Передача данных методы технические программные средства реферат

Обновлено: 04.07.2024

Компьютерная сеть представляет собой совокупность компьютеров, объединенных средствами передачи данных.

Основное назначение компьютерных сетей – обеспечение эффективного представления различных компьютерных услуг пользователям сети путем организации их доступа к ресурсам, распределенным в этой сети.

Принципы построения и функционирования аппаратного и программного обеспечения элементов сети определяются архитектурой компьютерной сети.

Архитектура– концепция, определяющая модель, структуру, выполняемые функции и взаимосвязь компонентов сложного объекта. Архитектура компьютерной сети определяет основные элементы сети; характер и топологию взаимодействия этих элементов; логическую, функциональную и физическую организацию технических, программных, организационных и информационных средств сети.

Рис. 14.1. Состав базовых компонентов компьютерной сети

Техническое обеспечение компьютерных сетей

Техническое обеспечение (hardware) – комплекс электронных, электрических и механических устройств, входящих в состав системы либо сети.

Техническое обеспечение включает компьютеры (ЭВМ) и логические устройства. К ним добавляются внешние устройства и диагностическая аппаратура. Вспомогательную, но при этом важную роль играют энергетическое оборудование, батареи и аккумуляторы. Для обеспечения безопасности данных используют аппараты шифрования информации.

Техническое обеспечение предназначено для поддержки работы программного обеспечения.

· персональный компьютер (ПК), называемый Рабочей станцией (РС или WS (Work Station));

· система передачи данных;

· периферийное оборудование сети.

Рис. 14.2. Техническое обеспечение компьютерных сетей

Рабочая станция

Рабочая станция (Work Station) – абонентская система, специализированная на решении определенных задач пользователя. Требования, предоставляемые к составу РС, определяются характеристиками решаемых в сети задач, принципами организации вычислительного процесса, используемой операционной системы и некоторыми другими факторами.

Сервер

В сетевой среде сервер выделен для выполнения конкретной задачи при поддержке других компьютеров в сети. Один сервер может выполнять множество необходимых задач, либо для конкретных задач выделяются отдельные серверы.

Термин “сервер” имеет два значения:

1. Элемент аппаратуры, предоставляющий совместно используемый сервис в сетевой среде.

2. Программный компонент, предоставляющий общий функциональный сервис другим программным компонентам.

Далее речь пойдет о сервере как об элементе аппаратуры – компьютере, играющем роль сервера.

Файловые серверы предоставляют средства, позволяющие пользователям сети совместно работать с файлами. В зависимости от типа предоставляемого файлового сервиса (передача файлов, хранение и перенос файлов, синхронизация файлов при обновлении, архивация файлов и т.д.) можно выделить:

Архивационные серверы – серверы, предназначенные для резервного копирования информации на автономные устройства хранения данных.

Серверы передачи данных – серверы, предназначенные для передачи файлов между клиентами сети.

Серверы хранения файлов – серверы, предназначенные для хранения редко используемых данных.

Также файловые серверы можно классифицировать по выполняемым ролям в компьютерной сети: выделенные и невыделенные файловые серверы.

Выделенный файл-сервер используется только как файл-сервер и не может выступать в качестве рабочей станции.

В отличие от выделенного файл-сервера невыделенный файл-серверможет совмещать в себе как функции файл-сервера, так и рабочей станции.

Серверы электронной почты – серверы, предназначенные для организации электронной почты.

Серверы службы каталогов – серверы, которые помогают пользователя находить, защищать и сохранять информацию в сети.

Требования повышенной производительности привели к созданию суперсерверов. Это серверы высокой производительности, выполняющие обработку данных для большого числа клиентов.

Существует классификация серверов, определяемая масштабом сети, в которой они используются: сервер рабочей группы, сервер отдела или сервер масштаба предприятия (корпоративный сервер). В зависимости от числа пользователей и характера решаемых задач требования к составу оборудования и программного обеспечения сервера, его надежности и производительности сильно варьируются.

Система передачи данных

Система передачи данных – это совокупность средств, служащих для передачи информации.

Технические средства передачи данных

Технические средства передачи данных представляют собой физические средства соединения для передачи данных между системами.

Сетевой адаптер позволяет подключить локальную машину в сеть (подключить компьютер к кабелю сети), то есть создать новую РС. Сетевой адаптер называют сетевым интерфейсом или сетевой картой.

Для объединения компьютеров в локальную сеть необходимы сетевые адаптеры для подключения компьютера к кабелю, разъемы, сам кабель и, возможно, концентратор для объединения компьютеров при использовании топологии “звезда”. Сетевой адаптер вставляют в материнскую плату компьютера. Он имеет один или два разъема для подключения кабеля.

Передачей сигналов называется способ пересылки данных в носителе (среде передачи). Среды передачи данных разбиваются на две большие категории:

- кабельная среда передачи данных;

- беспроводная среда передачи данных.

Кабельная среда передачи данных предполагает наличие определенных видов кабелей. Тремя распространенными типами кабеля являются:

Витая пара (Twisted Pair) содержит две или более пар скрученных медных проводников, заключенных в одну оболочку. Максимальная длина одного сегмента витой пары составляет около 100 метров при скорости передачи данных до 10 Мбит/сек.

Различают два типа витых пар: неэкранированную витую пару (UTP) и экранированную витую пару (STP).

Достоинством сети на базе витой пары является низкая стоимость оборудования и возможность использования имеющейся телефонной сети. Длина кабеля не может превышать 1000 метров при скорости передачи данных 1Мбит/сек.

Коаксиальный кабель(Coax) имеет два проводника с общей центральной осью. В центре такого кабеля проходит сплошной медный проводник или многожильный провод. Он заключен в пластиковый вспененный изолированный слой. Скорость передачи данных по коаксиальному кабелю – до 300 Мбит/сек. Недостатками данного кабеля являются неудобство работы с ним и довольно высокая стоимость такого провода

Волоконно-оптический кабель (Fiber Optic) производится из светопроводящего стекла или пластиковых волокон. Максимальная длина кабеля на основе оптоволокна существенно больше, чем для кабеля на основе витой пары или коаксиал. С другой стороны, цена оптоволоконных кабелей достаточно высока по сравнению с другими типами кабелей.

Беспроводная среда передачи данных применятся в случае, когда большое расстояние или препятствия затрудняют применение другого носителя. Существует два основных типа беспроводной среды передачи данных: микроволновое и инфракрасное излучение.

В свою очередь, микроволновые системы передачи данных можно разделить на наземные микроволновые коммуникации и спутниковые микроволновые коммуникации (передают сигнал между направленными параболическими антеннами). Стоимость наземных микроволновых систем относительно невысокая при использовании их на небольших расстояниях (сотни метров), а стоимость спутниковых микроволновых систем очень высокая (несколько миллионов долларов).

В инфракрасных средах передачи данных применяется свет. Стоимость зависит от вида используемого оборудования. Системы, действующие на большом расстоянии, где обычно применяются мощные лазеры, могут быть очень дорогими. В последнее время наиболее эффективным способом связи в сетях является беспроводная среда передачи данных.

Выбор сетевой среды передачи данных диктуется типом сети и выбранной топологией. Сегодня практически все сети проектируются на базе UTP и волоконно-оптических кабелей, коаксиальный кабель применяют лишь в исключительных случаях.

Модем (МОдулятор-ДЕМодулятор) – устройство прямого (модулятор) и обратного (демодулятор) преобразования сигналов к виду, принятому для использования в определенном канале связи, предназначенное для преобразования цифровых сигналов в аналоговые и обратно.

Чаще всего модемы используются для передачи информации от компьютера к компьютеру, управления удаленными компьютерами и локальными сетями, другим электронным оборудованием, при работе с удаленными терминалами в многопользовательских системах.

Программные средства передачи данных

Программные средства передачи данных – это комплекс программ, обеспечивающий передачу данных.

Программное обеспечение системы передачи данных можно разделить на программы общего назначения и специализированные программы. Программы общего назначения предназначены для организации передачи данных между пользователями и доступны любым пользователям системы, а программы специального назначения предназначены для ограниченного круга пользователей.

Конфликтные ситуации в медицинской практике: Наиболее ярким примером конфликта врача и пациента является.

* Данная работа не является научным трудом, не является выпускной квалификационной работой и представляет собой результат обработки, структурирования и форматирования собранной информации, предназначенной для использования в качестве источника материала при самостоятельной подготовки учебных работ.

СЕТИ ПЕРЕДАЧИ ДАННЫХ

Одновременно огромный скачок произошел в технике защиты передачи от помех. От простых способов обнаружения ошибок путем проверки перфоленты на четность числа пробитых в ней отверстий удалось перейти к высоконадежным кодам не только обнаруживающим, но и исправляющим ошибки. Самое же главное, была создана микроэлектронная база. Она позволила сделать сложную аппаратуру компактной и экономичной по расходу электроэнергии. Все это открыло возможности построения технических средств передачи с огромной скоростью и ознаменовало наступление новой эпохи развития документальной связи.

От первых систем передачи данных к системе Х.25
Общая структура системы передачи данных показана на рис. 1. Она включает канал передачи данных, на каждом конце которого находятся линейное устройство передачи данных (ЛУПД) и оконечное устройство передачи данных (ОУПД). В официальном издании рекомендаций бывшего МККТТ на английском языке приняты названия Data Circuit terminating Equipment (DCE) и Data Terminal Equipment (DTE). В русском переводе упомянутого документа использованы термины: аппаратура окончания канала данных (АКД) и оконечное оборудование данных (ООД), которые представляются не вполне удачными с точки зрения традиций русскоязычной научно-технической терминологии.

Именно поэтому автор предпочитает более понятные названия, приведенные в тексте. Необходимость введения таких понятий объясняется расширением номенклатуры абонентских устройств, существенно усложняющих задачи их согласования с линией связи.

Телетайпы и другие терминалы с клавиатурой, снабженные устройствами отображения или не имеющие таковых, системы дистанционного ввода заданий с устройствами считывания, печатающие устройства и сканеры, автоматизированные лабораторные установки с различными физическими датчиками, персональные или любые другие ЭВМ с разнообразными периферийными устройствами - все они охватываются понятием ОУПД при условии, что включены для работы в сеть связи.

Задачей ЛУПД является также преобразование сигналов. Если канал передачи данных аналоговый, то данные от терминала поступают на модем (модулятор-демодулятор). Если же канал передачи данных является цифровым, то двоичные данные преобразуются в стандартную форму сбалансированного кода для передачи по линии сигналами, не содержащими составляющей постоянного тока. Другой функцией ЛУПД является выполнение совместно с ОУПД процедур установления, поддержания и прекращения соединений между передающим и приемным концами.

Канал передачи данных - это любая передающая среда. По способу его работы различают симплексную, полудуплексную и дуплексную связь (рис. 2). При симплексной связи, показанной на рис. 2, а, данные всегда перемещаются в одном направлении, как показано сплошными линиями. При этом не исключается возможность передачи в противоположном направлении подтверждений со стороны приемного конца, которые показаны штриховыми линиями.

При полудуплексной связи (рис. 2, б) данные передаются в обоих направлениях, но попеременно. Термин "полудуплексная связь", означающий попеременное применение симплексной связи то в одном, то в другом направлении, не применялся в технике связи до его введения специалистами по вычислительной технике.

При дуплексной связи, как показано на рис. 2, в, данные передаются в обоих направлениях одновременно. При этом как при полудуплексной, так и при дуплексной связи также передаются подтверждения, показанные штриховыми линиями. Физически для симплексной или полудуплексной работы должна использоваться либо одна пара проводов, по которой сигналы передаются в обоих направлениях, либо две пары проводов, по каждой из которых сигналы передаются в одном направлении. Первый способ применяется, когда в тракте нет усилителей, и называется двухпроводным соединением. Второй способ применяется при наличии усилителей и называется четырехпроводным соединением. Дуплексная работа требует четырехпроводного соединения.

Если работа передающего и приемного концов тракта передачи данных полностью согласована во времени, то на приемном конце каждый переданный символ может быть выделен. В противном случае символы выделяются с помощью специальных разделительных знаков: стартового (пробела) и стопового (посылки). Первый способ называется синхронной передачей, второй - асинхронной. В терминалах передачи данных со скоростью до 1,2 кбит/с, как и в телетайпах, применяют асинхронную передачу. В терминалах же со скоростью передачи 2,4 кбит/с и выше применяется синхронная передача.

Широкое применение систем передачи данных началось в 1960-х гг. как по телефонным сетям общего пользования, так и по специализированным сетям. Главные недостатки систем передачи данных по телефонным сетям состоят в том, что для таких систем требуются модемы, а время установления соединения составляет по меньшей мере 15 с, а обычно - значительно больше. Кроме этого, качество передачи в этом случае зависит от характеристик телефонных каналов. Они могут меняться от соединения к соединению и подвергаться воздействию помех, в частности, от работы коммутационных приборов на телефонных станциях электромеханических систем. Некоторое улучшение качества передачи может быть достигнуто при использовании арендованных телефонных линий, но для них также требуются модемы. За выигрыш же возможного улучшения качества передачи приходится расплачиваться заботами о сокращении простоев линий. В ходе таких забот во многих странах разрабатывались и применялись схемы коллективного использования арендованных линий путем формирования групп абонентов, подключения терминалов в разных точках трассы абонентской линии, мультиплексирования, применения других методов.

На нижнем (физическом) уровне устанавливаются стандарты на механические разъемы и электрические характеристики линий связи, на передаваемые по ним цифровые сигналы, включая сигналы занятия линии и ее освобождения. Эти стандарты описаны в рекомендации Х.21 и за недостатком места здесь не рассматриваются. На втором (канальном) уровне определяются требования к средствам передачи информации по участку цифрового канала между двумя соседними узлами в виде блоков данных, называемых кадрами.

На третьем (сетевом) уровне определяются требования к системе передачи информации в виде блоков данных, называемых пакетами. Помимо полезной информации, пакеты несут управляющую информацию об адресах отправителя и получателя, порядковую нумерацию и некоторые другие служебные данные. Описанное разделение функций позволяет в одном физическом цифровом канале создать большое число логических (так называемых виртуальных) каналов. Они одновременно работают между разными пользователями, которые могут находиться в одном или разных пунктах.

Перед тем как перейти к рассмотрению особенностей второго и третьего уровней сети Х.25, уточним некоторые понятия. Будем называть блоком данных произвольный набор символов, предназначенных для передачи по каналу связи. В зависимости от состава (формата) блока, а также его назначения в конкретных случаях блокам могут быть присвоены разные названия. Например, блок данных, передаваемых по СПД общеканальной телефонной сигнализации № 7, называют сигнальной единицей. В этой статье рассматриваются блоки данных, называемые кадрами и пакетами, а в следующей беседе, посвященной технологии АТМ, будут рассматриваться блоки данных, называемые ячейками. Необходимость такого уточнения вызвана тем, что в литературе часто можно встретить термин "пакет" применительно к любому блоку данных, в том числе такому, который с точки зрения рекомендации Х.25 пакетом не является. Именно поэтому читателю, который встретит термин "пакет", можно лишь порекомендовать в каждом конкретном случае внимательно разбираться с тем, какой именно блок данных имеется в виду.

В описываемом стандарте, который подтвержден несколькими международными и национальными организациями и фактически признан во всем мире, рассматривается управление каналом связи по участкам с помощью протокола высокого уровня (по-английски HDLC - High-level Data Link Control). Русским эквивалентом термина HDLC может служить сокращение ВУК (высокоуровневое управление каналом). Обслуживаемый протокол рассчитан на широкий круг применений, в том числе и в локальных сетях для связи целой группы абонентских пунктов. Мы же ограничимся здесь лишь рассмотрением этого протокола на примере одной версии, а именно: версии связи двух равноправных пунктов LAPB (Link Access Procedures Balanced, т.е. процедур сбалансированного доступа к каналу).

Протокол ВУК управляет передачей информации в виде стандартных блоков, поступающих от сетевого уровня и называемых пакетами. На уровне канала к каждому пакету добавляется заголовок, обычно содержащий 48 двоичных разрядов. Пакет с этим дополнительным заголовком называется кадром. Термин "заголовок" носит условный характер, так как часть его разрядов помещается в голове кадра, а другая часть (проверочное поле для обнаружения ошибок) - в его хвосте. Коды, исправляющие ошибки, требуют внесения слишком большой избыточности и поэтому в обычных сетях передачи данных не применяются. Вместо этого используются коды, обнаруживающие ошибки. При обнаружении ошибки посылается автоматический запрос на повторную передачу кадра, а принятый ошибочный кадр сбрасывается. Длина кадра (следовательно, пакета) не регламентируется, так как оптимальная длина пакета зависит от вероятности ошибки в канале. С точки зрения накладных расходов, связанных с передачей служебных разрядов заголовка, длину пакета предпочтительнее сделать как можно больше, чтобы снизить процент содержания служебной информации. При этом, если вероятность ошибки невелика, запросы на повторение передачи будут редки, система будет работать эффективно. Если же вероятность ошибки будет большой, повторная передача потребуется чаще. Тогда большая часть накладных расходов придется не на заголовки, а на участившиеся повторные передачи. Именно поэтому выбор длины пакета (следовательно, кадра) предоставляется пользователю. Для обнаружения же начала и конца кадра в непрерывном потоке цифровой передачи используются специальные кодовые комбинации вида 01111110, называемые флагами (рис. 4, на котором показан формат кадра).

Применение флагов вносит определенные трудности в решение задачи обеспечения прозрачности цифровой передачи, т.е. ее независимости от характера передаваемых последовательностей. Действительно, если в передаваемом потоке полезной информации встретится последовательность из шести единиц, то она будет принята за границу между кадрами. Это вызовет нарушение работы канала. Во избежание подобных сбоев во всех случаях, когда в передаваемой последовательности встречаются пять "1", то после них автоматически вставляются "0". На приемном же конце после принятых пяти "1" следующий за ними "0" всегда сбрасывается. Такое техническое решение позволяет гарантировать прозрачность цифровой передачи. Рассматривая рис. 4, нетрудно обнаружить назначение всех 48 служебных разрядов заголовка кадра.

Как видно из изложенного, описанное поле нумерации кадров позволяет вести счет только до восьми (три двоичных разряда). Следовательно, при наличии семи неподтвержденных кадров передача должна быть приостановлена. Именно поэтому, например, в системах спутниковой связи, когда в пути могут находиться более семи кадров, поле их нумерации может быть расширено до 7 разрядов и, следовательно, счет увеличен до 128. Аналогичным образом стандарт допускает увеличение поля адресов и проверочной последовательности.

Протокол предусматривает различные процедуры передачи на уровне канала. Наибольшее распространение получила так называемая процедура передачи с возвращением на N кадров (N


Большинство жителей современных городов ежедневно передают либо получают какие-либо данные. Технологических методов передачи данных — огромное количество. При этом во многих сегментах информационных решений модернизация соответствующих каналов происходит невероятно динамичными темпами. На смену привычным технологиям, которые, казалось бы, вполне могут удовлетворять потребности человека, приходят новые, более совершенные.

Для высокоскоростной передачи данных предпочтительно создавать и использовать специальные каналы и сети передачи данных. В сетях передачи данных используют специальные программно-технические средства, обеспечивающие соединение сетей между собой и с абонентами, а также высокоскоростную, надежную и, как правило, защищенную передачу различной информации.

Всемирная система объединённых компьютерных сетей, построенная на базе протокола IP и маршрутизации IP-пакетов. Интернет образует глобальное информационное пространство, служит физической основой для Всемирной паутины (World Wide Web, WWW) и множества других систем передачи данных. Интернет состоит из многих тысяч корпоративных, научных, правительственных и домашних компьютерных сетей.

Витая пара — один из компонентов современных структурированных кабельных систем. С потребностью высокой и сверхвысокой четкости изображения, спектр передаваемого сигнала расширяется в область более высоких частот. Кроме того, все чаще возникает необходимость передачи аудио и видеосигнала на сравнительно большие расстояния.

Была разработана ассоциацией производителей и продавцов электронного оборудования и сервис-провайдеров (Multimedia over Coax Alliance) с целью создания и продвижения нового стандарта домашних сетей, работающих с использованием коаксиального кабеля. Членами альянса являются такие вендоры, как Cisco, Alcatel, Westell, Actiontec, Motorola и др. (MoCA) для передачи данных используется диапазон 875 – 1525 МГц. Данная технология позволяет подключать до 16 абонентских устройств к одному мастер-модему.

Технология EoC позволяет подключить абонента по коаксиальной линии без протяжки новых кабелей в существующей кабельной сети. В качестве наиболее привлекательного стандарта для использования на российских кабельных сетях был выбран стандарт HomePlugAV. Оборудование, работающее по данному стандарту, используется для передачи данных диапазон частот 2-30 МГц и может быть установлено на большинстве российских сетей без замены или перенастройки существующих усилителей обратного канала или строительства обходов усилителей.

Оптический кабель из воздуха

Беспроводные каналы связи

Недавно альянс крупнейших IT-компаний, в число которых входят Broadcom, Dell, Intel, LG Electronics, Microsoft, NEC, Nokia, Panasonic, Samsung и другие, опубликовал финальную версию спецификации беспроводной связи ближнего действия нового поколения. Основным преимуществом связи WiGig называется скорость передачи данных (до 7 гигабит в секунду), которая будет позволять бесплатно скачать конструктор jimm на телефон в считанные секунды.

В настоящее время ведется разработка стандарта 802.11n, сможет обеспечить скорость передачи данных до 320 Мбит/c. Центром беспроводной сети Wi-Fi является точка доступа (Access Point), которая, чаще всего, подключается к Ethernet-сети. После подключения вокруг точки доступа образуется зона Wi-Fi (хот-спот) радиусом от 50 до100 метров, в пределах которого можно использовать беспроводную сеть. Главными достоинствами Wi-Fi является свободный доступ пользователей, находящихся в зоне охвата, к сети Интернет, высокая скорость передачи данных и совместимость между устройствами Wi-Fi разных производителей.

Современная технология WiMAX

Технология WiMAX это стандарт беспроводной связи. Уже на первых этапах разработки и внедрения технологии стало очевидным, что информационное покрытие, основанное на архитектуре WiMAX, эффективно решит задачи соединения нескольких точек WI-FI друг с другом, станет прогрессивной альтернативой выделенным линиям и DSL-соединениям для обеспечения широкополосного доступа

Технология LTE (4G-сети)

Томские ученые разработали высокоскоростной цифровой спутниковый модем, не имеющий полнофункциональных аналогов в России. Пропускная способность одного канала устройства - до 1 Гбит/с. Модем, разработанный научно-производственной фирмой "Микран", — оборудование для наземной станции, которое позволяет вести двунаправленную связь со спутником. По информации разработчиков, в настоящее время скорости спутниковых модемов в России достигают 155 Мбит/с, зарубежных – до 314 Мбит/с. Также в мире есть наработки по модемам до 800 Мбит/с. Томский модем, реализованный по идеологии Software Defined Radio (SDR), стабильно работает даже при скоростях движения источника сигнала 45 километров в секунду.

Основное преимущество спутниковых каналов — всеохватность. Передача данных может быть осуществлена при их задействовании практически в любое место. Например, на территории США для абонентов сетей VSAT используются скорости передачи информации от 384 Кбит/с до 3,088 Мбит/с. А широкополосная спутниковая сеть Инмарсат BGAN обеспечивает высокоскоростную передачу данных до 492 кбит/с.

Это современная технология американской компании ArrayComm, обеспечивающая скоростную беспроводную связь. Она имеет низкую себестоимость транспортировки информации. В настоящее время технология iBurst поддерживается только беспроводными модемами в переносных компьютерах. Внедрённые в данный момент системы iBurst позволяют передавать данные со скоростью до 1 Мбит/с для каждого подписчика. В будущих версиях протокола ожидает увеличение этой скорости до 5 Мбит/с.

Это беспроводная технология, предназначенная для передачи данных на короткие - до 10 метров, расстояния, с высокой пропускной способностью (до 480 Мбит/с) и низкой потребляемой мощностью. При передаче данных по радиоканалам UWB используется технология мультиплексирования по ортогональным несущим частотам в сочетании с несколькими частотными диапазонами, что требует использования широких частотных диапазонов.

Самые необычные способы передачи информации

. Самая быстрая в мире беспроводная технология передачи данных - технология передачи при помощи световых вихрей. Ее изобрели и впервые использовали в 2011-2012 гг. ученые из университета Южной Калифорнии, Тель-авивского университета и Лаборатории НАСА по изучению реактивного движения. Данная технология позволяет ускорить беспроводную передачу информации до 2,5 Тбит/с (примерно 320 Гбайт/с).

Применение: пока что в построении беспроводных сетей эта технология не может быть использована, но зато она отлично подходит для оптоволоконных сетей.

Недостатки: данная технология находится пока на начальном этапе развития, поэтому передавать данные посредством световых вихрей можно лишь на очень небольшое расстояние. Ученые смогли стабильно передавать информацию только на расстояние в 1 метр.

Суть технологии: данные передаются беспроводным путем, при помощи нейтринных лучей. При этом частицы нейтрино разгоняют до скорости света (или что-то около того), и они проходят через любой материал, не взаимодействуя с ним.

Применение: в будущем, если технология получит развитие, нейтринные лучи можно будет использовать для передачи информации на сверхдальние расстояния и в труднодоступные места. Сегодня все беспроводные технологии требуют прямую видимость между передатчиком и приемником сигнала, а это не всегда возможно.

Недостатки: в настоящий момент оборудование для передачи данных посредством нейтринных лучей очень дорогое и громоздкое. Для этой технологии передачи информации нужен мощный ускоритель частиц, которых в мире всего несколько. Ученые, которые изучают передачу данных через нейтринные лучи, используют ускоритель частиц Fermilab (4 км в диаметре) и детектор частиц MINERvA (вес составляет 5 т).

. Самая необычная технология передачи данных - технология RedTacton, которая использует – кожу человека. Бывало ли с вами такое, что вы смотрели фильм про шпионов с их высокотехнологичными штучками и тоже хотели одним прикосновением руки получать информацию на свой телефон, обмениваться электронными визитками и любыми другими данными при помощи рукопожатия или распечатывать документы, просто проведя рукой по принтеру? Все это и еще многое другое может стать реальностью, если технология RedTacton получит развитие.

Суть технологии: технология построена на том, что каждый человек обладает электромагнитным полем, а его кожа может выступать каналом передачи сигнала между несколькими электронными устройствами. В основе технологии лежит использование электрооптических кристаллов, свойства которых изменяются под действием электромагнитного поля человека. А уже с кристаллов при помощи лазера считываются изменения и переводятся в удобоваримый формат. Причем система RedTacton может работать не только в обычных условиях, но и под водой, в вакууме, в космосе.

Применение: сегодня нам приходится часто пользоваться разными кабелями, переходниками и проч. для того, чтобы, например, подключить телефон к ноутбуку или принтер к ПК. Если технология RedTacton будет развиваться, то вскоре все эти провода станут ненужными. Достаточно будет взять в одну руку один гаджет, а другой рукой касаться второго устройства. И соединение между ними произойдет через наш кожный покров.

Уже сегодня большинство смартфонов оснащены экранами, которые работают от электромагнитных импульсов на кончиках наших пальцев. И это только первые шаги в популяризации данной технологии. Она может применяться в медицине, вооруженных силах, в быту, на производстве

Недостатки: технология пока не изучена достаточно, чтобы точно сказать, что она является абсолютно безвредной для организма человека. Внедрять RedTacton в массы можно будет только после того, как будет проведено множество опытов и исследований.

Опасности, прежде всего, могут подвергаться люди с повышенной чувствительностью и некоторыми медицинскими проблемами (особенно с сердечными заболеваниями).

Сегодня была представлена классификация систем передачи данных. Одной из важнейших функций информационных технологий являются технологии распространения и передачи информации. Сегодняшние реалии жизни требуют от человека быть в курсе всех последних событий, новостей финансового и политического мира, а также незамедлительно реагировать на любые изменения, происходящие в мире.

Целью моей работы является изучение возможностей, а также изучение достоинств и недостатков современных систем передачи данных.
Для достижения данной цели в работе решаются следующие задачи:
Изучение системы классификации систем передачи данных;
Изучение способа передачи данных по телефонной сети;
Исследование способа использования модема для передачи данных.

Содержание

Введение
1. Понятие систем передачи данных и их классификация
2. Способы передачи данных по телефонной линии
3. Использование модема для передачи данных.
Заключение
Список использованной литературы

Работа содержит 1 файл

Реферат по информатике.doc

РОССИЙСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

ТУРИЗМА И СЕРВИСА

Рябоконь Татьяна

1. Понятие систем передачи данных и их классификация

2. Способы передачи данных по телефонной линии

3. Использование модема для передачи данных.

Список использованной литературы

Сегодняшние реалии жизни требуют от человека быть в курсе всех последних событий, новостей финансового и политического мира, а также незамедлительно реагировать на любые изменения, происходящие в мире. Человек нуждается в постоянном обмене данными.

Целью моей работы является изучение возможностей, а также изучение достоинств и недостатков современных систем передачи данных.

Для достижения данной цели в работе решаются следующие задачи:

  • Изучение системы классификации систем передачи данных;
  • Изучение способа передачи данных по телефонной сети;
  • Исследование способа использования модема для передачи данных.

ПОНЯТИЕ СИСТЕМ ПЕРЕДАЧИ ДАННЫХ И ИХ КЛАССИФИКАЦИЯ

Значительная часть повседневных дел предприятий (организаций, др. субъектов хозяйствования и т.п.) обеспечивается, как правило, с помощью персональных компьютеров. При этом обрабатываются также данные, которые позже передаются партнерам в качестве предложения, заказа, накладной, счета-фактуры и т.п., по большей части в виде бумажного документа. Этот малоэффективный способ передачи информации можно заменить передачей данных прямо на носителе информации или телесвязью. Последние два способа относятся к электронной передаче данных (EDI - Electronic Data Intercnange).

Электронная передача данных представляет собой автоматизированное соединение информационных систем или разных организаций, или территориально удаленных друг от друга подразделений одного предприятия. Связь между ними обеспечивают коммуникационные системы при помощи средств техники связи. Эта деятельность обычно называется дистанционной передачей данных.

Дистанционная передача данных, основанная на использовании каналов связи, представляет собой передачу данных в виде электрических сигналов, которые могут быть непрерывными во времени и дискретными, т.е. носить прерывный во времени характер.

Дистанционная передача данных является предпосылкой для полной интеграции информационных систем не только в масштабе одной страны, но и в международном.

До сих пор широко распространенным способом реализации дистанционной передачи данных является применение сетей общего пользования, которые эксплуатируются почтой и обычно покрывают всю территорию страны.

Для коммуникации уже много лет используется тел етайп. Его скорость передачи низка, но преимуществом является то, что сеть телетайпа относительно густа и распространена во всем мире.

Телефонная сеть допускает также прямую связь (online) между двумя ПК или между ПК и отдаленным абонентским пунктом (терминалом). Созданные в прошлом телефонные сети почти все без исключения являются аналоговыми; для них характерны относительно низкая пропускная способность и опасность возникновения при передаче случайных ошибок. ПК работают с цифровыми данными, поэтому они должны быть оснащены соответствующей аппаратурой, которая преобразует аналоговые данные в цифровые и наоборот.

В ряде стран предусматривают создание цифро вой сети интегрированных услуг (ISDN – Integrated Service Digital Network). Это – электронные машины, которые передают информацию в разных видах на большой территории, а также в международном масштабе. Все данные преобразуются в единый цифровой базис. Поэтому одна такая сеть может заменить несколько самостоятельных специализированных сетей. Информация разных видов передается параллельно, т.е. одновременно, при одной связи.

Компьютерные коммуникации служат для дистанционной передачи данных с одного компьютера на другой и являются не только самым новым, но и самым перспективным видом телекоммуникаций. Они обладают рядом неоспоримых преимуществ по сравнению с традиционными средствами общения людей и передачи информации ¾ позволяют не только передавать, получать, но и хранить, и обрабатывать информацию. Проблема передачи информации с одного компьютера на другой возникла практически одновременно с появлением компьютеров. Можно, конечно, передавать информацию с помощью внешних носителей информации – магнитных или компакт – дисков. Но этот способ достаточно медленный и неудобный. Значительно лучше соединить компьютеры кабелем, загрузить специальную программу для передачи информации и, таким образом, получить простейшую компьютерную сеть. Например, для создания прямого соединения компьютеров, работающих под управлением операционной системы Windows, не требуется специального программного и аппаратного обеспечения.

Сети передачи данных могут быть проводными, что означает соединение компьютеров с помощью кабелей, или беспроводными, в которых подключения выполняются посредством радиоволн, по воздуху.

Беспроводное соединение позволяет работать на компьютерах в любом месте дома без использования кабелей. Прокладка кабелей — затратный процесс, при этом они выглядят не эстетично и могут быть опасны, если свободно лежат на полу.

Проводные системы передачи данных можно разделить на системы, использующие витую пару телефонных проводов, и системы, использующие оптико-волоконные кабели, - к этой категории также следует отнести системы, в которых вместе с оптико-волоконными кабелями используются также и коаксиальные кабели.

Классификация систем передачи данных изображена на рисунке 1

При объединении нескольких компьютеров процесс обмена информацией становится сложнее, однако принципы соединения остаются те же, что и для двух компьютеров. Для подключения компьютеров к линиям связи используются модемы или сетевые карты, если связь осуществляется по специальным выделенным линиям. Кроме того, на каждом компьютере устанавливаются программы для работы в сети.

Таким образом: компьютерная сеть ¾ это объединение компьютеров с помощью модемов, линий связи и программ, обеспечивающих обмен информацией.Компьютерные сети позволяют осуществлять новую технологию обработки информации и совместного использования ресурсов – аппаратных, программных и информационных. Новая технология получила название – распределенная обработка данных.

В соответствии с используемыми протоколами компьютерные сети разделяют на локальные и распределенные (глобальные и территориальные). Локальнойназ ывается компьютерная сеть, объединяющая компьютеры, расположенные в одном помещении, в одном здании или в соседних зданиях. В локальной сети используют единый комплект протоколов для всех пользователей. Сегодня наиболее распространенными сетевыми операционными системами, обеспечивающими работу пользователей в сети по единому протоколу, являются NetWare фирмы Novell, Windows NT Server фирмы Microsoft и сетевые ОС семейства UNIX. Все большее распространение получает система Linux. Важно отметить, что эта операционная система распространяется свободно, т.е. является free – ware программным обеспечением.

Если же соединенные компьютеры находятся в разных частях города, в разных городах или странах, то такие сети называются распределенными. К распределенной сети могут подключаться не только отдельные компьютеры, но и локальные сети. Распределенные сети мирового масштаба называют глобальными.

Самой известной глобальной сетью является INTERNET. Основой функционирования глобальной сети ИНТЕРНЕТ является базовая семиуровневая эталонная модель взаимосвязи открытых систем ¾ протокол TCP/IP ( Transfere Communication Protocol /Internet Protocol).

Основное различие между всеми названными сетями заключается в управлении доступом к информации и в том, как происходит обмен данными. В зависимости от способов управления доступом и обмена данными сети подразделяются по топологии и технологии. Последовательно рассмотрим представление данных в сетях, виды используемых топологий и технологий.

Топология ¾ это схема соединения каналами связи компьютеров или узлов сети между собой. Используются следующие виды соединений: общая шина, звезда, кольцо.

Метод доступа ¾ это технология, определяющая использование канала передачи данных, соединяющего узлы сети на физическом уровне. Самыми распространенными технологиями сегодня являются Ethernet, Arcnet и Token - Ring (говорящее кольцо).

Сеть шинной топологии представляет собой подключение компьютеров вдоль одного кабеля. Технологией обеспечивающей такой способ соединения компьютеров является Ethernet ¾ метод доступа c прослушиванием несущей частоты и обнаружением конфликтов. При этом методе доступа узел, прежде чем послать данные по каналу связи, прослушивает его, и только убедившись, что канал свободен, посылает пакет. Если канал занят, узел повторяет попытку передать пакет через случайный промежуток времени. Данные, переданные одним узлом сети, поступают во все узлы, но распознает и принимает их компьютер, которому предназначены данные. В качестве линий связи в топологии Ethernet используются кабель типа витая пара, коаксиальные и оптоволоконные кабели. Эта технология обеспечивает дуплексную передачу данных со скоростями от 10 до 100 Мбит/сек. Шинная топология позволяет эффективно использовать пропускную способность канала, устойчива к неисправностям отдельных узлов и дает возможность наращивания сети.

Сеть кольцевой топологии использует в качестве канала связи замкнутое кольцо из компьютеров, соединенных коаксиальным или оптическим кабелем. Технология доступа в сетях этой топологии реализуется методом передачи маркера. Маркер – это пакет, снабженный специальной последовательностью бит (его можно сравнить с конвертом для письма). Он последовательно предается по кольцу от компьютера к компьютеру в одном направлении. Каждый узел ретранслирует передаваемый маркер. Компьютер может передать свои данные, если он получил пустой маркер. Маркер с пакетом передается, пока не обнаружится компьютер, которому предназначен пакет. В этом компьютере данные принимаются, но маркер движется дальше и возвращается к отправителю. После того, как отправивший пакет компьютер убедится, что пакет доставлен адресату, маркер освобождается. Скорость передачи данных в таких сетях достигает 4 Мбит/сек.

Функция "чтения" служит для ознакомления с работой. Разметка, таблицы и картинки документа могут отображаться неверно или не в полном объёме!

Характеристика современных средств дистанционной передачи информации Среди многообразия поисков путей развития рынка, средств производства, общества, новых направлений деятельности коммерческо-посреднических организаций и предприятий вызывает значительный интерес сфера развития новых технологий, которые в последнее время приняли бурное развитие, при чем в большинстве своем, благодаря коммерческой сфере. При этом возникают трудности преодоления мест стыка между информационными системами предприятия и других организаций.

Предпосылкой для оптимизации движения материального потока является оперативный обмен информацией между звеньями цепочки в интегрированной информационной системе.

Значительная часть повседневных дел предприятий (организаций, др. субъектов хозяйствования и т.п.) обеспечивается, как правило, с помощью персональных компьютеров. При этом обрабатываются также данные, которые позже передаются коммерческим или транспортным партнерам в качестве предложения, заказа, накладной, счета-фактуры и т.п., по большей части в виде бумажного документа. Этот малоэффективный способ передачи информации можно заменить передачей данных прямо на носителе информации или телесвязью. Последние два способа относятся к электронной передаче данных (EDI - Electronic Data Intercnange).

Электронная передача данных представляет собой автоматизированное соединение информационных систем или разных организаций, или территориально удаленных друг от друга подразделений одного предприятия. Связь между ними обеспечивают коммуникационные системы при помощи средств техники связи. Эта деятельность обычно называется дистанционной передачей данных.

Дистанционная передача данных, основанная на использовании каналов связи, представляет собой передачу данных в виде электрических сигналов, которые могут быть непрерывными во времени и дискретными, т.е. носить прерывный во времени характер.

Дистанционная передача данных является предпосылкой для полной интеграции информационных систем не только в масштабе одной страны, но и в международном.

До сих пор широко распространенным способом реализации дистанционной передачи данных является применение сетей общего пользования, которые эксплуатируются почтой и обычно покрывают всю территорию страны.

Для коммуникации уже много лет используется телетайп. Его скорость передачи низка, но преимуществом является то, что сеть телетайпа относительно густа и распространена во всем мире. При помощи дополнительных устройств телетайп можно использовать также для непрямого соединения между ПК (off-line): файл с данными передается на носителях, к созданию и чтению которых способна ПК (например, перфолента).

Телефонная сеть допускает также прямую связь (on-line) между двумя ПК или между ПК и отдаленным абонентским пунктом (терминалом). Созданные в прошлом телефонные сети почти все без исключения являются аналоговыми; для них

Читайте также: