Основные понятия физики реферат

Обновлено: 04.07.2024

В базе бесплатных рефератов по физике собраны работы, посвященные основным понятиям науки, природным явлениям, поведению веществ и материалов в различных средах, происхождению Вселенной и Земли, а также истории открытия явлений и законов.

Рефераты по физике затрагивают несколько разделов: термодинамику, оптику, механику, электродинамику, ядерную, квантовую, статическую, физику и др.

Каталог готовых рефератов

Выберите предмет

  1. Четко определите цель работы в рамках заданной темы.
  2. Исходя из цели, определите в общих чертах содержание будущего реферата, составив предварительный план.
  3. Составьте список литературы или других источников, соответствующих теме реферата.
  4. Изучая литературу (другие источники), отмечайте все, что войдет в работу.
  5. Составьте окончательный подробный план, указывая для каждого пункта источник, из которого будет взят материал.
  6. Во вступлении реферата раскройте значимость его темы, укажите цель реферата.
  7. Раскройте все пункты плана, используя конкретные факты, примеры, цитаты из первоисточников.
  8. Сделайте промежуточные выводы по каждой смысловой части работы.
  9. Выразите собственное аргументированное мнение по теме реферата (факультативный пункт).
  10. В подстрочных сносках укажите источники цитат, фактов.
  11. Сделайте обобщающий вывод.
  12. Перечитайте реферат, проверьте логичность деления текста на абзацы; если нужно, удалите повторы информации; убедитесь в том, что тема раскрыта, а цель работы достигнута.
  • Обзорный реферат (или сводный) – это обобщающая характеристика нескольких первоисточников, касающихся определенной темы.
  • Реферат-экстракт – составляется из наиболее важных в смысловом отношении фраз, взятых из анализируемого текста. Отобранные и в случае необходимости отредактированные предложения должны точно передавать общее содержание первоисточника. Чаще всего используется в информационных службах и библиотеках при составлении каталогов.

Любое использование материалов сайта допускается исключительно с согласия редакции при установке активной ссылки на первоисточник. Информация, представленная на сайте, получена из открытых и общедоступных материалов. Ее достоверность подлежит проверке у первоисточника. Редакция не несет ответственности за какие-либо действия, либо за возможный ущерб (как материальный, так и моральный), полученный в результате прочтения материалов. Пользователь сайта принимает решения самостоятельно и несет за них полную ответственность.

Время – понятие, с помощью которого описываются длительность и последовательность событий. Характеризует порядок смены явлений.

Вселенная – вся окружающая нас часть материального мира, доступная наблюдению.

Длина волны – расстояние, на котором совершается одно полное колебание в пространстве.

Замкнутая (закрытая) система – система, в которой нет обмена веществом с другими системами (обмен энергией допускается).

Масса – характеристика инерции тела и его гравитационных свойств.

Открытая система – система, обменивающаяся с другими системами (окружающей средой) энергией и веществом.

Пространство – понятие, с помощью которого описываются свойства протяженного и взаимного расположения объектов. Выражает порядок сосуществования отдельных объектов.

Работа – передача упорядоченного движения от одной системы к другой.

Теплота – передача беспорядочного движения от одной системы к другой.

Энергия – единая мера различных форм движения материи.

Энтропия (от греч. entropia – поворот, превращение) – мера необратимого рассеяния энергии.

Эффект Доплера – изменение частоты волны вследствие движения наблюдателя и источника относительно друг друга.

Иногда в естественных науках выделяют микромир, макромир, мегамир как основные уровни строения материи, которые связаны друг с другом.

Микромир – это мир непосредственно ненаблюдаемых объектов, имеющих пространственные размеры от 10 -10 до 10 -18 м. Время жизни этих объектов может достигать 10-24 с.

Макромир – мир объектов, размеры которых сопоставимы с масштабами человеческого опыта.

Мегамир – мир космических расстояний и скоростей, расстояние в котором измеряется световыми годами. Время существования этих объектов достигает миллионов и миллиардов световых лет.

ОБЩИЕ ПРЕДСТАВЛЕНИЯ ОБ ОСНОВНЫХ

КОНЦЕПТУАЛЬНЫХ СИСТЕМАХ ФИЗИКИ

Физика – это наука о наиболее простых и вместе с тем наиболее общих свойствах тел и явлений. В любом явлении физика выделяет то, что объединяет его со всеми другими явлениями природы. Физика уже давно служит объектом пристального внимания философов. Но этот интерес направлен главным образом на теорию относительности, квантовую механику, вариационные принципы, а также на развиваемую в настоящее время теорию объединения основных типов существующих в природе взаимодействий. Все упомянутые теории тесно связаны с принципами, рассмотренными нами выше, поэтому здесь мы о них упоминать не будем. Согласно одному из определений физики как науки, она является учением о различных типах взаимодействия: гравитационным, электромагнитном, сильном и слабом. Их изучают обычно с помощью концепции поля.

ОСНОВНЫЕ ФИЗИЧЕСКИЕ ВЕЛИЧИНЫ

Каждая физическая величина представляет собой произведение численного значения на единицу измерения. Очень интересен и важен факт, что в физике может быть выделено всего семь основных величин (в системе СИ). Все остальные физические величины, а их сотни, являются производными от этих основных.

Есть другие обозначения единиц основных физических величин. В системе СИ есть две дополнительные основные величины: радиан и стерадиан. Система СИ является основной системой физики с 1960 г. Проанализируем основные физические величины, представленные в табл. 1.

Основные величины Обозначения Единица основной величины Обозначение единицы
отечест- венное междуна- родное
Масса Длина Время Температура Количество вещества Сила электрич. тока Сила света m l t T n Ia Ik килограмм метр секунда градус Кельвина моль ампер кандела кг м с К моль А кд kg m s K mol A cd

Понятие массы является одной из основных характеристик материи. Ее величина входит как коэффициент пропорциональности в математические выражения для импульса тела Р = mv и закона Ньютона a = F/m. Масса в этих случаях является мерой инерции тела.

Вместе с тем масса – это источник поля тяготения. Каждое тело создает поле тяготения, пропорциональное массе тела. В настоящее время с очень большой точностью экспериментально установлено, что инертная и гравитационная массы пропорциональны друг другу. Это фундаментальный закон природы. Понятие массы приобрело более глубокий смысл в специальной теории относительности. Однако природа массы – одна из важных и до конца не решенных задач физики.

Количественной характеристикой электрического тока является сила тока I (или плотность электрического тока j). Электрический ток есть упорядоченное (направленное) движение электрических зарядов. За направление тока принимают направление движения положительных зарядов. Для возникновения и существования электрического тока необходимо наличие свободных зарядов и силы, создающей и поддерживающей их упорядоченное движение (обычно – силы электрического поля). Способность вещества пропускать электрический ток называется электропроводностью.

Все остальные физические величины составлены из основных физических величин. Например, величина размерности для энергии представляется следующим образом:

Дж = (кг . м 2 ) / с 2 .

Выбор основных единиц обусловлен несколькими причинами: фундаментальностью стоящих за ними понятий и сложившимися традициями их использования, возможностью воспроизводства этих величин посредством эталонов или эталонных установок с наивысшей точностью, соответствующей уровню развития науки и техники в данную эпоху. Системе СИ предшествовали другие известные системы единиц. Во второй половине XIX в. на основе см, г, с появились две системы единиц: электростатическая (СГЕС) и электромагнитная (СГМС). На их основе возникла общефизическая симметричная система Гаусса (СГС). В XX в. широкое распространение получили технические системы единиц (МКГСС, МТС). Система СИ начала формироваться с 1901 г. на основе кг, м, с и одной электрической величины. На роль последней претендовали ампер, вольт и другие величины. Первенство осталось за ампером, и постепенно к этим четырем величинам присоединились еще три основные величины (и две вспомогательные).

ОСНОВНЫЕ КОНЦЕПЦИИ КЛАССИЧЕСКОЙ ФИЗИКИ:

МЕХАНИКА, ТЕРМОДИНАМИКА, ЭЛЕКТРОДИНАМИКА

Механика. В XVII–XVIII вв. механические законы претендовали на отражение космической гармонии. Механика в ту эпоху захватила лидерство в естествознании и удерживала его вплоть до середины XX в. XVII–XVIII вв. были веками рационализма, и физика противостояла гегемонии механики.

Абсолютное пространство по самой своей сущности безотносительно к чему бы то ни было внешнему. Оно всегда остается одинаковым и неподвижным.

Абсолютное время (истинное математическое время) само по себе и по самой своей сущности, без всякого отношения к чему-либо внешнему, протекает равномерно; оно также называется длительностью.

Абсолютно твердое тело – это тело, расстояние между любыми точками которого остается неизменным. Данное понятие применимо в том случае, когда можно пренебречь деформацией тела. Существует и другое определение. Абсолютно твердым телом называется тело, расстояние между любыми двумя точками которого остается неизменным.

Формирование основ классической механики началось с экспериментов Галилея. Бросая вниз с возвышения предметы различного веса, Галилей быстро убедился в том, что вес падающего предмета не влияет на его движение. Используя различные наклонные плоскости вплоть до угла 20 ˚ , он установил, что все тела движутся с постоянными ускорениями, т.е. получают одинаковые приращения скорости за одинаковые промежутки времени.

Согласно закону всемирного тяготения, любые два тела с массами m1 и m2 притягиваются друг к другу. Если тела считать материальными точками, т.е. пренебречь их размерами по сравнению с расстоянием между ними R, то сила определяется формулой

F = G · m1 · m2 / R 2 ,

где F – сила, направленная вдоль прямой, соединяющей материальные точки; G – гравитационная постоянная (универсальная мировая постоянная).

Через 70 лет после кончины Ньютона значение универсальной гравитационной постоянной было определено выдающимся английским ученым Г. Кавендишем, использовавшим для этой цели крутильные весы. Он наблюдал отклонение чувствительных весов при поднесении большого свинцового шара близко к одной из гирь. Значение G допускает теоретическую оценку, в основе которой лежит сравнение закона всемирного тяготения со вторым законом Ньютона.

Закон всемирного тяготения не точен. Эйнштейну пришлось видоизменить его, однако это не сделало закон точным, поскольку он не связан с квантовой теорией. Самым поразительным являются простота и универсальность этого закона. Он действует сложно (сложна природа гравитации), но его коренная идея проста, как простота и его форма. Универсальность закона проявляется в том, что он действует на нашей планете, в пределах Солнечной системы, в Галактике, в Метагалактике и, по-видимому, во всей Вселенной.

Термодинамика. Классическая (феноменологическая) и статистическая термодинамика рассматриваются в настоящее время совместно, как единая теория. Однако исторически сложилось так, что основные постулаты этих теорий были сформулированы раздельно. Рассмотрение основных постулатов в соответствии более глубокое представление о концепциях термодинамики.

Постулаты термодинамики формулируются так.

1. Изолированная система с течением времени всегда приходит в состояние термодинамического равновесия и никогда самопроизвольно выйти из него не может.

Дальнейшее развитие термодинамики приводит к формулировке первого и второго начал термодинамики. Начала термодинамики имеют много граней и соответственно много формулировок. Так ядром первого начала является принцип эквивалентности, устанавливающий точную связь между теплотой и работой. Это означает, что количества работы и теплоты взаимопревращаются друг в друга в строго эквивалентном соотношении. Первое начало является законом сохранения энергии с учетом тепловых явлений. Сам закон сохранения энергии может быть сформулирован так: полная энергия замкнутой системы постоянна.

Электродинамика. Положительное и отрицательное электричество известно с древних времен. Более 200 лет развивается теория электричества. Носителем положительного электричества являются протоны, носителем отрицательного электричества – электроны. Это значит, что если вещество имеет отрицательный заряд, то оно содержит в избытке электроны; положительный заряд вызывается недостатком электронов. Основное свойство электрических зарядов состоит в том, что одноименные заряды отталкиваются, а разноименные притягиваются.

В 1785 г. французский физик Ш. О. де Кулон (1736-1806) подробно исследовал электростатические силы посредством чувствительных крутильных весов, аналогичных тем, которые применял Кавендиш для определения гравитационной постоянной. Обобщив экспериментальный материал, Кулон вывел закон для электростатической силы, который он выразил формулой

где q1, q2 – заряды тел; R – расстояние между зарядами.

При движении зарядов относительно друг друга появляется дополнительная магнитная сила. Поэтому общая сила (объединяющая электрическую и магнитную) называется электромагнитной. Мы будем подразумевать, что электрические силы (поле) – соответствуют покоящимся зарядам, магнитные силы (поле) – движущимся зарядам. Все многообразие этих сил и зарядов хорошо описывается системой известных уравнений классической электродинамики (уравнениями Максвелла). Охарактеризуем эти уравнения качественно посредством словесных определений.

Основными выводами, связанными с этими уравнениями, являются следующие.

Силу, действующую на малое заряженное тело, удобно представить в виде

q · E,

где q – его заряд (положительный или отрицательный); Е – так называемая напряженность электрического поля.

Е есть сила, которая действовала бы на тело, несущее единичный заряд, если бы оно находилось в рассматриваемой точке.

Магнитный заряд отличается от электрического тем, что невозможно полностью отделить полюсы друг от друга. Магнитное поле всюду свободно, тогда как электрическое поле свободно в точках, где нет зарядов.

Электрическое поле (покоящихся зарядов) является безвихревым. Поле магнитной напряженности – вихревое.

ВОПРОСЫ ДЛЯ СЕМИНАРОВ

1. По какой причине физика занимала лидирующее место среди других естественных наук в течение последних столетий?

2. Что характерно для физического изучения окружающей реальности?

3. Какие четыре концептуальные системы (по Гейзенбергу) можно выделить в теоретической физике?

5. Что такое температура?

6. Какие условия необходимы для существования электрического тока?

9. Почему система уравнений электродинамики Максвелла является замкнутой системой самосогласованных уравнений?

Интересоваться окружающим миром и закономерностями его функционирования и развития природно и правильно. Именно поэтому разумно обращать свое внимание на естественные науки, например, физику, которая объясняет саму сущность формирования и развития Вселенной. Основные физические законы несложно понять. Уже в очень юном возрасте школа знакомит детей с этими принципами.

Для многих начинается эта наука с учебника "Физика (7 класс)". Основные понятия и законы механики и термодинамики открываются перед школьниками, они знакомятся с ядром главных физических закономерностей. Но должно ли знание ограничиваться школьной скамьей? Какие физические законы должен знать каждый человек? Об этом и пойдет речь далее в статье.

основные законы физики

Наука физика

Многие нюансы описываемой науки знакомы всем с раннего детства. А связано это с тем, что, в сущности, физика представляет собой одну из областей естествознания. Она повествует о законах природы, действие которых оказывает влияние на жизнь каждого, а во многом даже обеспечивает ее, об особенностях материи, ее структуре и закономерностях движения.

основные законы физики 7 9 класс

Общий закон

Некоторые основные законы физики применяются в разнообразных отраслях науки. Кроме них существуют такие, которые принято считать общими для всей природы. Речь идет о законе сохранения и превращения энергии.

Он подразумевает, что энергия каждой замкнутой системы при протекании в ней любых явлений непременно сохраняется. Тем не менее она способна трансформироваться в другую форму и эффективно менять свое количественное содержание в различных частях названной системы. В то же время в незамкнутой системе энергия уменьшается при условии увеличения энергии любых тел и полей, которые вступают во взаимодействие с ней.

Помимо приведенного общего принципа, содержит физика основные понятия, формулы, законы, которые необходимы для толкования процессов, происходящих в окружающем мире. Их исследование может стать невероятно увлекательным занятием. Поэтому в этой статье будут рассмотрены основные законы физики кратко, а чтобы разобраться в них глубже, важно уделить им полноценное внимание.

основные законы физики которые должен знать каждый человек

Механика

Открывают юным ученым многие основные законы физики 7-9 классы школы, где более полно изучается такая отрасль науки, как механика. Ее базовые принципы описаны ниже.

  1. Закон относительности Галилея (также его называют механической закономерностью относительности, или базисом классической механики). Суть принципа заключается в том, что в аналогичных условиях механические процессы в любых инерциальных системах отсчета проходят совершенно идентично.
  2. Закон Гука. Его суть в том, что чем большим является воздействие на упругое тело (пружину, стержень, консоль, балку) со стороны, тем большей оказывается его деформация.

Законы Ньютона (представляют собой базис классической механики):

  1. Принцип инерции сообщает, что любое тело способно состоять в покое или двигаться равномерно и прямолинейно только в том случае, если никакие другие тела никаким образом на него не воздействуют, либо же если они каким-либо образом компенсируют действие друг друга. Чтобы изменить скорость движения, на тело необходимо воздействовать с какой-либо силой, и, конечно, результат воздействия одинаковой силы на разные по величине тела будет тоже различаться.
  2. Главная закономерность динамики утверждает, что чем больше равнодействующая сил, которые в текущий момент воздействуют на данное тело, тем больше полученное им ускорение. И, соответственно, чем больше масса тела, тем этот показатель меньше.
  3. Третий закон Ньютона сообщает, что любые два тела всегда взаимодействуют друг с другом по идентичной схеме: их силы имеют одну природу, являются эквивалентными по величине и обязательно имеют противоположное направление вдоль прямой, которая соединяет эти тела.
  4. Принцип относительности утверждает, что все явления, протекающие при одних и тех же условиях в инерциальных системах отсчета, проходят абсолютно идентичным образом.

Термодинамика

Школьный учебник, открывающий ученикам основные законы ("Физика. 7 класс"), знакомит их и с основами термодинамики. Ее принципы мы коротко рассмотрим далее.

Законы термодинамики, являющиеся базовыми в данной отрасли науки, имеют общий характер и не связаны с деталями строения конкретного вещества на уровне атомов. Кстати, эти принципы важны не только для физики, но и для химии, биологии, аэрокосмической техники и т. д.

Например, в названной отрасли существует не поддающееся логическому определению правило, что в замкнутой системе, внешние условия для которой неизменны, со временем устанавливается равновесное состояние. И процессы, продолжающиеся в ней, неизменно компенсируют друг друга.

Еще одно правило термодинамики подтверждает стремление системы, которая состоит из колоссального числа частиц, характеризующихся хаотическим движением, к самостоятельному переходу из менее вероятных для системы состояний в более вероятные.

А закон Гей-Люссака (его также называют газовым законом) утверждает, что для газа определенной массы в условиях стабильного давления результат деления его объема на абсолютную температуру непременно становится величиной постоянной.

Еще одно важное правило этой отрасли - первый закон термодинамики, который также принято называть принципом сохранения и превращения энергии для термодинамической системы. Согласно ему, любое количество теплоты, которое было сообщено системе, будет израсходовано исключительно на метаморфозу ее внутренней энергии и совершение ею работы по отношению к любым действующим внешним силам. Именно эта закономерность и стала базисом для формирования схемы работы тепловых машин.

Другая газовая закономерность - это закон Шарля. Он гласит, что чем больше давление определенной массы идеального газа в условиях сохранения постоянного объема, тем больше его температура.

основные законы физика 7 класс

Электричество

Открывает юным ученым интересные основные законы физики 10 класс школы. В это время изучаются главные принципы природы и закономерности действия электрического тока, а также другие нюансы.

Закон Ампера, например, утверждает, что проводники, соединенные параллельно, по которым течет ток в одинаковом направлении, неизбежно притягиваются, а в случае противоположного направления тока, соответственно, отталкиваются. Порой такое же название используют для физического закона, который определяет силу, действующую в существующем магнитном поле на небольшой участок проводника, в данный момент проводящего ток. Ее так и называют – сила Ампера. Это открытие было сделано ученым в первой половине девятнадцатого века (а именно в 1820 г.).

Закон сохранения заряда является одним из базовых принципов природы. Он гласит, что алгебраическая сумма всех электрических зарядов, возникающих в любой электрически изолированной системе, всегда сохраняется (становится постоянной). Несмотря на это, названный принцип не исключает и возникновения в таких системах новых заряженных частиц в результате протекания некоторых процессов. Тем не менее общий электрический заряд всех новообразованных частиц непременно должен равняться нулю.

Закон Кулона является одним из основных в электростатике. Он выражает принцип силы взаимодействия между неподвижными точечными зарядами и поясняет количественное исчисление расстояния между ними. Закон Кулона позволяет обосновать базовые принципы электродинамики экспериментальным образом. Он гласит, что неподвижные точечные заряды непременно взаимодействуют между собой с силой, которая тем выше, чем больше произведение их величин и, соответственно, тем меньше, чем меньше квадрат расстояния между рассматриваемыми зарядами и диэлектрическая проницаемость среды, в которой и происходит описываемое взаимодействие.

Закон Ома является одним из базовых принципов электричества. Он гласит, что чем больше сила постоянного электрического тока, действующего на определенном участке цепи, тем больше напряжение на ее концах.

"Правилом правой руки" называют принцип, который позволяет определить направление в проводнике тока, движущегося в условиях воздействия магнитного поля определенным образом. Для этого необходимо расположить кисть правой руки так, чтобы линии магнитной индукции образно касались раскрытой ладони, а большой палец вытянуть по направлению движения проводника. В таком случае остальные четыре выпрямленных пальца определят направление движения индукционного тока.

Также этот принцип помогает выяснить точное расположение линий магнитной индукции прямолинейного проводника, проводящего ток в данный момент. Это происходит так: поместите большой палец правой руки таким образом, чтобы он указывал направление тока, а остальными четырьмя пальцами образно обхватите проводник. Расположение этих пальцев и продемонстрирует точное направление линий магнитной индукции.

Принцип электромагнитной индукции представляет собой закономерность, которая объясняет процесс работы трансформаторов, генераторов, электродвигателей. Данный закон состоит в следующем: в замкнутом контуре генерируемая электродвижущая сила индукции тем больше, чем больше скорость изменения магнитного потока.

основные законы физики 10 класс

Оптика

Отрасль "Оптика" также отражает часть школьной программы (основные законы физики: 7-9 классы). Поэтому эти принципы не так сложны для понимания, как может показаться на первый взгляд. Их изучение приносит с собой не просто дополнительные знания, но лучшее понимание окружающей действительности. Основные законы физики, которые можно отнести к области изучения оптики, следующие:

  1. Принцип Гюйнеса. Он представляет собой метод, который позволяет эффективно определить в каждую конкретную долю секунды точное положение фронта волны. Суть его состоит в следующем: все точки, которые оказываются на пути у фронта волны в определенную долю секунды, в сущности, сами по себе становятся источниками сферических волн (вторичных), в то время как размещение фронта волны в ту же долю секунду является идентичным поверхности, которая огибает все сферические волны (вторичные). Данный принцип используется с целью объяснения существующих законов, связанных с преломлением света и его отражением.
  2. Принцип Гюйгенса-Френеля отражает эффективный метод разрешения вопросов, связанных с распространением волн. Он помогать объяснить элементарные задачи, связанные с дифракцией света. волн. Применяется в равной степени и для отражения в зеркале. Его суть состоит в том, что как ниспадающий луч, так и тот, который был отражен, а также перпендикуляр, построенный из точки падения луча, располагаются в единой плоскости. Важно также помнить, что при этом угол, под которым падает луч, всегда абсолютно равен углу преломления.
  3. Принцип преломления света. Это изменение траектории движения электромагнитной волны (света) в момент движения из одной однородной среды в другую, которая значительно отличается от первой по ряду показателей преломления. Скорость распространения света в них различна.
  4. Закон прямолинейного распространения света. По своей сути он является законом, относящимся к области геометрической оптики, и заключается в следующем: в любой однородной среде (вне зависимости от ее природы) свет распространяется строго прямолинейно, по кратчайшему расстоянию. Данный закон просто и доступно объясняет образование тени.

основные законы физики для егэ

Атомная и ядерная физика

Основные законы квантовой физики, а также основы атомной и ядерной физики изучаются в старших классах средней школы и высших учебных заведениях.

Так, постулаты Бора представляют собой ряд базовых гипотез, которые стали основой теории. Ее суть состоит в том, что любая атомная система может оставаться устойчивой исключительно в стационарных состояниях. Любое излучение или поглощение энергии атомом непременно происходит с использованием принципа, суть которого следующая: излучение, связанное с транспортацией, становится монохроматическим.

Эти постулаты относятся к стандартной школьной программе, изучающей основные законы физики (11 класс). Их знание является обязательным для выпускника.

Основные законы физики, которые должен знать человек

Некоторые физические принципы, хоть и относятся к одной из отраслей данной науки, тем не менее носят общий характер и должны быть известны всем. Перечислим основные законы физики, которые должен знать человек:

  • Закон Архимеда (относится к областям гидро-, а также аэростатики). Он подразумевает, что на любое тело, которое было погружено в газообразное вещество или в жидкость, действует своего рода выталкивающая сила, которая непременно направлена вертикально вверх. Эта сила всегда численно равна весу вытесненной телом жидкости или газа.
  • Другая формулировка этого закона следующая: тело, погруженное в газ или жидкость, непременно теряет в весе столько же, сколько составила масса жидкости или газа, в который оно было погружено. Этот закон и стал базовым постулатом теории плавания тел.
  • Закон всемирного тяготения (открыт Ньютоном). Его суть состоит в том, что абсолютно все тела неизбежно притягиваются друг к другу с силой, которая тем больше, чем больше произведение масс данных тел и, соответственно, тем меньше, чем меньше квадрат расстояния между ними.

Это и есть 3 основных закона физики, которые должен знать каждый, желающий разобраться в механизме функционирования окружающего мира и особенностях протекания процессов, происходящих в нем. Понять принцип их действия достаточно просто.

3 основных закона физики

Ценность подобных знаний

Основные законы физики обязаны быть в багаже знаний человека, независимо от его возраста и рода деятельности. Они отражают механизм существования всей сегодняшней действительности, и, в сущности, являются единственной константой в непрерывно изменяющемся мире.

Основные законы, понятия физики открывают новые возможности для изучения окружающего мира. Их знание помогает понимать механизм существования Вселенной и движения всех космических тел. Оно превращает нас не в просто соглядатаев ежедневных событий и процессов, а позволяет осознавать их. Когда человек ясно понимает основные законы физики, то есть все происходящие вокруг него процессы, он получает возможность управлять ими наиболее эффективным образом, совершая открытия и делая тем самым свою жизнь более комфортной.

Итоги

Некоторые вынуждены углубленно изучать основные законы физики для ЕГЭ, другие - по роду деятельности, а некоторые - из научного любопытства. Независимо от целей изучения данной науки, пользу полученных знаний трудно переоценить. Нет ничего более удовлетворяющего, чем понимание основных механизмов и закономерностей существования окружающего мира.


Фи́зика (от др.-греч. φύσις — природа) — область естествознания, наука, изучающая наиболее общие и фундаментальные закономерности, определяющие структуру и эволюцию материального мира. Законы физики лежат в основе всего естествознания. [1]

В современном мире значение физики чрезвычайно велико. Всё то, чем отличается современное общество от общества прошлых веков, появилось в результате применения на практике физических открытий. Так, исследования в области электромагнетизма привели к появлению телефонов и позже мобильных телефонов, открытия в термодинамике позволили создать автомобиль, развитие электроники привело к появлению компьютеров.

Физическое понимание процессов, происходящих в природе, постоянно развивается. Большинство новых открытий вскоре получают применение в технике и промышленности. Однако новые исследования постоянно поднимают новые загадки и обнаруживают явления, для объяснения которых требуются новые физические теории. Несмотря на огромный объём накопленных знаний, современная физика ещё очень далека от того, чтобы объяснить все явления природы.

Общенаучные основы физических методов разрабатываются в теории познания и методологии науки.

Содержание

Предмет физики

Физика — это наука о природе (естествознание) в самом общем смысле (часть природоведения). Она изучает различные субстанции бытия (материю, вещество, поля) и наиболее простые и вместе с тем наиболее общие формы её движения, а также фундаментальные взаимодействия природы, управляющие движением материи.

Физика тесно связана с математикой: математика предоставляет аппарат, с помощью которого физические законы могут быть точно сформулированы. Физические теории почти всегда формулируются в виде математических выражений, причём используются более сложные разделы математики, чем обычно в других науках. И наоборот, развитие многих областей математики стимулировалось потребностями физических теорий (см. математическая физика).

Научный метод

Физика — естественная наука. В ее основе лежит экспериментальное исследование явлений природы, а ее задача — формулировка законов, которыми объясняются эти явления. Физика сосредоточивается на изучении фундаментальных и простейших явлений и на ответах на простые вопросы: из чего состоит материя, каким образом частицы материи взаимодействуют между собой, по каким правилам и законам осуществляется движение частиц и т. д. В основе физических исследований лежат наблюдения. Обобщение наблюдений позволяет физикам формулировать гипотезы о совместных общих черт этих явлений, по которым велись наблюдения. Гипотезы проверяются с помощью продуманного эксперимента, в котором явление проявлялось бы в как можно более чистом виде и не осложнялось бы другими явлениями. Анализ данных совокупности экспериментов позволяет сформулировать закономерность. На первых этапах исследований закономерности носят преимущественно эмпирический, феноменологический характер, то есть явление описывается количественно с помощью определенных параметров, характерных для исследуемых тел и веществ. Анализируя закономерности и параметры, физики строят физические теории, которые позволяют объяснить изучаемые явления на основе представлений о строении тел и веществ и взаимодействие между их составными частями. Физические теории, в свою очередь, создают предпосылки для постановки точных экспериментов, в ходе которых в основном определяются рамки их применения. Общие физические теории позволяют формулировки физических законов, которые считаются общими истинами, пока накопления новых экспериментальных результатов не потребует их уточнения.

Так, например, Стивен Грей заметил, что электричество можно передавать на довольно значительное расстояние с помощью увлажненных нитей и начал исследовать это явление. Георг Ом сумел найти для него количественную закономерность — ток в проводнике пропорционален напряжению (закон Ома). При этом, конечно, эксперименты Ома опирались на новые источники питания и на новые способы измерять действие электрического тока, что позволило количественно охарактеризовать его. По результатам дальнейших исследований удалось абстрагироваться от формы и длины проводников и ввести такие феноменологические характеристики, как удельное сопротивление проводника и внутреннее сопротивление источника питания. Закон Ома и поныне основа электротехники, однако исследования установили также рамки его применения — открыли элементы электрической цепи с нелинейными вольт-амперными характеристиками а также вещества, не имеющие электрического сопротивления — сверхпроводники. После открытия заряженных микроскопических частиц — электронов, была сформулирована микроскопическая теория электропроводности, объясняющая зависимости сопротивления от температуры посредством рассеяния электронов на колебаниях кристаллической решетки, примесях и т. д.

Количественный характер физики

Физика — количественная наука. Физический эксперимент опирается на измерения, то есть сравнение характеристик исследуемых явлений с определенными эталонами. С этой целью физика развила совокупность физических единиц и измерительных приборов. Отдельные физические единицы объединяются в системы физических единиц. Так, на современном этапе развития науки стандартом является Международная система СИ.

Полученные экспериментально количественные зависимости позволяют использовать для своей обработки математические методы и строить теоретические, то есть математические модели изучаемых явлений.

С изменением представлений о природе тех или иных явлений меняются также физические единицы, в которых измеряются физические величины. Так, например, для измерения температуры сначала были предложены произвольные температурные шкалы, которые делили промежуток температур между характерными явлениями (например, замерзанием и кипением воды) на определенное количество меньших промежутков, которые получили название градусов температуры. Для измерения количества теплоты была введена единица — калория, которая определяла количество теплоты, необходимой для нагрева грамма воды на один градус. Однако со временем физики установили соответствие между механической и тепловой формой энергии. Таким образом, оказалось, что предложенная ранее единица количества теплоты, калория, является излишней, как единица измерения температуры. И количество теплоты и температуру можно измерять в единицах механической энергии. В современную эпоху калория и градус не вышли из практического употребления, но между этими величинами и единицей энергии Джоулем существует точное числовое соотношение. Градус, как единица измерения температуры входит в систему СИ, а коэффициент перехода от температурной к энергетическим величинам, постоянная Больцмана, считается физической постоянной.

История физики

Физика — это наука о материи, ее свойствах и движении. Она является одной из наиболее древних научных дисциплин. Люди пытались понять свойства материи из древнейших времен: почему тела падают на землю, почему разные вещества имеют различные свойства и т. д. Интересовали людей также вопрос о строении мира, о природе Солнца и Луны. Сначала ответы на эти вопросы пытались искать в философии. В основном философские теории, которые пытались дать ответы на такие вопросы не проверялись на практике. Однако, несмотря на то, что нередко философские теории неправильно описывали наблюдения, еще в древние времена человечество добилось значительных успехов в астрономии, а греческий мудрец Архимед даже сумел дать точные количественные формулировки многих законов механики и гидростатики.

Период до научной революции

Научная революция

Период научной революции характеризуется утверждением научного метода исследований, вычленением физики из массы натурфилософии в отдельную область и развитием отдельных разделов физики: механики, оптики, термодинамики и т. д.

После установления законов механики Ньютоном, следующим исследовательским полем стало электричество. Основы создания теории электричества заложили наблюдения и опыты таких ученых 17-го века, как Роберт Бойль, Стивен Грей, Бенджамин Франклин. Сложились основные понятия — электрический заряд и электрический ток. В 1831 году английский физик Майкл Фарадей объединил электричество и магнетизм, продемонстрировав, что движущийся магнит индуцирует в электрической цепи ток. Опираясь на эту концепцию, Джеймс Клерк Максвелл построил теорию электромагнитного поля. Кроме электромагнитных явлений уравнения Максвелла описывают свет. Подтверждение этому нашел Генрих Герц, открыв радиоволны.

С построением теории электромагнитного поля и электромагнитных волн победой волновой теории света, основанной Гюйгенсом, над корпускулярной теорией Ньютона, завершилось построение классической оптики. На этом пути оптика обогатилась пониманием дифракции и интерференции света, достигнутым благодаря трудам Френеля и Янга.

Под конец девятнадцатого века физики подошли к значительному открытию — экспериментальному подтверждению существования атома.

В конце девятнадцатого века изменилась роль физики в обществе. Возникновение новой техники: электричества, радио, автомобиля и т. д., требовало большого объема прикладных исследований. Занятия наукой стало профессией. Фирма General Electric первой открыла собственные исследовательские лаборатории. Такие же лаборатории стали появляться в других фирмах.

Смена парадигм

Конец девятнадцатого, начало двадцатого века был временем, когда под давлением новых экспериментальных данных физикам пришлось пересмотреть старые теории и заменить их новыми, заглядывая все глубже в строение материи. Эксперимент Майкельсона — Морли выбил основу из-под ног электромагнетизма, поставив под сомнение существование эфира. Были открыты новые явления, такие как рентгеновские лучи и радиоактивность. Не успели физики доказать существование атома, как появились доказательства существования электрона, эксперименты с фотоэффекта и измерения спектра теплового излучения давали результаты, которые невозможно было объяснить, исходя из принципов классической физики. В прессе этот период назывался кризисом физики, но одновременно он стал периодом триумфа физики, сумевшей выработать новые революционные теории, которые не только объяснили непонятные явления, но и многие другие, открыв путь к новому пониманию природы.

В 1905 году Альберт Эйнштейн построил специальную теорию относительности, которая продемонстрировала, что понятие эфира не требуется при объяснении электромагнитных явлений. При этом пришлось изменить классическую механику Ньютона, дав ей новую формулировку, справедливую при больших скоростях. Коренным образом изменились также представления о природе пространства и времени. Эйнштейн развил свою теорию в общую теорию относительности, опубликованную в 1916 году. Новая теория включала в себя описание гравитационных явлений и открыла путь к становлению космологии — науки об эволюции Вселенной.

Рассматривая задачу о тепловом излучении абсолютно черного тела Макс Планк в 1900 году предложил невероятную идею, что электромагнитные волны излучаются порциями, энергия которых пропорциональна частоте. Эти порции получили название квантов, а сама идея начала построение новой физической теории — квантовой механики, которая еще больше изменила классическую ньютоновскую механику, на этот раз при очень малых размерах физической системы. В том же 1905-м году Альберт Эйнштейн применил идею Планка для успешного объяснения экспериментов с фотоэффектом, предположив, что электромагнитные волны не только излучаются, но и поглощаются квантами. Корпускулярная теория света, которая, казалось, потерпела сокрушительное поражение в борьбе с волновой теорией, вновь получила поддержку.

Спор между корпускулярной и волновой теорией нашел свое решение в корпускулярно-волновом дуализме, гипотезе, сформулированной Луи де Бройлем. По этой гипотезе не только квант света, а любая другая частица проявляет одновременно свойства, присущие как корпускул, так и волны. Гипотеза Луи де Бройля подтвердилась в экспериментах с дифракции электронов.

В 1911 году Эрнест Резерфорд предложил планетарную теорию атома, а в 1913 году Нильс Бор построил модель атома, в которой постулировал квантовый характер движения электронов. Благодаря работам Вернера Гайзенберга, Эрвина Шредингера, Вольфганга Паули, Поля Дирака и многих других квантовая механика нашла свое точную математическую формулировку, подтвердждённую многочисленными экспериментами. В 1927 году была произведена копенгагенская интерпретация, которая открывала путь для понимания законов квантового движения на качественном уровне.

Физика современности

С открытием радиоактивности Анри Беккерелем началось развитие ядерной физики, которая привела к появлению новых источников энергии: атомной энергии и энергии ядерного синтеза. Открытые при исследованиях ядерных реакции новые частицы: нейтрон, протон, нейтрино, дали начало физике элементарных частиц. Эти новые открытия на субатомном уровне оказались очень важными для физики на уровне Вселенной и позволили сформулировать теорию её эволюции — теорию Большого взрыва.

Сложилось окончательное разделение труда между физиками-теоретиками и физиками-экспериментаторами. Энрико Ферми был, пожалуй, последним выдающимся физиком, успешным как в теории, так и в экспериментальной работе.

Передний край физики переместился в область исследования фундаментальных законов, ставя перед собой цель создать теорию, которая объясняла бы Вселенную, объединив теории фундаментальных взаимодействий. На этом пути физика получила частичные успехи в виде теории электрослабого взаимодействия и теории кварков, обобщённой в так называемой стандартной модели. Однако, квантовая теория гравитации до сих пор не построена. Определенные надежды связываются с теорией струн.

Начиная с создания квантовой механики, быстрыми темпами развивается физика твердого тела, открытия которой привели к возникновению и развитию электроники, а с ней и информатики, которые внесли коренные изменения в культуру человеческого общества.

Теоретическая и экспериментальная физика

В основе своей физика — экспериментальная наука: все её законы и теории основываются и опираются на опытные данные. Однако зачастую именно новые теории являются причиной проведения экспериментов и, как результат, лежат в основе новых открытий. Поэтому принято различать экспериментальную и теоретическую физику.

Экспериментальная физика исследует явления природы в заранее подготовленных условиях. В её задачи входит обнаружение ранее неизвестных явлений, подтверждение или опровержение физических теорий. Многие достижения в физике были сделаны благодаря экспериментальному обнаружению явлений, не описываемых существующими теориями. Например, экспериментальное изучение фотоэффекта послужило одной из посылок к созданию квантовой механики (хотя рождением квантовой механики считается появление гипотезы Планка, выдвинутой им для разрешения ультрафиолетовой катастрофы — парадокса классической теоретической физики излучения).

В задачи теоретической физики входит формулирование общих законов природы и объяснение на основе этих законов различных явлений, а также предсказание до сих пор неизвестных явлений. Верность любой физической теории проверяется экспериментально: если результаты эксперимента совпадают с предсказаниями теории, она считается адекватной (достаточно точно описывающей данное явление).

При изучении любого явления экспериментальные и теоретические аспекты одинаково важны.

Прикладная физика

От своего зарождения физика всегда имела большое прикладное значение и развивалась вместе с машинами и механизмами, которые человечество использовало для своих нужд. Физика широко используется в инженерных науках, немало физиков были одновременно изобретателями и, наоборот. Механика, как часть физики, тесно связана с теоретической механикой и сопротивлением материалов, как инженерными науками. Термодинамика связана с теплотехникой и конструированием тепловых двигателей. Электричество связано с электротехникой и электроникой, для становления и развития которой очень важны исследования в области физики твердого тела. Достижения ядерной физики обусловили появление ядерной энергетики, и тому подобное.

Физика также имеет широкие междисциплинарные связи. На границе физики, химии и инженерных наук возникла и быстро развивается такая отрасль науки как материаловедение. Методы и инструменты используются химией, что привело к становлению двух направлений исследований: физической химии и химической физики. Все мощнее становится биофизика — область исследований на границе между биологией и физикой, в которой биологические процессы изучаются исходя из атомарного структуры органических веществ. Геофизика изучает физическую природу геологических явлений. Медицина использует методы, такие как рентгеновские и ультразвуковые исследования, ядерный магнитный резонанс — для диагностики, лазеры — для лечения болезней глаз, ядерное облучение — в онкологии, и тому подобное.

Основные теории

Хотя физика имеет дело с разнообразными системами, некоторые физические теории применимы в больших областях физики. Такие теории считаются в целом верными при дополнительных ограничениях. Например, классическая механика верна, если размеры исследуемых объектов намного больше размеров атомов, скорости существенно меньше скорости света, и гравитационные силы малы. Эти теории всё ещё активно исследуются; например, такой аспект классической механики, как теория хаоса был открыт только в XX веке. Они составляют основу для всех физических исследований.

Читайте также: