Пассивные оптические сети pon реферат

Обновлено: 05.07.2024

Начиная с 2000 года информационные технологии претерпели ряд серьезных изменений, ожидаемым следствием которых стало широкое внедрение Ethernet технологий и расширение абонентского канала доступа в мировую паутину. Как результат, началась гонка за скоростями и качеством обслуживания: сначала – медные сети с активными ретрансляторами по пути от провайдера к абоненту, потом – практически полный переход на ВОЛС и технологии семейства FTTX (FTTC, FTTB, FTTH).

Конечно, прошли времена, когда недобросовестные конкуренты вырезали чужой кабель километрами, перебивали магистральное волокно и втыкали иголки в коаксиал – сейчас борьба ведется честными методами (повышение качества обслуживания и скоростей, снижение абонплаты, создание локальных медиапорталов и т.д.). Но, как показывает практика, любой город уже давно поделен на сферы влияния ИСП (коих в каждом городе обычно минимум два), и новых абонентов в устоявшихся территориях добыть совсем непросто, особенно учитывая практически одинаковый набор и предлагаемое качество услуг.

Как показала практика на территории Украины, зарабатывать можно не только на хлеб, но и на достаточно толстый слой масла на нем – надо просто взглянуть в сторону родины этого самого масла, а именно – в загородные поселения (деревни, сёла, ПГТ, и даже городской частный сектор!).

  • отсутствие канализации (для удобной прокладки кабеля);
  • плохое электропитание (и все вытекающие из этого проблемы с активным оборудованием ИСП);
  • отсутствие телекоммуникационных построек и невозможность размещения активного оборудования на столбах;
  • проблемы с грозами (молниеотводов нет, стабилизаторы питания отсутствуют, витая пара висит от ближайшего запитанного ящика под открытым небом)…

И самое главное – слишком малое количество потенциальных абонентов на квадратный километр в сравнении с городом (как следствие – огромные затраты при прокладке многоволоконного кабеля на большие расстояния или головная боль при расчетах с целью экономии этого самого кабеля).

И вроде бы хочется новых абонентов, и вроде абоненты готовы платить невиданные в городе цифры за подключение, и даже оборудование готовы покупать и запитывать за свой счёт – но больно дорого выходит обслуживание FTTX в сельской местности.

Именно в этот сложный период, когда многие ИСП отрицательно мотали готовой и даже слушать не хотели про абонентов в ЧС и сёлах, на рынок вышла тогда еще совсем неизвестная технология PON, которая сейчас стоит вне конкуренции в столь жестких для систем передачи данных условиях.

1.2 Виды PON.

В начале 90-х, когда внимание мирового сообщества было приковано к событиям на территории уже бывшего СССР, группой из нескольких европейских телекоммуникационных компаний был создан консорциум для реализации идеи множественного доступа по одному волокну, получивший название FSAN (FullServiceAccessNetwork). Целью FSAN была разработка общих рекомендаций и требований к оборудованию PON для того, чтобы производители оборудования и операторы могли сосуществовать вместе на конкурентном рынке систем доступа PON. Итогом работы FSAN стал ряд стандартов PON:

  • ITU-TG.983
    APON (ATM Passive Optical Network);
    BPON (Broadband PON);
  • ITU-T G.984
    GPON (Gigabit PON);
  • IEEE 802.3ah
    EPON/GEPON (Ethernet PON);
  • IEEE 802.3av
    10GEPON (10 Gigabit Ethernet PON);

APON и BPON морально устарели еще при рождении, GPON не слишком развит из-за высокой (относительно GEPON) стоимости, а также из-за органического нежелания многих работать со скоростями 2.5G, 10GEPON пока находится в стадии разработки/отладки/испытаний.

*Конечно, GPON представляет возможности запаса по скорости на каждого абонента, но к тому времени, когда эти скорости будут востребованы, уже достаточно широко будет распространен 10GPON, так что переплачивать за сомнительное резервирование на данный момент не имеет смысла*

1.3 Принцип действия GEPON.

Как уже упоминалось ранее, GEPON – древовидная сеть, построенная на пассивных оптических составляющих на всём протяжении от провайдера к абоненту.

На стороне провайдера устанавливается OLT (англ. Optical Linear Terminal – Оптический Линейный Терминал) – L2 или L3 свитч со всеми вытекающими отсюда функциональными возможностями, имеющий Uplink порты (обычно стандарта Ethernet) и Downlink порты (работающие в рамках стандартов IEEE 802.3ah).

В последнее время все производители GEPON оборудования имеют широкий модельный ряд головных станций (OLT), которые, в основном, отличаются количеством Downlink портов (непосредственно для подключения пассивных деревьев), количеством и скоростью Uplink портов (например, 1Гбит/с или 10Гбит/с) и программно-аппаратным функционалом (L2 или L3).

*например, китайская компания BDCOM имеет 3 линейки головных станций:

  • Low-level (P33XX) – OLT’ы для небольшого количества абонентов (256) с 4-мя Uplink и 4 Downlink портами;
  • Mid-level (P36XX) – OLT’ы для среднего количества абонентов (512…1024), имеют 8…16 портов Downlink, столько же Uplink и 2х10Гбит/с дополнительных Uplink;
  • Tol-level (P69XX, P85XX) – гигантские фабрики по производству GEPON траффика с более чем 16-ю GEPON портов и прочими прелестями;*

Управление OLT производится как через терминальный порт, так и с помощью всеми любимых протоколов типа SNMP, SSH и TELNET.

Принципиальная схема включения PON

Рисунок 1 – Принципиальная схема включения PON

Поскольку пассивные оптические сети физически являются соединением со множественным доступом (точка-многоточка), в них необходимо разделять прямые и обратные потоки данных, а также координировать связь между множеством абонентских устройств и головной станцией. Для этого используется сразу две технологии для передачи данных в разделяемой между многими абонентами среде: временное и частотное мультиплексирование.

Временное Мультиплексирование (англ. TDM — TimeDivisionMultiplexing) действует со стороны OLT, который определяет, в какие моменты времени конкретному абонентскому устройству разрешено вещание в общую среду передачи данных. Со стороны ONU действует TDMA (англ. TimeDivisionMultipleAccess – Множественный Доступ С Разделением По Времени), согласно которому абонентское устройство подчиняется OLT.

Следует отдельно рассмотреть технологию обмена данными между ONU и OLT:

  • любая ONU вещает только в момент времени, отведённый для нее OLT (TDMA);
  • для любой ONU в сети OLT определяет временной промежуток, в течение которого ONU может вещать (TDM);
  • вновь подключённая ONU взаимодействует с OLT по протоколу MPCP (англ. Multi-PointControlProtocol – Протокол Управления Многоточечным Обменом);
  • любая ONU не может связываться с другими ONU без участия в связи OLT`а. Все пакеты для любого адресата централизованно обрабатывает одно устройство в сети – OLT.

Распределение временных промежутков между ONU

Рисунок 2 – Распределение временных промежутков между ONU

Существует два режима работы MPCP : автодетектирование (инициализация) и нормальный режим . Режим автодетектирования используется для детектирования вновь подключенных ONU и определения RTT (англ. Round Trip Time – время от момента посылки запроса до момента получения ответа) и MAC-адреса этого ONU. Нормальный режим используется для присвоения временных доменов всем инициализируемым ONU.

Стандартные Ethernet кадры в PON немного модифицируются под специфику работы в разделяемой по принципу TDM среде, однако, OLT модифицирует выходящие пакеты так, что на выходе из PON получается стандартный Ethernet поток. В обратном направлении ситуация аналогичная. Структура стандартного Ethernet кадра (IEEE 802.3), PON кадра (IEEE P802.3ah) и управляющего кадра IEEE P802.3ah представлена ниже (Рисунок 3):

Сравнение полей кадров IEEE 802.3 и IEEE P802.3ah

Рисунок 3 – Сравнение полей кадров IEEE 802.3 и IEEE P802.3ah

Преамбула стандартного кадра Ethernet (Рисунок 3а), модифицируется добавлением нескольких служебных полей (Рисунок 3б):

  • SOP (англ. Start Of Packet) – 1 байт, указывает на начало кадра;
  • Резервное поле, 4 байта;
  • LLID (англ. Logical Link Identificator) – 2 байта, указывает индивидуальный идентификатор узла EPON. Остается открытым вопрос: сколько идентификаторов может иметь абонентский узел ONU – один или несколько? LLID требуется для эмуляции соединений точка-точка и точка-мультиточка в сети EPON. Первый бит поля указывает режим передачи кадра (unicast или multicast). Остальные 15 бит содержат индивидуальный адрес узла EPON;
  • CRC (англ. Сircle Redundancy Check) – 1 байт, контрольная сумма по преамбуле (стандарт P802.3ah).

OLT и ONU обеспечивают инкапсулирование данных в модифицированные Ethernet кадры стандарта IEEE P802.3ah, при этом используется канальное кодирование 8B/10B (8 пользовательских бит преобразуются в 10 канальных).

Окончательный алгоритм работы сети PON после настройки выглядит следующим образом:

Алгоритм работы сети PON по преобразованию пакетов из одного стандарта в другой можно представить следующим образом (Рисунок 4):

Алгоритм работы PON по преобразованию пакетов

Рисунок 4 – Алгоритм работы PON по преобразованию пакетов

1.4 Сравнение PON с классической FTTH схемой подключения абонентов.

Для классического FTTH характерно большое количество используемых волокон (по одному на каждого оптического потребителя, будь то конечный абонент или многоэтажка), что, в свою очередь, приводит к неэффективному использованию кабеля по принципу: чем более ёмкий кабель, тем более он неэффективно используется.

Например, четырехволоконный кабель, идущий к группе близко расположенных многоэтажек по канализационной шахте (по волокну на каждую), необходимо завести в подвал одной из них и разделать, ответвив одно волокно на оптического потребителя. Оставшиеся три волокна, несущих информационный сигнал, необходимо пустить по канализации до следующего дома. При этом кабель, проложенный от первой точки ответвления до второй, всё также четырехволоконный, просто одно волокно остаётся неиспользуемым. И так далее…

Для решения вышеизложенных проблем идеально подходит технология GEPON, которая уже добрую пятилетку радует интернет-пользователей самых удаленных населенных пунктов на карте Украины.

Однако, самым желанным плюсом пассивной оптической сети является отсутствие потребности в питании промежуточных между абонентом и провайдером узлов. Это сразу снимает ряд вопросов от энергопоставляющих компаний, пожарников и других проблемных инстанций. Этот же плюс можно эффективно использовать в сельской местности: промежуточные узлы, не привязанные к питанию, можно размещать где угодно, при этом значительная часть средств, идущая на поддержание бесперебойного питания, будет сэкономлена, также, как и средства, закладываемые на профилактику и ремонт любого активного оборудования в сети.

Немаловажным является и тот факт, что настройка всего активного оборудования GEPON, входящего в конкретную пассивную сеть, производится с одного устройства – головной станции (OLT). Это значительно упрощает работу системного администратора, позволяя наиболее эффективно находить и устранять неисправности, а также производить регулярное обслуживание сети.

Кроме того, в уже построенную пассивную сеть легко и просто запустить аналоговое TV (Рисунок 5):

Применение PON в качестве среды для использования CATV

Рисунок 5 – Применение PON в качестве среды для использования CATV

Итак, положительные стороны PON в сравнении с FTTH:

  • Минимальное использование активного оборудования;
  • Минимизация кабельной инфраструктуры;
  • Низкая стоимость обслуживания;
  • Возможность интеграции с кабельным телевидением;
  • Хорошая масштабируемость;
  • Высокая плотность абонентских портов.

PON (Passive optical network) — технология пассивных оптических сетей.

Суть технологии PON заключается в том, что между приемопередающим модулем центрального узла OLT (Optical line terminal) и удаленными абонентскими узлами ONT (Optical network terminal) создается полностью пассивная оптическая сеть, имеющая топологию дерева. В промежуточных узлах дерева размещаются пассивные оптические разветвители (сплиттеры) – компактные устройства, не требующие питания и обслуживания. Один приемопередающий модуль OLT позволяет передавать информацию множеству абонентских устройств ONT. Число ONT, подключенных к одному OLT, может быть настолько большим, насколько позволяет бюджет мощности и максимальная скорость приемопередающей аппаратуры.

Архитектура PON сети

Рис. 1. Архитектура PON сети

Для передачи прямого и обратного каналов используется одно оптическое волокно, полоса пропускания которого динамически распределяется между абонентами, или два волокна в случае резервирования. Нисходящий поток (downstream) от центрального узла к абонентам идет на длине волны 1490 нм и 1550 нм для видео. Восходящие потоки (upstream) от абонентов идут на длине волны 1310 нм с использованием протокола множественного доступа с временным разделением (TDMA).

Центральный узел PON может иметь сетевые интерфейсы ATM, SDH (STM-1), Gigabit Ethernet для подключения к магистральным сетям. Абонентский узел может предоставлять сервисные интерфейсы 10/100Base-TX, FXS (2, 4, 8 и 16 портов для подключения аналоговых ТА), E1, цифровое видео, ATM (E3, DS3, STM-1c).

Сравнение технологий PON: APON, BPON, EPON, GEPON, GPON

Рис.2. Сравнение технологий

Тестирование PON сети

При тестировании сети PON оператора обычно волнуют два основных вопроса:

  • Реальное затухание в оптической линии между центральным узлом и абонентским устройством (действующим или готовящимся к подключению).
  • Местоположение проблемного участка, если реальное затухание в линии оказалось выше ожидаемого (расчетного или опорного).

Для ответа на первый вопрос достаточно провести простые измерения с помощью оптического тестера. Второй вопрос более сложен и требует применения оптического рефлектометра (OTDR), а также определенного опыта расшифровки рефлектограмм.

Как правило, желательно, чтобы все необходимые измерения могли проводиться на работающей сети PON без отключения абонентов (кроме, возможно, тестируемого). Такое тестирование осуществляется на нерабочей длине волны с применением дополнительных устройств (волновых мультиплексоров DWDM, фильтров), чтобы излучение измерительной аппаратуры не вносило помех в полезный сигнал. Как уже упоминалось, в сети PON для прямого канала (от центра к абонентам) используется длина волны 1490 или 1550 нм (для видео), для обратного – 1310 нм. Для тестирования сети PON обычно используют длину волны 1625 нм.

Излучение измерительной аппаратуры (тестера, рефлектометра) вводится в волокно сразу после OLT с использованием волнового мультиплексора (DWDM). Это излучение способно вызвать помехи на оптическом приемнике абонентского устройства, поэтому перед каждым абонентским устройством ONT необходимо установить фильтр. Для того чтобы можно было проводить тестирование без отключения сети, волновой мультиплексор и фильтры должны быть стационарно включены в оптический тракт, (см. Рис. 3).

Подключение волнового мультиплексора и фильтров к PON

Рис. 3. Схема подключения волнового мультиплексора и фильтров к PON

Для измерения затухания в оптической линии между OLT и ONT используется оптический тестер на 1625 нм. Передатчик тестера подключается к свободному концу волнового мультиплексора на OLT. Приемник тестера подключается к свободному концу волокна перед фильтром, (см. Рис. 4).

Измерение затухания с отключением абонентского устройства

Рис. 4. Измерение затухания с отключением абонентского устройства

Можно измерять затухание и без отключения абонентского устройства. Для этого на ONT нужно использовать не фильтр, а волновой мультиплексор, как на центральном узле, (см. Рис. 5).

Измерение затухания без отключения абонентского устройства

Рис. 5. Измерение затухания без отключения абонентского устройства

Затухание на длине волны 1625 нм несколько выше, чем на 1550 и 1490 нм (в среднем на 10%). Поэтому тестирование затухания на длине волны 1625 нм дает оценку сверху для затухания на рабочих длинах волн. Если эта оценка укладывается в допустимый бюджет (23 дБ), то затухание на рабочих длинах волн заведомо удовлетворяет требованиям по бюджету. Если затухание на длине волны 1625 нм превышает допустимое значение, то для точного определения затухания на рабочих длинах волн необходимо провести перерасчет на основе паспорта оптического кабеля.

Измерение в PON с помощью оптического тестера позволяет получить реальное значение затухания на участке от OLT до ONT, но не дает ответа на вопрос, где находится проблемный участок, если это затухание оказалось выше ожидаемого (расчетного или опорного). Для локализации проблемного участка используется более сложное устройство – оптический рефлектометр (OTDR).

Рефлектометр с тестовым модулем на 1625 нм подключается к свободному концу волнового мультиплексора на OLT, (см. Рис. 6). Излучение рефлектометра распространяется по дереву PON и за счет отражения на препятствиях и обратного рассеивания в оптическом волокне частично поступает обратно на вход рефлектометра. Таким образом, снимается рефлектограмма дерева PON – график затухания в линии в зависимости от расстояния. Каждый пик или скачок затухания на этом графике соответствует определенному элементу сети, либо событию в волокне.

Снятие рефлектограммы PON сети

Рис. 6. Снятие рефлектограммы дерева PON

Методика тестирования сети PON с использованием рефлектометра заключается в следующем. После каждого изменения топологии сети (подключения нового абонента, замены сплиттера и т.п.) снимается опорная (эталонная) рефлектограмма, соответствующая нормальному состоянию сети. При обнаружении проблем в сети (например, если затухание, измеренное оптическим тестером, оказалось выше расчетного) снимается новая рефлектограмма, которая сравнивается с опорной. Новые события на рефлектограмме локализуют местоположение проблемного участка, (см. Рис. 7).

Анализ новых событий на рефлектограмме PON сети

0.4 дБ/км, 0.5 дБ на коннектор

0.03 дБ на точку сварки

3.5 дБ на сплиттер 1:2

7.2 дБ на сплиттер 1:4

10.7 дБ на сплиттер 1:8

14.4 дБ на сплиттер 1:16

Рис. 7. Анализ новых событий на рефлектограмме.

С помощью рефлектометра можно вести мониторинг сети PON и обнаруживать деградации волокна еще до того, как возникнут проблемы. Для этого необходимо регулярно (например, раз в неделю) снимать рефлектограмму сети и сравнивать ее с опорной рефлектограммой. При появлении любых отклонений и тем более новых событий на рефлектограмме необходимо анализировать их возможные причины и при необходимости проводить адекватные профилактические мероприятия.

Основные преимущества технологии PON

  • Экономия волокон. До 128 абонентов на одно волокно, протяженность сети до 60 км.
  • Эффективное использование полосы пропускания оптического волокна.
  • Скорость до 2,488 Гбит/с по нисходящему потоку и 1,244 Гбит/с по восходящему.
  • Надежность. В промежуточных узлах дерева находятся только пассивные оптические разветвители, не требующие обслуживания.
  • Масштабируемость. Древовидная структура сети доступа дает возможность подключать новых абонентов самым экономичным способом.
  • Возможность резервирования как всех, так и отдельных абонентов.
  • Гибкость. Использование ATM в качестве транспорта позволяет предоставлять абонентам именно тот уровень сервиса, который им требуется.
  • Данные по сети передаются в виде ячеек ATM.
  • Возможны симметричный и асимметричный режимы работы.

Измерения в FTTx PON / GPON сетях

В процессе строительства сетей FTTx PON необходимо выполнять четыре основных измерения:

  • однонаправленное измерение потерь в кабельной секции перед сваркой;
  • двунаправленное измерение оптических возвратных потерь (ORL);
  • двунаправленное измерение оптических потерь между двумя оконечными точками;
  • двунаправленное снятие характеристик линии;
  • снятие рефлектограммы каждого участка оптической линии, включая сплиттеры.

В процессе ввода в эксплуатацию сетей FTTx PON необходимо выполнять два основных измерения:

Суть технологии PON состоит в том, что ее распределительная сеть (преимущественно древовидной топологии) строится без использования активных компонентов: разветвление оптического сигнала по одноволоконной оптической линии связи осуществляется с помощью пассивных разветвителей оптической мощности – сплиттеров, которые не требуют электропитания, настройки и управления, термошкафов, недороги и очень компактны.

Что такое пассивная оптическая сеть (PON) Текст, Технари, Сеть, Технологии, Интернет, Телеком, Телекоммуникации, Оптика, Длиннопост

Существуют 3 основные технологии построения пассивных оптических сетей:

1. APON ( ATM PON)/ BPON (Broadband PON).

Дальнейшее совершенствование технологии привело к созданию и принятию нового стандарта – BPON. В спецификации BPON скорость передачи была увеличена до 622 Мбит/с. Была добавлена новая функциональная составляющая протокола, включающая передачу разнообразных приложений (голоса, видео, данные), что позволило расширить функциональные возможности технологии для взаимодействия с абонентом. Еще одним усовершенствованием было расширение полосы частот (длин волн), на которых идет передача данных.

2. EPON (GEPON)

Такие сети, в основном, рассчитаны на передачу данных со скоростью прямого и обратного потоков 1000 Мбит/с на основе IP-протокола для 16 (или 32) абонентов (скорость на абонента – более 30 Мбит/с при 32 ONT).

Исходя из скорости передачи, в статьях и литературных источниках часто фигурирует название GEPON (Gigabit Ethernet PON), которое также относится к стандарту IEEE 802.3ah. Дальность передачи в таких системах достигает 20км. Для прямого потока используется длина волны 1490 нм, 1550 нм резервируется для видео приложений. Обратный поток передается на 1310 нм. Во избежание конфликтов между сигналами обратного потока применяется специальный протокол управления множеством узлов (Multi-Point Control Protocol, MPCP)

Данная спецификация существенно расширяет возможности технологии по сравнению с предыдущими BPON и EPON.

GPON предполагает более эффективную обработку пакетов IP и кадров Ethernet. Скорость, предусматриваемая протоколом определяется значениями в 622 Мбит/c или 1,25 и 2,5 Гбит/с (для 32 ONT полоса на абонента – более 70 Мбит/с). Так же увеличивается максимальная нагружаемость единичного волокна точками приема и достигает значения 128 абонентов на волокно на расстоянии до 20км (с возможностью расширения до 60км). Появляется возможность варьирования скорости передачи прямого и обратного потока в дереве PON. GPON поддерживает трафик различного типа (TDM, SDH, Ethernet, ATM), а также развитые механизмы управления и защиты на уровне протоколов. Сеть работает в синхронном режиме с постоянной длительностью кадра.

Сравнительные характеристики технологий PON

Что такое пассивная оптическая сеть (PON) Текст, Технари, Сеть, Технологии, Интернет, Телеком, Телекоммуникации, Оптика, Длиннопост

Технические преимущества GPON перед EPON

Основные технические преимущества GPON перед EPON – более высокая скорость в нисходящем потоке и более эффективные механизмы для передачи трафика сетей с коммутацией каналов (TDM).

При равном коэффициенте разветвления на абонента сети GPON приходится вдвое большая скорость передачи в нисходящем потоке по сравнению с абонентом сети EPON.

При коэффициенте разветвления 1:32 абонент GPON получит полосу 73 Мбит/с, а абонент EPON – 30 Мбит/с; при распределении 1:64 соответственно – 36 Мбит/с и 15 Мбит/с.

В GPON поддерживается механизм регулировки уровней мощности, при котором центральный узел может заставить ONT изменить мощность передатчика на одно из трех значений. Информация о текущем уровне поступает от каждого ONT в восходящем потоке. В EPON на абонентском узле поддерживается только один уровень мощности.

Технология пассивных оптических сетей GPON позволяет увеличить пропускную способность сети, обеспечивает высокое качество передачи видеосигнала с предоставлением новых сервисов. Сеть строится с помощью пассивных делителей оптической мощности (сплиттеров), не требующих питания и обслуживания. Особенностью технологии является 100% оптический канал от АТС до клиента, что позволяет повысить качество передачи сигнала (голоса, данных, видео) и в десятки раз увеличить скорость передачи данных.

GPON предоставляет масштабируемую структуру кадров при скоростях передачи от 622 Мбит/с до 2,5 Гбит/c, и допускает системы как с одинаковой скоростью передачи прямого и обратного потока в дереве PON, так и с разной.

Общая структура пассивной сети передачи данных

Оптическая сеть ШПД по технологии GPON представлена на рисунке ниже состоит из трех основных частей:

1) Станционный участок;

2) Линейный участок ;

Что такое пассивная оптическая сеть (PON) Текст, Технари, Сеть, Технологии, Интернет, Телеком, Телекоммуникации, Оптика, Длиннопост

1) Станционный участок – это активное оборудование OLT, смонтированное на узле связи в помещении АТС.

2) Линейный участок – это волоконно-оптический кабель, шкафы, сплиттеры, коннекторы и соединители, располагающиеся на всем пространстве между станционным и абонентским участком.

а) Магистральный участок – это кабель, прокладываемый от кросса (ODF) на АТС в направлении территории с большой группой зданий (район, квартал) и завершающийся оптическим распределительным шкафом (ОРШ);

б) Распределительный участок – это кабель, выходящий из ОРШ и прокладываемый преимущественно внутри зданий вертикально по межэтажным стоякам.

3) Абонентский участок – это персональная абонентская разводка одноволоконным дроп-кабелем (реже двухволоконным) от элементов общих распределительных устройств до оптической розетки и активного оборудования ONT в квартире абонента (или до группового сетевого узла ONU, смонтированного в офисе корпоративного клиента).

Самым сложным и капиталоёмким является линейный участок, состоящий из множества разнообразного пассивного оборудования и большого количества строительно-монтажных работ, поэтому очень важно применение наиболее оптимальных методов его построения.

На сети может быть использована как одноуровневая (однокаскадная), так и многокаскадная схема с последовательным размещением сплиттеров.

Что такое пассивная оптическая сеть (PON) Текст, Технари, Сеть, Технологии, Интернет, Телеком, Телекоммуникации, Оптика, Длиннопост

Количество уровней каскадирования зависит от суммарного вносимого затухания сплиттеров, коэффициента ветвления PON интерфейсов OLT (у GPON это 1:32 или 1:64) и требований к полосе пропускания для каждого абонента.

Чем меньше уровней каскадирования сплиттеров, тем проще сеть абонентского доступа и, соответственно, больше возможностей быстрого устранения неисправностей, повышения качества связи за счет исключения возможных переходных искажений на многоступенчатой передаче сигналов. С другой стороны, каскадирование позволяет более гибко расположить распределительные устройства и кабели, т.е. оптимально построить пассивную распределительную сеть.


Существуют два основных направления развития PON — EPON-сети и GPON-сети.

image

Последней ступенью эволюции GPON-сетей является технология TWDM PON — Time Wavelength Division Multiplexing Passive Optical Networking, пассивные оптические сети с временным и частотным (спектральным) мультиплексированием.

Технология TWDM-PON использует для организации дуплексных каналов связи четыре пары длин волн в различных спектральных диапазонах. Для формирования потоков upstream используются длины волн (λ1 — λ4), для downstream (λ5 – λ8).

В системах TWDM PON для передачи потоков может быть использовано три частотных диапазона: 1270-1280/1570-1580 нм — XG-PON-диапазон, 1535-1540/1553-1558 нм — С-band-диапазон, 1535-1540/1570-1580нм — С+L-band-диапазон.

Передача сигналов TWDM PON в диапазонах С-band и С+L-band позволяет использовать оптические усилители EDFA для увеличения оптического бюджета трассы.


Кроме большего количества длин волн, используемых для формирования потоков up/downstream, TWDM PON предполагает использование перестраиваемых оптических передатчиков (tunable Tx) и селективных оптических приемников (selective Rx) в станционном и оконечном оборудовании (OLT и ONU/ONT).

Использование перестраиваемых компонентов позволяет масштабировать, перестраивать сеть TWDM PON на аппаратном уровне без необходимости физически перестраивать сеть передачи.

TWDM PON позволяет, кроме гибкой настройки волн, производить тонкую настройку скорости передачи в рамках одного канала. Поддерживаются как симметричные по скорости передачи каналы связи 10G/10G и 2.5G/2.5G, так и несимметричные 10G/2.5G.

В сетях TWDM PON используют диапазоны длин волн — XG-PON диапазон, С-band диапазон и С+L-band диапазон.

1. XG-PON-диапазон. Частотный план полностью повторяет рабочие диапазоны XG-PON: 1270-1280 нм для upstream и 1570-1580 нм для downstream. Использование данного частотного плана позволяет организовывать передачу в рамках одной сети: TWDM PON, GPON, CATV.


В данной частотной сетке невозможно использование оптических усилителей EDFA, в связи с этим максимальный оптический бюджет системы составляет 33 дБ.

Использование XG-PON-диапазона оправдано при необходимости встраивать новые каналы передачи в существующую систему GPON+CATV без необходимости увеличивать оптический бюджет трассы.

2. С-band-диапазон. В данном случае частотный план представляет собой стандартный С-band-диапазон: 1535-1540 нм для upstream и 1553-1558 нм для downstream. Использование такого частотного плана позволяет организовывать передачу в рамках одной сети: TWDM PON, GPON, XG-PON.


За счет использования длин волн из С-band-диапазона появляется возможность использовать стандартные оптические усилители EDFA для DWDM-сетей с рабочим диапазоном 1529-1561 нм. Использование EDFA позволяет увеличить максимальный оптический бюджет системы до значения в 38 дБ. Оптические усилители устанавливаются на стороне головной станции, что позволяет не менять существующей архитектуры сети и не вводить в пассивную сеть дополнительные энергозависимые элементы.

Минусом использования данного частотного плана является его несовместимость с существующей сетью CATV.

3. С+L-band-диапазон. Данный частотный план предполагает использование Red-диапазона или С-minus Band 1535-1540 нм для upstream и L-minus Band 1570-1580 нм для downstream. Использование этого частотного плана позволяет организовывать передачу в рамках одной сети: TWDM PON, GPON, CATV.


Использование данного частотного плана позволяет рассчитывать на оптический бюджет до 38 дБ и одновременную передачу сигналов PON и CATV. Однако система TWDM PON на С+L-band-диапазоне имеет свои особенности, главной из которых является необходимость использования L-band-усилителей для downstream. В настоящий момент EDFA L-band диапазона мало востребованы, так как С-band полностью удовлетворяет потребности телекоммуникационного рынка.

Если сравнить существующие системы GPON с технологией TWDM PON, такие как GPON и XG PON1, то можно выделить как минимум три отличительные особенности, по которым технология TWDM является более перспективной:

Общая пропускная способность системы. Для систем GPON пропускная способность составляет 10 Гбит/с downstream и 2,5 Гбит/с upstream, в то время как пропускная способность TWDM PON это четыре независимых потока по 10 Гбит/с, что и определяет общую пропускную способность системы — 40 Гбит/с.

Частотный диапазон. Системы GPON для формирования канала связи используют две длины волны. Следует отметить, что используются достаточно широкополосные сигналы λ1±5 нм. В то время, как системы TWDM PON задействуют четыре пары длин волн с достаточно узким спектром λ1±1,6 нм. Также следует отметить, что в дальнейшем количество задействованных длин волн планируется увеличить до восьми.

Оптический бюджет. В связи с невозможностью использования оптических усилителей для систем GPON оптический бюджет ограничен

Читайте также: