития энергетики
Энергия и энергетика
История развития энергетики как науки
Общая энергетика
История развития вторичной энергетики
Электроэнергетика как самостоятельная отрасль
Развитие энергетики в России
Современные проблемы энергетики
Ситуация в мире
Пути решения
Перспективы развития мировой энергетики
Заключение
Список литературы

Вложенные файлы: 1 файл

реферат Энергетика. история и перспекивы развития.doc

В 1876 г. получила признание свеча П.Н. Яблочкова, состоящую из двух угольных стержней, расположенных вертикально и параллельно друг другу, между которыми проложена изоляция из каолина (глины). в 1872 г. А.Н. Лодыгин предложил вместо угольных электродов в свече Яблочкова использовать нить накаливания (сначала угольную, а затем из тугоплавкого металла), которая при протекании электрического тока ярко светилась.

Это было безопасное для людей, яркое и дешевое освещение посредством электричества, как считал Лодыгин.

Томас Эдисон усовершенствовал лампу накаливания Лодыгина (откачализ баллона лампочки воздух, придумал цоколь с винтовой нарезкой и т. п.); заводы Эдисона стали выпускать лампы накаливания миллионами штук во всем мире.

Еще очень много известных ученых внесли неоценимый вклад в развитие электричества, в практическое применение в народном хозяйстве и промышленности. Со временем вольтов появились другие источники электричества: гальванические, термоэлементы, динамо-машины, электрогенераторы, аккумуляторы.

Кроме постоянного тока появился однофазный переменный ток, получавшийся от электромагнитных генераторов, а позже – и трех-фазный ток (М.О. Доливо-Добровольский).

Ученые конца XIX в. сделали бесчисленное множество открытий в области применения электричества, что послужило в дальнейшем для развития электроэнергетики как самостоятельной отрасли.

Электрическая энергия с начала XX в. прочно вошла в промышленное производство, сначала в виде группового, а затем индивидуального электропривода, который и осуществил реконструкцию всего силового хозяйства машинной индустрии начала XX в.

С развитием отрасли одновременно стала развиваться и наука электротехника, так как с использованием электрического тока в промышленности, заводам и фабрикам требовались квалифицированные специалисты по работе с электрическим током (потому как является опасным производством на любых этапах деятельности, даже в быту).

В России Энергетическое и электротехническое образование (это система подготовки специалистов по энергетике — тепло-, гидро-, электроэнергетике и энергомашиностроению для различных отраслей народного хозяйства, а также по электротехнике и другим видам техники, занимающимся производством, преобразованием, передачей, распределением и потреблением энергии в различных ее формах) стало развиваться с середины 19 в., когда в Петербургском технологическом институте и Горном институте было введено изучение термодинамики, паровых машин и паровых котлов.

В связи с развитием энергетики за годы Советской власти сформировались основные специализации: в теплоэнергетике - проектирование, монтаж и эксплуатация тепловых установок, теплофикационных сетей, теплового оборудования и др; в электроэнергетике и электротехнике - проектирование, монтаж и эксплуатация тепловых электростанций, линий передачи электроэнергии в различных отраслях промышленности, транспорта и связи, электромашиностроение, электроаппаратостроение (в том числе ионная и рентгеновская аппаратура, осветительные устройства) и др.; в гидроэнергетике - проектирование, строительство и эксплуатация гидротехнических сооружений, гидроэлектростанций и передаточных устройств.

В настоящее время в группу специальностей Энергетика входят: Теплоэнергетика, Электроэнергетика, Ядерные физика и технологии, Техническая физика, Энергомашиностроение, Электротехника, электромеханика и электротехнологии.

Человечество по мере своего развития все больше и больше нуждается в энергетических ресурсах, электрическая и тепловая энергия практически неотделимы от быта и производственной деятельности человека. В течение следующих десятилетий ожидается значительное увеличение энергопотребления, связанное с развитием экономики и приростом населения. Это приведет к росту давления на систему энергоснабжения и потребует повышенного внимания к эффективности использования энергии. Это проблемы современной энергетики, которые надо решать прямо сейчас. Доступность энергоресурсов является ключевым фактором для развития экономики и способствует улучшению качества жизни.

Рост мировых экономик и увеличение численности населения выступают в качестве основной движущей силы непрерывного роста энергопотребления.

2.1 Ситуация в мире

Несмотря на то, что количество автомобилей в Китае за 2000¬2006 гг. увеличилось более чем в 2 раза, один автомобиль там приходится на 40 человек, в то время как в США данный показатель равен одному автомобилю на двух человек. Исходя из этого, можно с уверенностью прогнозировать дальнейший стремительный рост продаж автомобилей и объемов потребления топлива в Китае. Ускоряющиеся темпы потребления в сочетании с большой численностью населения, которая продолжает расти, позволяют сделать вывод о том, что новая волна роста энергопотребления в значительной степени придется на развивающиеся страны.

Человек только начинает осознавать ограниченность ископаемых ресурсов, в условиях необходимости рационального их использования. Нефти с 1960 по 1970 год было израсходовано столько же, сколько за предыдущие 100 лет. К 2030 году доля нефти как энергоносителя сократится до 16 %. Между тем из разведанных и эксплуатируемых скважин извлекалось до недавнего времени всего 30 % нефти. Уголь может снова стать важнейшим источником энергии. Другой альтернативой всё чаще называется - атомная энергия.

В настоящее время основными источниками энергии являются углеводороды и урановые руды. Их мировые запасы примерно уже известны, и, даже по самым оптимистическим оценкам, вряд ли разведка даст увеличение их объемов в разы. Поскольку известен и уровень потребления этих ресурсов, то уже подсчитан и срок, после которого они будут полностью исчерпаны. Очевидно, что никакой режим экономии невозобновляемых источников энергии не в состоянии исключить того момента в будущем, когда они будут полностью исчерпаны. Ситуация усугубляется при этом еще несколькими факторами.

Во-первых, экспоненциальным ростом промышленного производства. Так, в прошлом столетии совокупный объем промышленного производства в мире увеличивался в среднем каждые 20 лет. Если эта тенденция сохранится в ХХI в., то через 20 лет потребность в энергоресурсах вырастет в 2 раза, через 40 лет - в 4, к концу ХХI в. - в 32, к концу ХХII в. - в 1024 раза. А поскольку даже при сохранении потребления ресурсов на сегодняшнем уровне их хватит не более чем на несколько десятков лет, то прирост промышленности катастрофически ускоряет приближение всемирной ресурсной катастрофы.

Однако главная проблема современной энергетики в настоящий момент — не только истощение минеральных ресурсов, а угрожающая экологическая обстановка.

Самые острые экологические проблемы (изменение климата, кислотные осадки, всеобщее загрязнение среды и другие) прямо или косвенно связаны с производством, либо с использованием энергии. Энергетике принадлежит первенство не только в химическом, но и в других видах загрязнения: тепловом, аэрозольном, электромагнитном, радиоактивном. Поэтому не будет преувеличением сказать, что от решения энергетических проблем зависит возможность решения основных экологических проблем.

Ключевой проблемой экономики России является необходимость повышения энергоэффективности. Удельная энергоемкость промышленного и сельскохозяйственного производства в 3,5 - 4,0 раза выше, чем в развитых странах мира. Это обусловлено тем, что энергетический сектор экономики сложился во второй половине прошлого века в условиях, совершенно отличных от современных. Решение проблемы – сложная, многофакторная задача от банальной экономии энергии до решения фундаментальных и прикладных научных проблем.

2.2 Пути решения

В условиях сложившейся односторонней ориентации экономики и энергетики на использование углеводородного сырья среди важнейших научных задач ближайшей перспективы, на мой взгляд, представляются следующие:

- разработка технологий атомной энергетики и реализация на этой основе современных высокоэффективных и безопасных реакторных установок и атомных электростанций нового поколения

- освоение водородных технологий и создание на этой основе систем производства, хранения и использования водорода как высокоэффективного топлива

- разработка новых технологий переработки и сжигания твердого топлива для получения энергии

- создание новых технологий использования нетрадиционных и возобновляемых источников электрической и тепловой энергии, создание химических источников тока.

Особое значение для качественного обновления энергетики имеют фундаментальные разработки в области высокотемпературной сверхпроводимости, позволяющие разрешить ряд важных проблем, таких как создание токоограничителей, накопителей электроэнергии, сооружение сверхпроводящих линий электропередачи для осуществления вводов электроэнергии в крупные города. Создание сверхпроводниковых накопителей энергии позволит повысить надежность и бесперебойность энергоснабжения при авариях в энергосистемах. Кроме того, электротехническое оборудование, выполненное с использованием сверхпроводимости (криогенные генераторы, кабели), позволит в 2 - 3 раза сократить потери при производстве и передаче электроэнергии. Фактически речь может идти о принципиально новой электроэнергетике.

Среди практических задач отрасли на ближайший период важнейшей является модернизация теплоэнергетики с созданием высокоэффективных парогазовых установок с комбинированной выработкой электрической и тепловой энергии с КПД не менее 50 – 55%.

В тоже время во многих странах мира ведутся работы по созданию интеллектуальных электрических сетей. Интеллектуальные сети (ИС) - это комплекс технических средств, которые в автоматическом режиме выявляют наиболее слабые и аварийно опасные участки сети, а затем изменяют характеристики и схему сети с целью предотвращения аварии и снижения потерь, автоматически балансирующая и самоконтролирующаяся энергетическая система, способная принимать энергию от любого источника (уголь, солнце, ветер) и преобразовывать ее в конечный продукт для потребителей (тепло, свет, теплую воду) при минимальном участии людей.

3 Перспективы развития мировой энергетики

По данным Международного института прикладного системного анализа (МИРЭС), потребление первичной энергии к 2030 г. по миру в целом составит приблизительно 24 млрд. т. у. т. в год, то есть возрастет вдвое по сравнению с уровнем 1988 г. Тенденция увеличения потребления первичной энергии составляет примерно 1,5 - 2 % в год.

Перспективы такого роста не могут не вызывать беспокойства, так как это связано с ухудшающейся экологической ситуацией.

Если сохранится современная энергетическая модель (использование углеродного топлива), то в качестве топлива начнут использовать: нефтеносные сланцы, битуминозные породы, тяжелую нефть.

Однако необходимость сокращения выбросов углекислого газа потребует использования безуглеродных источников первичной энергии.

Новая стратегия предусматривает использование водорода, который можно пол лучить из природного газа; энергии биомассы; солнечной энергии, среди способов ее использования наиболее перспективным является фотоэлектрический вариант; ядерного топлива: при условии обеспечения необходимого уровня безопасности.

Подводя итог, можно сказать, что в перспективе в системах энергоснабжения будут использоваться как традиционные, так и нетрадиционные виды энергии.

Энергетика, как никакая другая отрасль общемировой промышленности, требует на нынешнем этапе объединения усилий всего человечества для решения возникших проблем и определения стратегии развития. Главнейшая задача - предотвращение экологического кризиса. Поэтому развитие энергетики на недобавляющих энергию в биосферу Земли источниках не только необходимо, но и неизбежно.

По данным Международного института прикладного системного анализа (МИРЭС), потребление первичной энергии к 2030 г. по миру в целом составит приблизительно 24 млрд. т. у. т. в год, то есть возрастет вдвое по сравнению с уровнем 1988 г. Тенденция увеличения потребления первичной энергии составляет примерно 1,5 - 2 % в год.

Перспективы такого роста не могут не вызывать беспокойства, так как это связано с ухудшающейся экологической ситуацией.

Если сохранится современная энергетическая модель (использование углеродного топлива), то в качестве топлива начнут использовать: нефтеносные сланцы, битуминозные породы, тяжелую нефть.

Однако необходимость сокращения выбросов углекислого газа потребует использования безуглеродных источников первичной энергии.

Новая стратегия предусматривает использование водорода, который можно пол лучить из природного газа; энергии биомассы; солнечной энергии, среди способов ее использования наиболее перспективным является фотоэлектрический вариант; ядерного топлива: при условии обеспечения необходимого уровня безопасности.

Подводя итог, можно сказать, что в перспективе в системах энергоснабжения будут использоваться как традиционные, так и нетрадиционные виды энергии.

Энергетика, как никакая другая отрасль общемировой промышленности, требует на нынешнем этапе объединения усилий всего человечества для решения возникших проблем и определения стратегии развития. Главнейшая задача - предотвращение экологического кризиса. Поэтому развитие энергетики на недобавляющих энергию в биосферу Земли источниках не только необходимо, но и неизбежно.

Эра ядерных грез закончена, а существующие и строящиеся АЭС должны обеспечиваться твердой гарантией безопасности. Безотлагательного решения требует проблема захоронения радиоактивных отходов.

По данным МАГАТЭ, в конце 1997 г. во всем мире работало 437 энергетических реакторов - на пять меньше, чем в конце 1996 г. Однако в результате вывода из эксплуатации старых и небольших АЭС и ввода в строй новых и больших реакторных блоков суммарная мощность повысилась. Общее количество ядерных блоков в стадии строительства осталось на том же уровне - 36. Наибольшую долю ядерной энергетики в суммарном энергопроизводстве имеют Литва - 91,5 %, Франция - 78,2 %, Бельгия - 60,1 %, Украина - 46,8 %, Швеция - 46,2 %, Болгария - 45,4 %, Словакия – 44 %, Швейцария - 40,6 %, Словения и Венгрия - 40 %. АЭС обеспечивают примерно 17 % общемирового производства электроэнергии.

Современные концепции безопасности АЭС основаны на трех принципах: управления, глубокоэшелонированной защиты и инженерно технических средств безопасности. Ведущими энергетическими корпорациями и фирмами индустриальных стран разрабатывается более 20 проектов АЭС нового поколения, радикально отличающихся не только по мощности и типу реактора, но и по технологическим, схемным и конструктивным решениям.

По срокам коммерческой реализации и степени самозащищенности АЭС условно делят на три поколения. Проекты АЭС нового поколения основаны на использовании освоенных и проверенных в эксплуатации технологий и конструкций, имеют активные и пассивные системы безопасности, что позволяет снизить вероятность тяжелых аварий и уменьшить на 20 % капиталовложения и себестоимость электроэнергии.

Если говорить об оценке эффективности ввода ядерных энергоисточников в Беларуси, то необходимо отметить следующее.

Различия в стоимости строительства АЭС в разных странах мира нельзя назвать незначительными. Это связано с курсовой разницей валют, стоимостью рабочей силы, уровнем сервиса и ценой на стройматериалы. Основным параметром, определяющим базовую стоимость строительства, являются мощность блоков и их количество на одной станции (уменьшаются затраты на создание инфраструктуры, проектные и изыскательские работы). При оценке эффективности ввода ядерных источников учитываются эксплуатационные затраты, стоимость топливного цикла для ядерных реакторов, прогноз потребности в электроэнергии, прогноз цен на топливо, а также различные сценарии развития системы генерирующих источников.

По данным Института проблем энергетики Национальной Академии наук Республики Беларусь, капитальные затраты на строительство АЭС мощностью 2560 МВт из четырех блоков по 640 МВт составляют 4763,6 млн. дол. США, общий срок строительства АЭС - 19 лет, средние затраты - порядка 250 млн. дол. США в год.

По заключению Института проблем энергетики, развитие атомной энергетики в Беларуси позволит сократить затраты на импорт топливных ресурсов и улучшить баланс внешней торговли. В настоящее время закупки энергоносителей и энергии достигают около 60 % от всего объема импорта и в абсолютном исчислении составляют 1,5 - 1,7 млрд. дол. США, что превышает расходную часть всего государственного бюджета страны. Критики идеи необходимости строительства АЭС отмечают, в частности, что энергетическая значимость АЭС с установленной мощностью 2,4 млн. кВт не превышает 4,5 % энергопотребности страны и вовсе не составляет 30 %, о которых заявляют сторонники строительства АЭС в Беларуси.

Сам по себе факт внушительной доли ядерной энергетики в развитых западных странах сторонники строительства АЭС рассматривают как прямое доказательство перспективности такого пути. Противники строительства АЭС напоминают, что при этом умалчивается тот факт, что в настоящее время созданы большие мощности по производству ядерных реакторов, которые длительное время остаются незагруженными. Умалчиваются также и сложные проблемы захоронения ядерных отходов. А ведь количество слабо- и среднеактивных отходов измеряется тысячами кубометров в год.

Противники строительства АЭС в Беларуси полагают, что теоретические выкладки по поводу прочности и надежности во многом необоснованны. Через определенное время оборудование приходит в негодность и возникает проблема его ликвидации и уничтожения отработанных элементов. Например, средний срок остановки 20 реакторов в разных районах США составил около 13 лет.

Учитывая сложную экономическую ситуацию в нашей стране, необходимо прийти к выводу, что в течение ближайших лет проблема строительства АЭС или использования других способов выработки электроэнергии все равно останется.

Развитая традиционная энергетика также опасна для окружающей среды при существующих технологиях очистки. Экологически неприемлемы крупные и централизованные системы электроснабжения. Каких бы затрат не требовало приведение технологий к экологически допустимым, его необходимо осуществить.

Важнейшая стратегия развития энергетики - это политика энергосбережения. Особенно актуальна эта проблема для стран СНГ и Восточной Европы. Для них в мае 1990 г. представители стран, входящих в Европейскую экономическую концепцию ООН, разработали программу компании "Энергосбережение - 2000", предусматривающую расширение контактов, установление информационного обмена, определение общемировых стандартов, знакомство с эффективными технологиями, демонстрацию передового опыта, отбор новинок.

Исследованиями МИРЭС установлено, что увеличение использования нетрадиционных и возобновляемых источников энергии до 2020 г. может достигнуть только 12 % от мирового потребления традиционной энергетики.

Дальнейший прогресс в создании надежных, технически совершенных, экономичных и простых в эксплуатации конструкций энергоустановок на базе нетрадиционных возобновляемых источников энергии позволит существенно решить и основную проблему - снизить удельную стоимость вырабатываемой энергии. С этой точки зрения интересны прогнозные данные ряда зарубежных специалистов, приведенные в таблице 1.

Таблица 1 Стоимость электроэнергии, производимой на основе использования различных видов топлива и НВИЭ за рубежом, дол. США / кВт-ч

Уровень развития современного общества во многом определяется производством и потреблением энергии. Энергия - источник благосостояния. Многие виды трудовой деятельности основаны на потреблении энергии. Потребности людей постоянно растут, потребителей энергии становится все больше, все это приводит к необходимости увеличения объемов производимой энергии. Структура мирового энергохозяйства к сегодняшнему дню сложилась таким образом, что четыре из каждых пяти произведенных киловатт электроэнергии получаются в принципе тем же способом, которым пользовался первобытный человек для согревания, т. е. при сжигании топлива или при использовании запасенной в нем химической энергии, преобразовании ее в электрическую на тепловых электростанциях.

Оглавление

Введение……………………………………………………………………..….……3
Глава 1. Характеристика мировой энергетики. Мировое производство и потребление электроэнергии………………………………………..……..….…….4
Глава 2. Экономико-географические особенности размещения топливно-энергетической промышленности.
2.1 Производство и потребление энергии по регионам. Основные экспортно-импортные потоки…………………………………………………….……….…. 6
2.2 Альтернативные источники энергии…………………………….……….…. 8
2.3 Современное состояние энергетики…………………………………………10
Глава 3. Проблемы развития энергетики………………………………….…..…11
Глава 4. Перспективы развития мировой энергетики………………………..…..13
Заключение………………………………………………………………………….16
Список используемой литературы…………………………

Файлы: 1 файл

реферат по энерго - копия.docx

по дисциплине: Основы энергосбережения

на тему: Развитие мировой энергетики

Глава 1. Характеристика мировой энергетики. Мировое производство и потребление электроэнергии………………………………………. .……..….…….4

Глава 2. Экономико-географические особенности размещения топливно-энергетической промышленности.

2.1 Производство и потребление энергии по регионам. Основные экспортно-импортные потоки………… ………………………………………….……….…. 6

2.2 Альтернативные источники энергии…………………………….……….…. 8

2.3 Современное состояние энергетики…………………………………………10

Глава 3. Проблемы развития энергетики………………………………….…..…11

Глава 4. Перспективы развития мировой энергетики………………………..…..13

Список используемой литературы……………………………………………….. .17

Согласно современным представлениям энергия это общая количественная мера различных форм движения материи. Слово энергия в переводе с греческого означает действие, деятельность. Существуют качественно разные физические формы движения материи, способные взаимно превращаться. Энергия характеризует способность материальных объектов совершать работу, а работа производится при действии на объект физической силы. Значит, работа это энергия в действии.

Актуальность работы обусловлена тем, что энергоресурсы имеют важное значение для улучшения качества жизни и расширения возможностей, открывающихся перед гражданами стран мира - как развитых, так и развивающихся.

Цель работы – рассказать о развитии мировой энергетики и указать на основные проблемы, связанные с ее обеспечением.

Уровень развития современного общества во многом определяется производством и потреблением энергии. Энергия - источник благосостояния. Многие виды трудовой деятельности основаны на потреблении энергии. Потребности людей постоянно растут, потребителей энергии становится все больше, все это приводит к необходимости увеличения объемов производимой энергии. Структура мирового энергохозяйства к сегодняшнему дню сложилась таким образом, что четыре из каждых пяти произведенных киловатт электроэнергии получаются в принципе тем же способом, которым пользовался первобытный человек для согревания, т. е. при сжигании топлива или при использовании запасенной в нем химической энергии, преобразовании ее в электрическую на тепловых электростанциях.

Своими задачами я вижу охарактеризовать мировую энергетику,рассказать о мировом потреблении электороэнергии, описать перспективы развития мировой энергетики.

Глава 1. Характеристика мировой энергетики. Мировое производство и потребление электроэнергии

Электроэнергетика является одной из наиболее быстро развивающихся отраслей народного хозяйства. Связано это с тем, что уровень её развития является одним из решающих факторов успешного развития экономики в целом. Объясняется это тем, что на сегодняшний день электроэнергия – это наиболее универсальный вид энергии.

По сравнению с серединой прошлого столетия выработка электроэнергии увеличилась более чем в 15 раз и сейчас составляет приблизительно 14,5 млрд. кВ∙ч, причем это происходило вследствие роста потребления крупнейшими развивающимися странами, идущими по пути индустриализации. Так, за последние 5 лет энергопотребление в Китае выросло на 76%, Индии – на 31%, Бразилии – на 18%. В 2007 г. по сравнению с 2002 г. абсолютное энергопотребление снизилось в Германии – на 5,8%, в Великобритании – на 2,7%, Швейцарии – на 2,0,во Франции – на 0,6%. В то же время в США энергопотребление продолжало повышаться. В то же время в США энергопотребление продолжало повышаться. Сейчас они производят 4 млрд. кВ∙ч ежегодно. В Китае оно составляет 7,7% при ежегодной выработке 1,3 млрд. кВ∙ч, в Индии – 6,8%, в Бразилии – 6,1%.

По общей выработке электроэнергии регионы можно расположить таким образом: Северная Америка, Западная Европа, Азия, СНГ, где лидерство удерживает Россия с показателем 800 млн. кВ∙ч в год, Латинская Америка, Африка, Австралия.

В странах первой группы большая доля электроэнергии вырабатывается на ТЭС (работающих на угле, мазуте и природном газе). Сюда можно отнести США, большинство стран Западной Европы и Россию.

Во вторую группу входят страны, где почти вся электроэнергия вырабатывается на ТЭС. Это ЮАР, Китай, Польша, Австралия (использующая в основном уголь в качестве топлива) и Мексика, Нидерланды, Румыния (богатые нефтью и газом).

Третья группа образована странами, в которых велика или очень велика (до 99,5% — в Норвегии) доля ГЭС. Это Бразилия (около 80%) , Парагвай, Гондурас, Перу, Колумбия, Швеция, Албания, Австрия, Эфиопия, Кения, Габон, Мадагаскар, Новая Зеландия (около 90%). Но по абсолютным показателям производства энергии на ГЭС в мире лидируют Канада, США, Россия, Бразилия. Гидроэнергетика значительно расширяет свои мощности в развивающихся странах.

Четвертую группу составляют страны с высокой долей атомной энергии. Это Франция, Бельгия и Республика Корея. [4, с. 211]


В настоящее время темпы развития экономики выявляют основные проблемы развития мирового энергетического комплекса. Происходит постепенное завершение эры углеводородов, основные причины этого — дороговизна энергии, превышение темпов роста потребления электроэнергии над темпами ее выработки электроэнергии и постепенное исчерпание природных ресурсов.

Проблемой и сложностью исследования путей развития мировой энергетики является необходимость учитывать взаимное влияние трендов развития мировой экономики и мировой энергетики, технологических, ресурсных и экологических трендов, а также политических и социокультурных проблем. Особенно важной становится необходимость учитывать взаимное влияние энергетики и экономики. Для решения этой задачи наиболее целесообразным является применение сценарного подхода.

Наиболее распространенными вариантами развития событий на настоящем этапе являются следующие сценарии: инерционный (углеводородный) сценарий, стагнационный (возобновляемый) сценарий, инновационный (возобновляемо-атомный) сценарий. [1]

Инерционный сценарий предполагает продолжение постиндустриальной фазы и острый кризис после 2030 г. из-за достижения пределов роста индустриальной фазы. По данному сценарию будет происходить расширение индустриальной энергетики в развивающихся странах одновременно с медленным развитием постиндустриальной энергетики в развитых странах. В результате прогнозируется быстрый рост спроса на ископаемые источники энергии, рост разногласий между компаниями и государствами на этой почве, ухудшение экологической ситуации в целом.

Стагнационный сценарий предполагает тенденцию к развитию всех существующих альтернатив нефтепродуктам и двигателю внутреннего сгорания, основной предпосылкой чего является приобщение развивающихся стран к существующим технологиям с целью снижения энергоемкости процесса индустриализации. В результате основные изменения в мировой энергетике будут регулятивными. Сложится сложная система, регулирующая мировую энергетику и включающая в себя глобальные и локальные климатические соглашения, климатические налоговые и таможенные тарифы, технологические стандарты.

Инновационный сценарий предполагает преодоление пределов роста индустриальной фазы и переход к новой фазе к 2030 году. При реализации такого сценария прогнозируется формирование энергетики нового типа в развитых странах и в некоторых лидирующих развивающихся странах. Согласно данному сценарию, в атомной энергетике ожидается прорыв. К 2030 г. атомная энергетика может возрасти вдвое, а к 2050 г. — вчетверо по сравнению с уровнем 2011–2016 годов. В результате основные изменения в мировой энергетике будут технологическими, а регулятивные и геополитические факторы отступят на задний план. Данные изменения приведут к переходу энергетики к новому этапу — постиндустриальному. [1]

Согласно данным компании ВР, можно сделать вывод о том, что на данном этапе электроэнергия, выработка которой требует использование угля, природного газа или нефти, составляет свыше 80 % всей производимой энергии. Однако по мере исчерпания ресурсов появляются все более конкурентоспособные возобновляемые источники (ветровая, солнечная энергия и др.), и их доля в общем объеме выработки растет с каждым годом. [2]

Возобновляемые источники обладают несомненными преимуществами перед традиционными источниками энергии, поскольку в теории они способны решить глобальные энергетические проблемы, но на сегодняшний день они являются лишь небольшим дополнением к ископаемым видам топлива. Поэтому, на взгляд исследователя, в глобальной энергетике именно атомная энергетика является чрезвычайно перспективным направлением для развития. Ее развитие может способствовать переходу от традиционной ядерной энергетики к управляемому термоядерному синтезу, и если наука позволит осуществить этот переход, человечество выйдет на новый уровень своего развития.

Говоря об экономической целесообразности выработки атомной энергии, можно отметить, что далеко не все страны обладают возможностями использовать данный вид энергии, потому что сейчас атомные электростанции чрезвычайно дороги в эксплуатации. Существуют разногласия относительно рентабельности выработки атомной энергии, но ее несомненные преимущества перед другими видами энергии — устойчивость обеспечения базовой выработки, возможность вторичного использования топлива и отсутствие вредных выбросов в атмосферу — говорят о том, что в будущем конкурентоспособность атомной энергетики будет расти наряду с рентабельностью.

Решение проблемы рентабельности выработки атомной энергии можно найти в опыте Китая — многие построенные и еще строящиеся там атомные электростанции абсолютно идентичны, в отличие, к примеру, от отличающихся друг от друга атомных электростанций США. С экономической точки зрения, решением проблемы рентабельности является повышение эффективности затрат, возникающее при массовом производстве. Китай в последние годы значительно увеличивает долю затрат на НИОКР в ВВП страны, находясь по уровню затрат на НИОКР в процентном выражении наравне с развитыми странами, а в денежном превосходя большинство из них (рис. 1). Значительную часть расходов составляют расходы разработок энергетического сектора. [3]


Другие страны Азии также наращивают объемы выработки атомной энергии, в то время многие европейские страны и Япония стремятся к отказу от атомной энергетики в связи с экологическими угрозами, проблема которых особенно остро встала после аварии японского ядерного реактора на АЭС в 2011 году. Однако автор склонен согласиться с мнением ученых-физиков, в соответствии с которым при должном соблюдении техники безопасности польза от деятельности атомных станций для человечества значительна, в то время как риски возникновения чрезвычайных ситуаций минимальны при существующем подходе к обеспечению безопасности на атомных станциях.

Возвращаясь к трем наиболее перспективным сценариям развития мировой энергетики, следует отметить, что при реализации возобновляемого и возобновляемо-атомного сценариев Россия окажется в проигрышном положении из-за не учитывающей возникающие вызовы современной государственной энергетической политики. Необходима корректировка энергетической политики в соответствии с перспективой создания энергетики постиндустриального типа. Данные меры помогут избежать глубокого технологического отставания страны в будущем, поскольку запас исчерпаемых источников энергии ограничен и в мире в любом случае будут происходить изменения структуры энергобаланса.

Для решения проблем энергетического комплекса как в России, так и в мире необходимо проведение исследований, направленных на поиск альтернативы углеводородам. Перспективы развития мировой энергетики во многом зависят от финансирования научных исследований. В будущем на смену эре углеводородов должны прийти инновационные технологии, с которыми связываются основные перспективы энергетики (биотопливо, ветроэнергетика, геотермальная энергетика, гелиоэнергетика, термоядерная энергетика, водородная энергетика, приливная энергетика), и доля затрат на их разработку должна повышаться в общей доле затрат на НИОКР.

Подводя итоги, следует сказать, что при современном уровне развития науки наиболее предпочтительным будущим мировой энергетики является реализация инновационного сценария, при котором происходит развитие атомной энергетики, но в долгосрочной перспективе необходимо повышать расходы на НИОКР для поиска и разработки новых источников энергии.

Основные термины (генерируются автоматически): мировая энергетика, атомная энергетика, атомная энергия, доля затрат, инновационный сценарий, ВВП страны, индустриальная фаза, индустриальная энергетика, Россия, энергетическая революция.


Бог проявил щедрость,
когда подарил миру такого человека.

Светлане Плачковой посвящается

Издание посвящается жене, другу и соратнику, автору идеи, инициатору и организатору написания этих книг Светлане Григорьевне Плачковой, что явилось её последним вкладом в свою любимую отрасль – энергетику.

Книга 5. Электроэнергетика и охрана окружающей среды. Функционирование энергетики в современном мире

3.3. Перспективы развития мировой энергетики

Обеспечение устойчивого энергоснабжения является одним из основных стратегических приоритетов в XXI веке, важнейшим условием нормального функционирования всех сфер мировой экономики.

Анализ тенденций развития мировой энергетики показывает, что ключевыми факторами являются надежность энергоснабжения, энергобезопасность, энергоэффективность и экологическая гармонизация. При этом повышение энергоэффективности является стратегическим направлением снижения энергоемкости экономики.

Прогнозы развития мирового сообщества и энергетики в XXI веке в условиях жесткой политики энергосбережения, повышения эффективности использования энергоресурсов показывают неуклонный рост энергопотребления. Для развития мировой энергетики, создания эффективной системы глобальной энергетической безопасности требуются крупные инвестиционные ресурсы, составляющие по оценкам МЭА в период до 2030 г. более 1 трлн. дол. США ежегодно.

В условиях дальнейшего роста потребления энергии в мире ожидается, что его темпы будут меньшими, чем сегодня Мировая потребность в энергии возрастет к 2030 г. по разным оценкам на 45–60% по сравнению с 2007 г. и составит от 24 до 30 млрд. т.у.т.

Основной прирост в потребление энергии будет внесен странами, не входящими в ОЭСР. Он будет частично скомпенсирован уменьшением расхода энергии в развитых странах, что не приведет к заметному росту душевого потребления энергии в мире в целом.

Мировая структура потребления энергии будет подобна существующей и через 20–30 лет. Нефть, газ и уголь сохранят свое доминирующее значение, лишь частично уступив свои позиции возобновляемым источникам энергии. Ресурсы для удовлетворения растущего спроса во всем мире имеются в достаточном количестве, однако для обеспечения доступа к надежным источникам энергии потребуются крупные и своевременные капиталовложения. Будет наблюдаться постоянный рост объемов мировой торговли энергоресурсами, особенно нефтью и газом.

Одним из основных движущих мотивов развития энергетики в период 2030–2050 гг. явится предотвращение глобального экологического кризиса и изменений климата за счет планомерного снижения выбросов парниковых газов и других загрязняющих веществ, что потребует коренных качественных изменений в производстве энергии. Ключевыми направлениями решения данной задачи послужат инновационные технологии тепловой энергетики. Они позволят уменьшить потребление ископаемого топлива с одновременным уменьшением вредных выбросов. К наиболее перспективным направлениям развития тепловой энергетики относят развитие паротурбинных ТЭС на ультрасверхкритические параметры пара и создание электростанций комбинированного цикла с внутрицикловой газификацией угля.

В период после 2020 года широкое развитие получат промышленные технологии улавливания и захоронения в геологических формациях углекислого газа, который образуется на тепловых электростанциях и на крупных промышленных объектах. Наибольшее развитие получат при этом ТЭС комбинированного цикла с внутрицикловой газификацией и полным удалением продуктов горения. В сфере теплоснабжения усилится роль тепловых насосов.

Значительно возрастет роль электроэнергетики в мировом потреблении энергии. К 2030 г. общее производство электроэнергии в мире по сравнению с 2006 г. может вырасти до 60% и достигнуть 30000 млрд. кВт·ч.

В мировой электроэнергетике усилятся интеграционные процессы с дальнейшим объединением национальных энергосистем в крупные транснациональные энергообъединения с более тесной кооперацией, что позволит оптимизировать их работу, повысить надежность энергоснабжения.

Существенно возрастет роль атомной энергетики, в первую очередь в странах, не входящих в ОЭСР. К 2030 году установленная мощность ядерных реакторов мира возрастет на 60%. Значительное развитие получат легководяные реакторы – размножители на быстрых нейтронах.

К 2030 г. выработка электроэнергии на ГЭС увеличится в основном за счет развивающихся стран более, чем на 50% (в сравнении с 2006 г.) и может составить более 4500 млрд. кВт·ч.

В условиях дальнейшего развития объединенных энергосистем в основном за счет ввода крупных базисных ТЭС и АЭС возрастет значение ГЭС и ГАЭС как источников высокоманевренной мощности в регулировании суточных графиков нагрузок.

В период 2030 г. и в дальнейшем будут расти темпы использования нетрадиционных возобновляемых источников энергии. Наибольший их рост ожидается в странах ОЭСР. Доля возобновляемой энергетики (исключая крупные ГЭС) в общей структуре мирового потребления энергии в 2030 году достигнет 4%, а в производстве электроэнергии – более 20%. Наиболее существенно возрастет роль ветроэнергетики, солнечных электростанций и тепловых панелей. Существенно усилится роль биоэнергетики второго и третьего поколений.

Ключевую роль в успешном развитии энергетики, включая удовлетворение растущего спроса, повышение надежности энергоснабжения и улучшение состояния окружающей среды, будут играть инновационные технологии энергетики.

Читайте также: