Основные космологические концепции реферат

Обновлено: 08.07.2024

Современная космология - это астрофизическая теория структуры и динамики изменения Метагалактики, включающая в себя и определенное понимание свойств всей Вселенной. Космология основывается на астрономических наблюдениях Галактики и других звездных систем, общей теории относительности, физике микропроцессов и высоких плотностей энергии, релятивистской термодинамике и ряде других новейших физических теорий.

Содержание работы

Список использованной литературы……………………………………………………. 15

Файлы: 1 файл

реферат концепции.docx

Космологические модели вселенной

  1. Предмет космологии………………………………….……………… ………………….4
  2. Исторические модели Вселенной. ……………………………………………………..6
  3. Космологическая модель Эйнштейн – Фридман. …………………………………….8
  4. Эффект Доплера. ……………………………………………………………………….10
  5. Модель большого взрыва……………………………………………………………. .12

Список использованной литературы…………………………………………………… . 15

Современная космология - это астрофизическая теория структуры и динамики изменения Метагалактики, включающая в себя и определенное понимание свойств всей Вселенной. Космология основывается на астрономических наблюдениях Галактики и других звездных систем, общей теории относительности, физике микропроцессов и высоких плотностей энергии, релятивистской термодинамике и ряде других новейших физических теорий.

Предмет космологии.

Современная космология - это астрофизическая теория структуры и динамики изменения Метагалактики, включающая в себя и определенное понимание свойств всей Вселенной. Космология основывается на астрономических наблюдениях Галактики и других звездных систем, общей теории относительности, физике микропроцессов и высоких плотностей энергии, релятивистской термодинамике и ряде других новейших физических теорий.

Выводы космологии называются моделями происхождения и развития Вселенной. Почему моделями? Дело в том, что одним из основных принципов современного естествознания является представление о возможности проведения в любое время управляемого и воспроизводимого эксперимента над изучаемым предметом. Только если можно провести бесконечное в принципе количество экспериментов, и все они приводят к одному результату, на основе этих экспериментов делают заключение о наличии закона, которому подчиняется функционирование данного объекта. Лишь в этом случае результат считается вполне достоверным с научной точки зрения.

К Вселенной в целом это методологическое правило остается неприменимым. Наука формулирует универсальные законы, а Вселенная уникальна. Это противоречие, которое требует считать все заключения о происхождении и развитии Вселенной не законами, а лишь моделями, т.е. возможными вариантами объяснения. Строго говоря, все законы и научные теории являются моделями, поскольку они могут быть заменены в процессе развития науки другими концепциями, но модели Вселенной в большой степени модели, чем многие иные научные утверждения.

Исторические модели Вселенной

Предполагалось, что пространство – абсолютно, однородно и изотропно, а время – абсолютно и однородно. Это устраивало теологический подход к пониманию мира: система мира без начала и конца, как в пространственном, так и во временном понимании. Бог создал – и все! С материалистической точки зрения можно предположить, что Бог в теологии – это и есть пространство и время в физике. Получалось, что мир в целом не эволюционирует. Пространство и время представлялось как жесткий каркас (они же абсолютные!) и не участвовали в процессах, т.е. рассматривались как параметры. Заметим при этом, что если неизменность пространства и времени вызывала некоторый дискомфорт, то бесконечность мира частично это неудобство сглаживала. Можно даже сказать, что стационарная модель мира выполняла как бы роль стыковочного узла между культурами Запада (рационализм) и Востока (мистицизм).

Космологическая модель Эйнштейна – Фридмана

Первая современная космологическая теория была предложена Эйнштейном в 1917 г. В качестве следствия его формулировки общей теории относительности (ОТО). Эйнштейн показал, что общая теория относительности однозначно объясняет возможность существования статистической Вселенной, которая не изменяется со временем. Как мы это сейчас понимаем, этого не может быть, но в то время казалось, что это важный успех. Этот парадокс, по-видимому, был связан с тем, что из представлений ученых Древней Греции и Египта утвердилось мнение о незыблемости, стационарности Вселенной, и модель Эйнштейна как будто подтвердило это.

Эффект Доплера

Американский астроном Э. Хаббл (1889 - 1953) установил в 1929 г. Закон:

Где V- лучевая скорость, r- расстояние до объекта, H- постоянная Хаббла, равная ~ (3 -5) 10 -18 степени с -1 и названная так в его честь. Этот закон экспериментально подтвердил расширение Вселенной. Из H можно определить возраст Вселенной (t~1/H), , который оценивается в 40 – 20 миллиардов лет. По данным радиоактивного распада некоторых веществ возраст Земли определяется в 5 миллиардов лет.

В работах известного американского физика Г.А. Гамова (1904- 1968), русского по происхождению исследуются физические процессы, происходившие на разных стадиях расширяющейся Вселенной. Особенности развития космологии нашли отражения в различных моделях Вселенной. Общим для них является представление о нестационарном изотропном и однородном характере её моделей.

Анализ этапов развития представлений о Вселенной. Характеристика релятивистской космологии (теории А. Эйнштейна, А.А. Фридмана). Концепция расширяющейся Вселенной. Анализ и принципы концепции "Большого Взрыва". Астрономические наблюдения черных дыр

Рубрика Астрономия и космонавтика
Вид статья
Язык русский
Дата добавления 20.02.2019
Размер файла 18,8 K

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

СОВРЕМЕННЫЕ КОСМОЛОГИЧЕСКИЕ КОНЦЕПЦИИ

Военный институт материального обеспечения.

Вольск, Саратовская обл., Россия

MODERN COSMOLOGICAL CONCEPTS

Volsk Military Logistic Institute. Volsk, Saratov region, Russia

Космология представляет собой современное направление глобального эволюционизма, которая рассматривает Вселенную (Метагалактику) как структуру, как единое целое. Космологические концепции рассматривают проблемы общих закономерностей строения и эволюции Вселенной, материи, пространства, времени.

Одна из удивительнейших и интереснейших загадок современного естествознания - это происхождение и эволюция Вселенной. Процессы, происходящие в ближайшем и отдаленном космосе, оказывают прямое воздействие на эволюцию всего живого на Земле. Термоядерный синтез элементов, происходящий на Солнце и в далеких звёздах, даёт в руки человечеству надежду овладеть им в целях не только выживания в будущем, но и познания Вселенной. Однако для того, чтобы оценить степень воздействия Вселенной на всё живое на Земле, надо иметь представление о процессах, которые происходят в глубинах самой Вселенной…

Вселенная обычно определяется как Природа, Космос, действительный окружающий Мир, Мироздание, а также совокупность всего, что физически существует. Это совокупность пространства и времени, всех форм материи, физических законов и констант, которые управляют состояниями, движениями материи, пространством-временем.

Астрономически наблюдаемая Вселенная - Метагалактика. По данным НАСА, полученным с помощью WMAP, возраст Вселенной от момента

Большого взрыва был оценён в 13,77±0,059 млрд лет (данные 2009 года) [WMAP (англ. Wilkinson Microwave Anisotropy Probe) - космический аппарат НАСА, предназначенный для изучения реликтового излучения, образовавшегося в результате Большого взрыва. Запущен 30 июня 2001 года].

Однако есть и ещё одна точка зрения, которая связана с тем, что Вселенная никогда не возникала, а существовала вечно, изменяясь лишь в своих формах и проявлениях движений и состояний в ней. Представления о форме и размерах Вселенной в современной науке также являются дискуссионными. Предполагается, что протяжённость вселенной составляет не менее 93 млрд световых лет, при наблюдаемой части всего в 12,7 млрд световых лет. Это означает, что наблюдаемая нами Вселенная (Метагалактика) лишь часть Супермира, включающего множество вселенных.

Дальнейшее усложнение вещества во Вселенной

Хотя появление крупномасштабных структур во Вселенной привело к образованию множества разновидностей галактик и звезд, среди которых есть совершенно уникальные объекты, все же с точки зрения дальнейшей эволюции Вселенной особое значение имело появление звезд - красных гигантов. Именно в этих звёздах в ходе процессов звездного нуклеосинтеза появилось большинство элементов таблицы Менделеева. Это открыло возможность для новых усложнений вещества. В первую очередь, появилась возможность образования планет и появления на некоторых из них жизни и, возможно, разума. Поэтому образование планет стало следующим этапом в эволюции Вселенной.

Крупномасштабная Вселенная представляет собой расширяющееся пространство, заполненное губкообразной клочковатой структурой. Стенки этой губчатой структуры представляют собой скопления миллиардов галактик. Расстояния между ними составляют около миллиона световых лет.

Каждая галактика состоит из сотен миллиардов звёзд, которые обращаются вокруг центрального ядра. Размеры галактик достигают сотен тысяч световых лет.

Звёзды состоят в основном из водорода, который является самым распространённым химическим элементом во вселенной. Считается, что большинство звёзд являются кратными и представляют собой центры планетарных систем из нескольких планет. Расстояния между такими системами составляют десятки и сотни астрономических единиц.

Также остается неизвестным, является ли Вселенная множественносоединённой. Согласно стандартной модели Большого взрыва, Вселенная не имеет пространственных границ, но может быть пространственно ограничена. Это может быть понято на примере двумерной аналогии: поверхность сферы не имеет границ, но имеет ограниченную площадь, причём кривизна сферы постоянна в третьем измерении. Если вселенная действительно пространственно ограничена, то, двигаясь по прямой линии в любом направлении, можно попасть в отправную точку начала движения.

Согласно другим представлениям наша Вселенная представляет лишь часть от огромного множества других Вселенных, совокупность которых называется Мультивселенной (Метавселенной) - или Супермиром.

На сегодня наиболее логически непротиворечивой является модель многокомпонентной вселенной. То есть вселенная состоит из бесконечного количества Начал по типу Большого взрыва, из множества вселенных, которые независимо возникают в разные моменты времени, и пены сверхплотного скалярного поля между ними. Поэтому Вселенная (в представлении Супермира - множества вселенных) бесконечна и в пространстве и во времени. Даже допускается, что в разных вселенных могут существовать разные законы, разные элементарные частицы.

У каждой вселенной на каком-то огромном расстоянии от них должны существовать стенки, которые состоят из сверхплотного вакуума. Как они будут взаимодействовать с другими пузырями, другими вселенными - этот вопрос, которым занимается современная астрофизика.

Космологические концепции базируются на следующих предпосылках: формулируемые физикой фундаментальные законы мироустройства

считаются действующими во всей вселенной; истинными признаются только те выводы, которые не противоречат

возможности существования наблюдателя, то есть человека (антропный космологический принцип).

Что касается Вселенной, то современная космология утверждает, Метагалактика характеризуется двумя основными свойствами: однородностью (её свойства одинаковы во всех ее точках) и изотропностью (свойства одинаковы во всех направлениях).

Описанием гравитационного поля Вселенной являются уравнения А. Эйнштейна. Нестационарность Вселенной определяется двумя постулатами: принципом относительности, гласящим, что во всех инерциальных системах все законы сохраняются вне зависимости от того, с какими скоростями равномерно и прямолинейно движутся эти системы относительно друг друга; экспериментально подтвержденным постоянством скорости света теории относительности.

Из принятия теории относительности вытекает следствие: искривлённое пространство не может быть стационарным, оно должно расширяться или сжиматься. Следствием этого является красное смещение (понижение частот электромагнитного излучения: в видимой части спектра линии смещаются к его красному концу).

Структура Метагалактики

Крупномасштабную структуру Вселенной составляет множество галактик, которые представляют собой гигантские образования, содержащие звёзды, туманности и другие объекты.

Крупномасштабная Вселенная представляет собой структуру распределения материи на самых больших наблюдаемых масштабах напоминающую соты (ячейки). В них по Я. Зельдовичу находятся скопления галактик, которые удалены друг от друга на расстоянии 100-300 Мпк (мегапарсек). Таким образом, основной объём материи во Вселенной сосредоточен в ячейках пространства, представляющий собой пустоту - вакуум.

Уже в начале XX века было известно, что звёзды группируются в звёздные скопления, которые, в свою очередь, образуют галактики. Позже были найдены скопления галактик и сверхскопления галактик. В 1990-е было установлено, что в масштабах порядка 300 мегапарсек Вселенная выглядит однородной. Однако нарушение симметрии ведет к образованию космических неоднородностей называемых текстурами. Текстуры могут служить зародышами агрегатов вещества, превращающегося в ходе эволюции в галактики и их скопления, а менее плотные области получили название войды (пустоты). Это дало основание сделать вывод о том, что во Вселенной, наряду со светящимся веществом, должно находиться тёмное вещество.

Наблюдениями устанавливается, что каждая галактика окружена гало из темного вещества, масса которого в 10 раз больше массы видимых областей. Природа темного вещества остается неизвестной. В качестве претендентов на роль темного вещества предлагаются чёрные дыры, звёзды малой массы, остывшие звезды (коричневые карлики), нейтрино и гипотетические частицы.

Проблема существования и поиска внеземных цивилизаций

Эволюция Вселенной привела к образованию планет, на некоторых из них могут появиться жизнь и разум. Для этого нужны разнообразные химические элементы, которые могут объединяться в молекулы разных уровней сложности. Причины, заставляющие атомы объединяться в молекулы, известны науке достаточно хорошо.

В основе этих процессов лежат химические силы, за которыми скрывается одна из фундаментальных сил природы - электромагнитное взаимодействие. Процессы соединения атомов в молекулы широко распространены во Вселенной. В межзвёздной среде, где концентрация вещества ничтожно мала, тем не менее, обнаруживаются молекулы водорода. Там же встречаются мельчайшие пылинки, в их основе - кристаллики льда или углерода с примесью гидратов разных соединений. Молекулярный водород вместе с гелием образуют газопылевые облака. Но самое интересное, с чем столкнулись наблюдатели, - это неожиданно большое присутствие в космосе разнообразных органических молекул, вплоть до таких сложных, как молекулы аминокислот. В межзвездных облаках насчитали более 50 видов органических молекул. Ещё удивительнее, что органические молекулы находят во внешних оболочках некоторых не очень горячих звёзд и в сложных соединениях, температура которых незначительно отличается от температуры абсолютного нуля. Таким образом, синтез молекул, в том числе органических, распространённое и вполне обыденное явление в космосе.

В связи с этим возникает вопрос, способно ли усложнение вещества достигнуть самых высоких уровней вне планет, в межзвездной среде или в оболочках не очень горячих звезд. Иначе говоря, возможна ли там жизнь? Существует ли жизнь на других планетах? Данная тема неоднократно обыгрывалась в научно-фантастических произведениях, однако современная наука не позволяет дать ни положительного, ни отрицательного ответа на этот вопрос. Пока мы знаем только один вариант жизни в Космосе - на Земле, хотя вопрос о том, одиноки ли мы во Вселенной, волнует не только учёных, но и обычных людей.

Не случайно тема контакта с иным разумом - один из излюбленных сюжетов научно-фантастических романов. Кроме того, постоянно появляются люди, утверждающие, что они видели НЛО, контактировали с инопланетянами и т.д.

Представления о том, что Вселенная обитаема, были широко распространены в древности. Так, античные философы Анаксагор, Демокрит, Лукреций Кар считали, что, поскольку Космос образован из одной субстанции (например, из атомов) и подчиняется единому закону - Логосу, то в разных частях Космоса, как и на Земле, должна возникать жизнь. Позже аналогичные аргументы использовал Д. Бруно, выдвигая свою идею о множественности миров. Но до XX в. вопрос о возможности жизни на других планетах звучал настолько фантастично, что серьёзными учёными практически не обсуждался. Лишь в XX в. о распространённости жизни и разума во Вселенной заговорили всерьёз, и это были не умозрительные рассуждения, а подкреплённые точными расчётами выводы.

Среди тех, кто сыграл выдающуюся роль в утверждении новых взглядов на эту проблему, были К.Э. Циолковский, В.И. Вернадский, П. Тейяр де Шарден и другие крупнейшие учёные и философы.

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

1. Большой взрыв // Википедия [Интернет-ресурс]. Режим доступа:

5. Френкель, Е.Н. Концепции современного естествознания : физические, химические и биологические концепции : учеб. пособие / Е.Н. Френкель. - Ростов н/Д : Феникс, 2014. - 246 с.

Подобные документы

История развития представлений о Вселенной. Космологические модели происхождения Вселенной. Гелиоцентрическая система Николая Коперника. Рождение современной космологии. Модели Большого взрыва и "горячей Вселенной". Принцип неопределенности Гейзенберга.

реферат [359,2 K], добавлен 23.12.2014

Характеристика наиболее известных моделей Вселенной: модель де-Ситтера, Леметра, Милна, Фридмана, Эйнштейна-де Ситтера. Космологическая модель Канта. Теория Большого взрыва. Календарь Вселенной: основные эры в развитии Вселенной и их характеристика.

презентация [96,5 K], добавлен 17.11.2011

Модель Фридмана, два варианта развития Вселенной. Строение и современные космологические модели Вселенной. Сущность физических процессов, источники, создающие современные физические законы. Обоснование расширения Вселенной, этапы космической эволюции.

контрольная работа [43,4 K], добавлен 09.04.2010

Идеи современной физики. Основные этапы развития представлений о Вселенной. Модель Птолемея, Коперника. Эпоха Великих географических открытий. Релятивистская космология (А. Эйнштейн, А. А. Фридман). Концепция расширяющейся Вселенной, "Большого Взрыва".

реферат [42,4 K], добавлен 07.10.2008

Происхождение Вселенной - гипотезы и модели; космологические теории Большого взрыва и горячей Вселенной. Образование Солнечной системы. Биологическая, экологическая, социально-экономическая и культурно-историческая эволюции; возникновение жизни на Земле.

контрольная работа [35,7 K], добавлен 24.09.2011

Модель Большого Взрыва как модель эволюционной истории Вселенной, согласно которой она возникла в бесконечно плотном состоянии и с тех пор расширяется, ее преимущества и недостатки. Расширяющаяся Вселенная, теории рождения и гибели, их сторонники.

курсовая работа [182,1 K], добавлен 27.11.2010

Сущность понятия "Вселенная". Изучение истории развития крупномасштабной структуры Вселенной. Модель расширяющейся Вселенной. Теория большого взрыва (модель горячей Вселенной). Причина расширения в рамках ОТО. Теория эволюции крупномасштабных структур.


Космология представляет собой современное направление глобального эволюционизма, которая рассматривает Вселенную (Метагалактику) как структуру, как единое целое. Космологические концепции рассматривают проблемы общих закономерностей строения и эволюции Вселенной, материи, пространства, времени.

Одна из удивительнейших и интереснейших загадок современного естествознания – это происхождение и эволюция Вселенной. Процессы, происходящие в ближайшем и отдаленном космосе, оказывают прямое воздействие на эволюцию всего живого на Земле. Термоядерный синтез элементов, происходящий на Солнце и в далеких звёздах, даёт в руки человечеству надежду овладеть им в целях не только выживания в будущем, но и познания Вселенной. Однако для того, чтобы оценить степень воздействия Вселенной на всё живое на Земле, надо иметь представление о процессах, которые происходят в глубинах самой Вселенной…

Вселенная обычно определяется как Природа, Космос, действительный окружающий Мир, Мироздание, а также совокупность всего, что физически существует. Это совокупность пространства и времени, всех форм материи, физических законов и констант, которые управляют состояниями, движениями материи, пространством-временем.

Астрономически наблюдаемая Вселенная – Метагалактика. По данным НАСА, полученным с помощью WMAP, возраст Вселенной от момента Большого взрыва был оценён в 13,77±0,059 млрд лет (данные 2009 года) [WMAP (англ. Wilkinson Microwave Anisotropy Probe) – космический аппарат НАСА, предназначенный для изучения реликтового излучения, образовавшегося в результате Большого взрыва. Запущен 30 июня 2001 года].

Однако есть и ещё одна точка зрения, которая связана с тем, что Вселенная никогда не возникала, а существовала вечно, изменяясь лишь в своих формах и проявлениях движений и состояний в ней. Представления о форме и размерах Вселенной в современной науке также являются дискуссионными. Предполагается, что протяжённость вселенной составляет не менее 93 млрд световых лет, при наблюдаемой части всего в 12,7 млрд световых лет. Это означает, что наблюдаемая нами Вселенная (Метагалактика) лишь часть Супермира, включающего множество вселенных.

Дальнейшее усложнение вещества во Вселенной

Хотя появление крупномасштабных структур во Вселенной привело к образованию множества разновидностей галактик и звезд, среди которых есть совершенно уникальные объекты, все же с точки зрения дальнейшей эволюции Вселенной особое значение имело появление звезд – красных гигантов. Именно в этих звёздах в ходе процессов звездного нуклеосинтеза появилось большинство элементов таблицы Менделеева. Это открыло возможность для новых усложнений вещества. В первую очередь, появилась возможность образования планет и появления на некоторых из них жизни и, возможно, разума. Поэтому образование планет стало следующим этапом в эволюции Вселенной.

Крупномасштабная Вселенная представляет собой расширяющееся пространство, заполненное губкообразной клочковатой структурой. Стенки этой губчатой структуры представляют собой скопления миллиардов галактик. Расстояния между ними составляют около миллиона световых лет.

Каждая галактика состоит из сотен миллиардов звёзд, которые обращаются вокруг центрального ядра. Размеры галактик достигают сотен тысяч световых лет.

Звёзды состоят в основном из водорода, который является самым распространённым химическим элементом во вселенной. Считается, что большинство звёзд являются кратными и представляют собой центры планетарных систем из нескольких планет. Расстояния между такими системами составляют десятки и сотни астрономических единиц.

Также остается неизвестным, является ли Вселенная множественно-соединённой. Согласно стандартной модели Большого взрыва, Вселенная не имеет пространственных границ, но может быть пространственно ограничена. Это может быть понято на примере двумерной аналогии: поверхность сферы не имеет границ, но имеет ограниченную площадь, причём кривизна сферы постоянна в третьем измерении. Если вселенная действительно пространственно ограничена, то, двигаясь по прямой линии в любом направлении, можно попасть в отправную точку начала движения.

Согласно другим представлениям наша Вселенная представляет лишь часть от огромного множества других Вселенных, совокупность которых называется Мультивселенной (Метавселенной) – или Супермиром.

На сегодня наиболее логически непротиворечивой является модель многокомпонентной вселенной. То есть вселенная состоит из бесконечного количества Начал по типу Большого взрыва, из множества вселенных, которые независимо возникают в разные моменты времени, и пены сверхплотного скалярного поля между ними. Поэтому Вселенная (в представлении Супермира – множества вселенных) бесконечна и в пространстве и во времени. Даже допускается, что в разных вселенных могут существовать разные законы, разные элементарные частицы.

У каждой вселенной на каком-то огромном расстоянии от них должны существовать стенки, которые состоят из сверхплотного вакуума. Как они будут взаимодействовать с другими пузырями, другими вселенными – этот вопрос, которым занимается современная астрофизика.

Космологические концепции базируются на следующих предпосылках:

формулируемые физикой фундаментальные законы мироустройства считаются действующими во всей вселенной;

истинными признаются только те выводы, которые не противоречат возможности существования наблюдателя, то есть человека (антропный космологический принцип).

Что касается Вселенной, то современная космология утверждает, Метагалактика характеризуется двумя основными свойствами: однородностью (её свойства одинаковы во всех ее точках) и изотропностью (свойства одинаковы во всех направлениях).

Описанием гравитационного поля Вселенной являются уравнения А. Эйнштейна. Нестационарность Вселенной определяется двумя постулатами:

принципом относительности, гласящим, что во всех инерциальных системах все законы сохраняются вне зависимости от того, с какими скоростями равномерно и прямолинейно движутся эти системы относительно друг друга;

экспериментально подтвержденным постоянством скорости света теории относительности.

Из принятия теории относительности вытекает следствие: искривлённое пространство не может быть стационарным, оно должно расширяться или сжиматься. Следствием этого является красное смещение (понижение частот электромагнитного излучения: в видимой части спектра линии смещаются к его красному концу).

Структура Метагалактики

Крупномасштабную структуру Вселенной составляет множество галактик, которые представляют собой гигантские образования, содержащие звёзды, туманности и другие объекты.

Крупномасштабная Вселенная представляет собой структуру распределения материи на самых больших наблюдаемых масштабах напоминающую соты (ячейки). В них по Я. Зельдовичу находятся скопления галактик, которые удалены друг от друга на расстоянии 100–300 Мпк (мегапарсек). Таким образом, основной объём материи во Вселенной сосредоточен в ячейках пространства, представляющий собой пустоту – вакуум.

Уже в начале XX века было известно, что звёзды группируются в звёздные скопления, которые, в свою очередь, образуют галактики. Позже были найдены скопления галактик и сверхскопления галактик. В 1990-е было установлено, что в масштабах порядка 300 мегапарсек Вселенная выглядит однородной. Однако нарушение симметрии ведет к образованию космических неоднородностей называемых текстурами. Текстуры могут служить зародышами агрегатов вещества, превращающегося в ходе эволюции в галактики и их скопления, а менее плотные области получили название войды (пустоты). Это дало основание сделать вывод о том, что во Вселенной, наряду со светящимся веществом, должно находиться тёмное вещество.

Наблюдениями устанавливается, что каждая галактика окружена гало из темного вещества, масса которого в 10 раз больше массы видимых областей. Природа темного вещества остается неизвестной. В качестве претендентов на роль темного вещества предлагаются чёрные дыры, звёзды малой массы, остывшие звезды (коричневые карлики), нейтрино и гипотетические частицы.

Проблема существования и поиска внеземных цивилизаций

Эволюция Вселенной привела к образованию планет, на некоторых из них могут появиться жизнь и разум. Для этого нужны разнообразные химические элементы, которые могут объединяться в молекулы разных уровней сложности. Причины, заставляющие атомы объединяться в молекулы, известны науке достаточно хорошо.

В основе этих процессов лежат химические силы, за которыми скрывается одна из фундаментальных сил природы – электромагнитное взаимодействие. Процессы соединения атомов в молекулы широко распространены во Вселенной. В межзвёздной среде, где концентрация вещества ничтожно мала, тем не менее, обнаруживаются молекулы водорода. Там же встречаются мельчайшие пылинки, в их основе – кристаллики льда или углерода с примесью гидратов разных соединений. Молекулярный водород вместе с гелием образуют газопылевые облака. Но самое интересное, с чем столкнулись наблюдатели, – это неожиданно большое присутствие в космосе разнообразных органических молекул, вплоть до таких сложных, как молекулы аминокислот. В межзвездных облаках насчитали более 50 видов органических молекул. Ещё удивительнее, что органические молекулы находят во внешних оболочках некоторых не очень горячих звёзд и в сложных соединениях, температура которых незначительно отличается от температуры абсолютного нуля. Таким образом, синтез молекул, в том числе органических, распространённое и вполне обыденное явление в космосе.

В связи с этим возникает вопрос, способно ли усложнение вещества достигнуть самых высоких уровней вне планет, в межзвездной среде или в оболочках не очень горячих звезд. Иначе говоря, возможна ли там жизнь? Существует ли жизнь на других планетах? Данная тема неоднократно обыгрывалась в научно-фантастических произведениях, однако современная наука не позволяет дать ни положительного, ни отрицательного ответа на этот вопрос. Пока мы знаем только один вариант жизни в Космосе – на Земле, хотя вопрос о том, одиноки ли мы во Вселенной, волнует не только учёных, но и обычных людей.

Не случайно тема контакта с иным разумом – один из излюбленных сюжетов научно-фантастических романов. Кроме того, постоянно появляются люди, утверждающие, что они видели НЛО, контактировали с инопланетянами и т.д.

Представления о том, что Вселенная обитаема, были широко распространены в древности. Так, античные философы Анаксагор, Демокрит, Лукреций Кар считали, что, поскольку Космос образован из одной субстанции (например, из атомов) и подчиняется единому закону – Логосу, то в разных частях Космоса, как и на Земле, должна возникать жизнь. Позже аналогичные аргументы использовал Д. Бруно, выдвигая свою идею о множественности миров. Но до XX в. вопрос о возможности жизни на других планетах звучал настолько фантастично, что серьёзными учёными практически не обсуждался. Лишь в XX в. о распространённости жизни и разума во Вселенной заговорили всерьёз, и это были не умозрительные рассуждения, а подкреплённые точными расчётами выводы.

Среди тех, кто сыграл выдающуюся роль в утверждении новых взглядов на эту проблему, были К.Э. Циолковский, В.И. Вернадский, П. Тейяр де Шарден и другие крупнейшие учёные и философы.

Список использованных источников

5. Френкель, Е.Н. Концепции современного естествознания : физические, химические и биологические концепции : учеб. пособие / Е.Н. Френкель. – Ростов н/Д : Феникс, 2014. – 246 с.

В ясную погоду в безлунную ночь невооруженным глазом можно наблюдать на небосводе до трех тысяч звезд. Но это лишь небольшая часть звезд и других космических объектов, из которых состоит Вселенная.

Вселенная – это весь существующий материальный мир, безграничный во времени и пространстве и бесконечно разнообразный по формам, которые принимает материя в процессе своего развития.

1. Основные концепции космологии

1.1 Предположения А. Эйнштейна

Тем не менее, принято считать, что основные положения современной космологии – науки о строении и эволюции Вселенной – начали формироваться после создания в 1917 г. А. Эйнштейном первой релятивистской модели, основанной на теории гравитации и претендовавшей на описание всей Вселенной. Эта модель характеризовала стационарное состояние Вселенной и, как показали астрофизические наблюдения, оказалась неверной.*

1.2 Выводы А.А. Фридмана

Важный шаг в решении космологических проблем сделал в 1922 г. профессор Петроградского университета А.А. Фридман (1888–1925). В результате решения космологических уравнений он пришел к выводу: Вселенная не может, находится в стационарном состоянии – она должна расширяться либо сужаться.*

1.3 Эмпирический закон – закон Хаббла

Следующий шаг был сделан в 1924 г., когда в обсерватории Маунт Вилсон в Калифорнии американский астроном Э. Хаббл (1889–1953) измерил расстояние до ближайших галактик (в то время называемых туманностями) и тем самым открыл мир галактик. В 1929 г. в той же обсерватории Э. Хаббл по красному смещению линий в спектре излучения галактик экспериментально подтвердил теоретический вывод А.А. Фридмана о расширении Вселенной и установил Эмпирический закон – закон Хаббла: скорость удаления галактики V прямо пропорциональна расстоянию r до нее, т. е. V=Hr, где H – постоянная Хаббла.*

С течением времени постоянная Хаббла постепенно уменьшается – разбегание галактик замедляется. Но такое уменьшение за наблюдаемый промежуток времени ничтожно мал. Обратной величиной постоянной Хаббла определяется время жизни (возраст) Вселенной. Из результатов наблюдения следует, что скорость разбегания галактик увеличивается примерно на 75 кмс на каждый миллион парсек (1 парсек равен 3,3 светового года; световой год – это расстояние, проходимое светом в вакууме за 1 земной год). При данной скорости экстраполяция к прошлому приводит к выводу: возраст Вселенной составляет около15 млрд. лет, а это означает, что вся Вселенная 15 млрд. лет назад была сосредоточена в очень маленькой области. Предполагается, что в то время плотность вещества Вселенной была сравнимой с плотностью атомного ядра, и вся Вселенная представляла собой огромную ядерную каплю. По каким-то причинам ядерная капля оказалась в неустойчивом состоянии и взорвалась. Это предположение лежит в основе концепции большого взрыва.

Произведением времени жизни Вселенной на скорость света определяется радиус космологического горизонта – граница познания Вселенной посредством астрономических наблюдений. Информация об объектах за космологическим горизонтом до нас еще не дошла – мы не можем заглянуть за космологический горизонт. Несложный расчет показывает, что радиус космологического горизонта равен приблизительно 10 м. Очевидно, что этот радиус ежесекундно увеличивается примерно на 300 тыс. км. Но такое увеличение ничтожно мало по сравнению с величиной радиуса космологического горизонта. Для наблюдения заметного расширения космологического горизонта нужно подождать миллиарды лет.

В концепции большого взрыва предполагается, что расширение Вселенной происходило с одинаковой скоростью, начиная с момента взрыва ядерной капли. В настоящее время обсуждается и другая гипотеза – гипотеза пульсирующей Вселенной: Вселенная не всегда расширялась, а пульсирует между конечными пределами плотности. Из нее следует, что некотором прошлом скорость удаления галактик была меньше, чем сейчас, и были периоды, когда Вселенная сжималась, т. е. галактики приближались друг к другу и с тем большей скоростью, чем большее расстояние их разделяло.

1.4 Гипотезы Г.А. Гамова

По мере развития естествознания и особенно ядерной физики выдвигаются различные гипотезы о физических процессах на разных этапах космологического расширения. Одна из них предложена в конце 40 х гг. ХХ в. Г.А. Гамовым (1904–1968), физиком – теоретиком, эмигрировавшим в 1933 г. из Советского Союза в США, и называется моделью горячей Вселенной.* В ней рассмотрены ядерные процессы, протекавшие в начальный момент расширения Вселенной в очень плотном веществе с чрезвычайно высокой температурой. По мере расширения Вселенной плотное вещество охлаждалось.

Из этой модели следует два вывода:

вещество, из которого зарождались первые звезды, состояло в основном из водорода (75 %) и гелия (25 %);

в сегодняшней Вселенной должно наблюдаться слабое электромагнитное излучение, сохранившее память о начальном этапе развития Вселенной, и поэтому названное реликтовым.

1.5 Реликтовое излучение А. Пензиса и Р. Вильсона

С развитием астрономических средств наблюдения, и в частности, с рождением радиоастрономии, появились новые возможности познания Вселенной. В 1965 г. американские астрофизики А. Пензиас и Р. Вильсон экспериментально обнаружили реликтовое излучение. Реликтовое излучение – это фоновое изотропное космическое излучение со спектром, близким к спектру излучения абсолютно черного тела с температурой около 3 К.

В 2000 г. сообщалось: сделан важный шаг на пути понимания самого раннего этапа эволюции Вселенной. В лаборатории европейских ядерных исследований в Женеве получено новое состояние материи – кварк – глюонная плазма. Предполагается, что в таком состоянии Вселенная находилась в первые 10 мкс после большого взрыва. До сих пор удавалось охарактеризовать эволюцию материи на стадии не ранее трех минут после взрыва, когда уже сформировались ядра атомов.

2. Модель горячей Вселенной

Вселенная-это совокупность всего, что существует. Земля, Луна, Солнце и все планеты и звезды образуют Вселенную. Вселенная полна большими и волнующими тайнами и загадками, которые ученые стараются разгадать. Многие выдвигают теории относительно ее происхождения. Они утверждают, что Вселенная существовала не всегда, но имела свое начало.

Исходя из исследований звезд и галактик, ученые заметили, что они отделяются друг от друга с большой скоростью. Это позволяет предположить, что в какой-то момент они были соединены. Опыт, предлагаемый для объяснения, каким было начало Вселенной, состоит в том, что воздушный шар разрисовывают небольшими пятнами. Когда шар надувают, расстояние между пятнами увеличивается, и пятна также становятся все больше. В этом опыте пятна представляют галактики, а надувание шара – распространение Вселенной.

2.1 Космология Большого Взрыва

Ключ к пониманию ранних этапов эволюции Вселенной – в гигантском количестве теплоты, выделившейся при Большом Взрыве. В простейшем варианте теории горячей Вселенной предполагается, что Вселенная возникла спонтанно в результате взрыва из состояния с очень большой плотностью и энергией. По мере расширения Вселенной температура падала от очень большой до довольно низкой, обеспечивая возникновение условий, благоприятных для образования звезд и галактик. На протяжении около 1 млн. лет температура превышала несколько тысяч градусов, что препятствовало образованию атомов, и, следовательно, космическое вещество имело вид разогретой плазмы. Лишь когда температура понизилась, возникли первые атомы. Таким образом, атомы – это реликты эпохи, наступившей через 1 млн. лет после Большого Взрыва.

Ретроспективные расчеты определяют возраст Вселенной в 13–15 млрд. лет. Как было сказано ранее, Г.А. Гамов предположил, что температура вещества была велика и падала с расширением Вселенной. Его расчеты показали, что Вселенная в своей эволюции проходит определенные этапы, в ходе которых происходит образование химических элементов и структур.

2.2 Деление начальной стадии эволюции на эры

В современной космологии для наглядности начальную стадию эволюции Вселенной делят на эры.

Эра адронов (тяжелых частиц, вступающих в сильные взаимодействия). Продолжительность эры 0,0001 с, температура 10 градусов по Кельвину, плотность 10 см. В конце эры происходит аннигиляция частиц и античастиц, но остается некоторое количество протонов, гиперонов, мезонов.

Эра лептонов (легких частиц, вступающих в электромагнитное взаимодействие). Продолжительность эры 10 с, температура 10 градусов по Кельвину, плотность 10 /см. Основную роль играют легкие частицы, принимающие участие в реакциях между протонами и нейтронами.

Фотонная эра. Продолжительность 1 млн. лет. Основная доля массы – энергии Вселенной – приходится на фотоны. К концу эры температура падает с 10 до 3000 градусов по Кельвину, плотность – от 10 г./см до 10 г./см. Главную роль играет излучение, которое в конце эры отделяется от вещества.

Звездная эра наступает через 1 млн. лет после зарождения Вселенной. В звездную эру начинается процесс образования протозвезд и протогалактик. Затем разворачивается грандиозная картина образования структуры Метагалактики.

2.3 Инфляционная модель Вселенной

В современной космологии наряду с гипотезой Большого взрыва обосновывается инфляционная модель Вселенной, в которой рассматривается идея творения Вселенной. Эта идея имеет сложное обоснование и связана с квантовой космологией. В данной модели описывается эволюция Вселенной, начиная с момента 10 с после начала расширения.

В соответствии с инфляционной гипотезой космическая эволюция в ранней Вселенной проходит ряд этапов.

Начало Вселенной определяется как состояние квантовой супергравитациии с радиусом Вселенной в 10 см (размер атома 10) Основные события в ранней Вселенной разыгрывались за ничтожно малый промежуток времени от 10 с до 10 с.

В стадии инфляции создавалось само пространство и время Вселенной. Весь этот первоначальный период во Вселенной не было ни вещества, ни излучения. Затем состояние ложного вакуума распалось, высвободившаяся энергия пошла на рождение тяжелых частиц и античастиц, которые, проаннигилировав, дали мощную вспышку излучения (света), осветившего космос. Так произошел переход от инфляционной стадии к фотонной.

Этап отделения вещества от излучения: оставшееся после аннигиляции вещество стало прозрачным для излучения, контакт между веществом и излучением пропал.

В дальнейшем развитие Вселенной шло в направлении от максимально простого однородного состояния к созданию все более сложных структур – атомов, галактик, звезд, планет, синтезу тяжелых элементов в недрах звезд, в том числе и необходимых для создания жизни, возникновение жизни и человека.

3. Структура Вселенной

Вселенной на самых разных уровнях, от условно элементарных частиц и до гигантских сверхскоплений галактик, присуща структурность. Структура Вселенной – предмет изучения космологии, одной из важных отраслей естествознания, находящейся на стыке многих естественных наук: астрономии, физики, химии и др. Современная структура Вселенной является результатом космической эволюции, в ходе которой из протогалактик образовались галактики, из протозвезд – звезды, из протопланетного облака – планеты.

3.1 Метагалактика

Часть Вселенной, доступная исследованию астрономическими средствами, соответствующими достигнутому уровню развития науки, называется Метагалактикой. Иначе говоря, Метагалактика – охваченная астрономическими наблюдениями часть Вселенной. Она находится в пределах космологического горизонта. Метагалактика представляет собой совокупность звездных систем – галактик, а ее структура определяется их распределением в пространстве, заполненном чрезвычайно разреженным межгалактическим газом и пронизываемом межгалактическими лучами.*

Согласно современным представлениям, для Метагалактики характерна ячеистая (сетчатая, пористая) структура. Эти представления основываются на данных астрономических наблюдениях, показавших, что галактики распределены не равномерно, а сосредоточены вблизи границ ячеек, внутри которых галактик почти нет. Кроме того, найдены огромные объемы пространства, в которых галактик пока не обнаружено.

Если брать не отдельные участки Метагалактики, а ее крупномасштабную структуру в целом, то, очевидно, что в этой структуре не существует каких-то особых, чем-то выделяющихся мест или направлений и вещество распределено сравнительно равномерно.

Возраст Метагалактики близок к возрасту Вселенной, поскольку образование ее структуры приходится на период, следующий за разъединением вещества и излучения. По современным данным, возраст Метагалактики оценивается в 15 млрд. лет. Ученые считают, что, по-видимому, близок к этому и возраст галактик, которые сформировались на одной из начальных стадий расширения Метагалактики.

3.2 Галактики

Главные составляющие Вселенной – галактики. Галактика – гигантская система, состоящая из скоплений звезд и туманностей, образующих в пространстве достаточно сложную конфигурацию.

По форме галактики условно разделяются на три типа: эллиптические, спиральные и неправильные.

Эллиптические галактики обладают пространственной формой эллипсоида с разной степенью сжатия. Они являются наиболее простыми по структуре: распределение звезд равномерно убывает от центра.

Спиральные галактики представлены в форме спирали, включая спиральные ветви. Это самый многочисленный вид галактик, к которому относится и наша Галактика – Млечный Путь.

Неправильные галактики не обладают выраженной формой, в них отсутствует центральное ядро.

Кроме звезд и планет галактики содержат разреженный газ и космическую пыль.

Млечный Путь хорошо виден в безлунную ночь. Он кажется скоплением светящихся туманных масс, протянувшимся от одной стороны горизонта до другой, и состоит примерно из 150 млрд. звезд. По форме он напоминает сплюснутый шар. В центре его находится ядро, от которого отходит несколько спиральных звездных ветвей. Наша Галактика чрезвычайно велика: от одного ее края до другого световой луч путешествует около 100 тыс. земных лет. Большая часть ее звезд сосредоточена в гигантском диске толщиной около 1500 световых лет. На расстоянии около 2 млн. световых лет от нас находится ближайшая к нам галактика – Туманность Андромеды, которая по своему строению напоминает Млечный Путь, но значительно превосходит его по своим размерам.* Наша Галактика, Туманность Андромеды вместе с другими соседними звездными системами образуют Местную группу галактик. На расстоянии около 30 тыс. световых лет от центра Галактики расположено Солнце.

На современном этапе эволюции Вселенной вещество в ней находится преимущественно в звездном состоянии. 97 % вещества в нашей Галактике сосредоточено в звездах, представляющих собой гигантские плазменные образования различной величины, температуры, с разной характеристикой движения.

Возраст звезд меняется в достаточно большом диапазоне значений: от 15 млрд. лет, соответствующих возрасту Вселенной, до сотен тысяч – самых молодых. Есть звезды, которые образуются в настоящее время и находятся протозвездной стадии, т. е. они еще не стали настоящими звездами.

Рождение звезд происходит в газово-пылевых туманностях под действием гравитационных, магнитных и других сил, благодаря которым идет формирование неустойчивых однородностей и диффузная материя распадается на ряд сгущений. Если такие сгущения сохраняются достаточно долго, то с течением времени они превращаются в звезды. Важно отметить, что происходит процесс рождения не отдельной изолированной звезды, а звездных ассоциаций.

Мир звезд необыкновенно разнообразен. И хотя все звезды – раскаленные шары, подобные Солнцу, их физические характеристики различаются весьма существенно.* Есть, например, звезды – гиганты и сверхгиганты. По своим размерам они превосходят Солнце.

Кроме звезд гигантов существуют и звезды – карлики, значительно уступающие по своим размерам Солнцу. Некоторые карлики меньше Земли и даже Луны.

Различают также нейтронные звезды – это громадные атомные ядра.

Звезды не существуют изолированно, а образуют системы. Простейшие звездные системы – состоят из 2-х и более звезд. Звезды объединены также в еще большие группы – звездные скопления.

3.4 Солнечная система

Солнечная система представляет собой группу небесных тел, весьма различных по размерам и физическому строению.* В эту группу входят: Солнце, девять больших планет, десятки спутников планет, тысячи малых планет (астероидов), сотни комет, бесчисленное множество метеоритных тел. Все эти тела объединены в одну систему благодаря силе притяжения центрального тела – Солнца. Солнечная система является упорядоченной системой, имеющей свои закономерности строения. Единый характер Солнечной системы проявляется в том, что все планеты вращаются вокруг солнца в одном и том же направлении и почти в одной и той же плоскости. Солнце, планеты, спутники планет вращаются вокруг своих осей в том же направлении, в котором они совершают движение по своим траекториям. Закономерно и строение Солнечной системы: каждая следующая планета удалена от Солнца примерно в два раза дальше, чем предыдущая.

Солнечная система образовалась примерно 5 млрд. лет назад, причем Солнце – звезда второго поколения. Современные концепции происхождения планет Солнечной системы основываются на том, что нужно учитывать не только механические силы, но и другие, в частности электромагнитные. Считается, что именно электромагнитные силы сыграли решающую роль при зарождении Солнечной системы.

В соответствии с современными представлениями, первоначальное газовое облако, из которого образовались и Солнце, и планеты, состояло из ионизированного газа, подверженного влиянию электромагнитных сил. После того как из огромного газового облака посредствам концентрации образовалось Солнце, на очень большом расстоянии от него остались небольшие части этого облака. Гравитационная сила стала притягивать остатки газа к образовавшейся звезде – Солнцу, но его магнитное поле остановило падающий газ на расстоянии – как раз там, где находятся планеты. Гравитационная и магнитные силы повлияли на концентрацию и сгущение падающего газа, и в результате образовались планеты. Когда возникли самые крупные планеты, тот же процесс повторился в меньших масштабах, создав, таким образом, системы спутников. Заключение.

Вселенная в широком смысле – это среда нашего обитания. Поэтому важное значение для практической деятельности человека имеет то обстоятельство, что во Вселенной господствуют необратимые физические процессы, что она изменяется с течением времени, находится в постоянном развитии. Человек приступил к освоению космоса, вышел в открытое космическое пространство. Наши свершения приобретают все больший размах, глобальные и даже космические масштабы. И для того чтобы учесть их близкие и отдаленные последствия, те изменения, которые они могут внести в состояние среды нашего обитания, в том числе и космической, мы должны изучать не только земные явления и процессы, но и закономерности космического масштаба.

Великое счастье для нас, что в первичном веществе был избыток протонов над нейтронами. Благодаря ему остались во Вселенной несвязанные протоны, и впоследствии образовался водород, без которого не светило бы солнце, не было бы воды, не могла возникнуть жизнь. Не было бы жизни, не было бы и человечества.*

Картина эволюции Вселенной, открывшаяся перед нами, поражает воображение и удивляет. Не переставая удивляться, не следует забывать, что все это открыл человек – обитатель маленькой пылинки, затерянной в безграничных просторах Вселенной, – планеты Земля.

Читайте также: