Организация системы ключей реферат

Обновлено: 02.07.2024

На протяжении многих веков человечество использовало криптографические методы для защиты информации при ее передаче и хранении. Приблизительно к концу XIX в. эти методы стали объектом математического изучения. Отрасль математики, изучающая защиту информации, традиционно называется криптологией (cryptology) и подразделяется на криптографию (cryptography), занимающуюся разработкой новых методов и обоснованием их корректности, и криптоанализ (cryptanalysis), задача которого - интенсивное изучение существующих методов, часто с целью реального раскрытия секретов другой стороны. Криптография и криптоанализ находятся в тесном взаимодействии друг с другом и с практическими нуждами и развиваются параллельно закрытыми правительственными организациями многих государств и международным научным сообществом.

Оглавление

Введение 3
1 Описание метода шифрования с открытым ключом 5
1.1 Криптография с открытым ключом 5
1.2 Структура программы 12
2 Эллиптические функции – реализация метода открытых ключей 15
2.1 Типы криптографических услуг 15
2.2 Электронные платы и код с исправлением ошибок 20
Заключение 22
Список использованных источников 23

Файлы: 1 файл

РЕФЕРАТ Системы шифрования с открытыми ключами.doc

НЕГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

Кафедра: Экономико – правовая

Системы шифрования с открытыми ключами

Понкратьева Рита Энверовна

заочная, 2 курс, № группы ВВМс-2

заведующий кафедрой общих математических

и естественнонаучных дисциплин

доктор исторических наук, доцент

1 Описание метода шифрования с открытым ключом 5

1.1 Криптография с открытым ключом 5

1.2 Структура программы 12

2 Эллиптические функции – реализация метода открытых ключей 15

2.1 Типы криптографических услуг 15

2.2 Электронные платы и код с исправлением ошибок 20

Список использованных источников 23

На протяжении многих веков человечество использовало криптографические методы для защиты информации при ее передаче и хранении. Приблизительно к концу XIX в. эти методы стали объектом математического изучения. Отрасль математики, изучающая защиту информации, традиционно называется криптологией (cryptology) и подразделяется на криптографию (cryptography), занимающуюся разработкой новых методов и обоснованием их корректности, и криптоанализ (cryptanalysis), задача которого - интенсивное изучение существующих методов, часто с целью реального раскрытия секретов другой стороны. Криптография и криптоанализ находятся в тесном взаимодействии друг с другом и с практическими нуждами и развиваются параллельно закрытыми правительственными организациями многих государств и международным научным сообществом.

В настоящее время существуют тысячи криптографических систем, реализованных как программно, так и аппаратно. Среди них можно выделить системы, сам криптографический принцип работы которых держится в секрете, как, например, микросхема Clipper, предлагаемая правительством США в качестве криптографического стандарта для телекоммуникаций, и системы, алгоритм которых открыт, а секретной является только определенная, как правило небольшая, порция информации, называемая (секретным) ключом [(secret) key] - к ним относится большинство систем, реализуемых программно и предназначенных для широкого использования. В дальнейшем мы будем рассматривать только системы второго типа.

В системе рассматриваемого типа задача вскрытия системы, то есть нарушения защиты информации без предварительного знания ключа, как правило, теоретически разрешима при наличии у вскрывающей стороны неограниченных вычислительных ресурсов. С математической точки зрения надежность криптографической системы определяется сложностью решения

этой задачи с учетом реальных вычислительных ресурсов потенциальной вскрывающей стороны. С организационной точки зрения имеет значение соотношение стоимости потенциального вскрытия и ценности защищаемой информации.

Математическое исследование надежности криптографических систем затруднено отсутствием универсального математического понятия сложности. По этой причине надежность большинства криптографических систем в настоящее время невозможно не только доказать, но даже адекватно сформулировать. Как правило, применение той или иной криптографической системы основано на результатах многолетнего практического криптоанализа систем данного типа, в той или иной степени подкрепленных математическим обоснованием. Это обоснование может сводить задачу раскрытия данной криптосистемы к какой-либо задаче теории чисел или комбинаторики, решение которой считается реально не осуществимым, или, что предпочтительнее, к классу NP-полных задач, сводимость к которому является “эталоном” практической неразрешимости. В то же время, понятие практической неразрешимости для конкретных практических задач не является четко определенным или стабильным, благодаря развитию вычислительной техники и методов криптоанализа.

1.Описание метода шифрования с открытым ключом

1.1 Криптография с открытым ключом

В 1976 г. У.Диффи и М.Хеллманом (DH76) был предложен новый тип криптографической системы - система с открытым ключом (public key cryptosystem). В схеме с открытым ключом имеется два ключа, открытый (public) и секретный (private, secret), выбранные таким образом, что их последовательное применение к массиву данных оставляет этот массив без изменений.

Шифрующая процедура использует открытый ключ, дешифрующая - секретный. Дешифрование кода без знания секретного ключа практически неосуществимо; в частности, практически неразрешима задача вычисления секретного ключа по известному открытому ключу. Основное преимущество криптографии с открытым ключом - упрощенный механизм обмена ключами. При осуществлении коммуникации по каналу связи передается только открытый ключ, что делает возможным использование для этой цели обычного канала и устраняет потребность в специальном защищенном канале для передачи ключа.

С появлением систем с открытым ключом понятие о защите информации, а вместе с ним функции криптографии значительно расширились. Если раньше основной задачей криптографических систем считалось надежное шифрование информации, в настоящее время область применения криптографии включает также цифровую подпись (аутентификацию), лицензирование, нотаризацию (свидетельствование), распределенное управление, схемы голосования, электронные деньги и многое другое.

Наиболее распространенные функции криптографических систем с открытым ключом - шифрование и цифровая подпись, причем роль цифровой подписи в последнее время возросла по сравнению с традиционным шифрованием: некоторые из систем с открытым ключом поддерживают

цифровую подпись, но не поддерживают шифрование.

Цифровая подпись используется для аутентификации текстов, передаваемых по телекоммуникационным каналам. Она аналогична обычной рукописной подписи и обладает ее основными свойствами: удостоверяет, что подписанный текст исходит именно от лица, поставившего подпись, и не дает самому этому лицу возможности отказаться от обязательств, связанных с подписанным текстом. Цифровая подпись представляет собой небольшое количество дополнительной информации, передаваемой вместе с подписываемым текстом. В отличие от шифрования, при формировании подписи используется секретный ключ, а при проверке - открытый.

Из-за особенностей алгоритмов, лежащих в основе систем с открытым ключом, их быстродействие при обработке единичного блока информации обычно в десятки раз меньше, чем быстродействие систем с симметричным ключом на блоке той же длины. Для повышения эффективности систем с открытым ключом часто применяются смешанные методы, реализующие криптографические алгоритмы обоих типов. При шифровании информации выбирается случайный симметричный ключ, вызывается алгоритм с симметричным ключом для шифрования исходного текста. а затем алгоритм с открытым ключом для шифрования симметричного ключа. По коммуникационному каналу передается текст, зашифрованный симметричным ключом, и симметричный ключ, зашифрованный открытым ключом. Для расшифровки действия производятся в обратном порядке: сначала при помощи секретного ключа получателя расшифровывается симметричный ключ, а затем при помощи симметричного ключа - полученный по каналу зашифрованный текст. Для формирования электронной подписи по подписываемому тексту вычисляется его однонаправленная хэш-функция (дайджест) (one-way hash function, digest), представляющая собой один короткий блок информации, характеризующий весь текст в целом; задача восстановления текста по его хэш-функции или

подбора другого текста, имеющего ту же хэш-функцию, практически неразрешима. При непосредственном формировании подписи, вместо шифрования секретным ключом каждого блока текста секретный ключ применяется только к хэш-функции; по каналу передается сам текст и сформированная подпись хэш-функции. Для проверки подписи снова вычисляется хэш-функция от полученного по каналу текста, после чего при помощи открытого ключа проверяется, что подпись соответствует именно данному значению хэш-функции. Алгоритмы вычисления однонаправленных хэш-функций, как правило, логически тесно связаны с алгоритмами шифрования с симметричным ключом.

Описанные гибридные методы шифрования и цифровой подписи сочетают в себе эффективность алгоритмов с симметричным ключом и свойство независимости от дополнительных секретных каналов для передачи ключей, присущее алгоритмам с открытым ключом. Криптографическая стойкость конкретного гибридного метода определяется стойкостью слабейшего звена в цепи, состоящей из алгоритмов с симметричным и с открытым ключом, выбранных для его реализации.

В 1978 г. Р.Ривест, А.Шамир и Л.Адлеман (RSA78) создали первую криптосистему с открытым ключом для шифрования и цифровой подписи, получившую название RSA (по первым буквам фамилий авторов). Система описывается в терминах элементарной теории чисел. Ее надежность обуславливается практической неразрешимостью задачи разложения большого натурального числа на простые множители. Современное состояние алгоритмов факторизации (разложения на множители) позволяет решать эту задачу для чисел длиной до 430 бит; исходя из этого, ключ длиной в 512 бит считается надежным для защиты данных на срок до 10 лет, а в 1024 бита - безусловно надежным. Длина подписи в системе RSA совпадает с длиной ключа.

Несмотря на то, что отсутствует математически доказанное сведение задачи раскрытия RSA к задаче разложения на множители, а также задачи разложения на множители к классу NP-полных задач, система выдержала испытание практикой и является признанным стандартом de-facto в промышленной криптографии, а также официальным стандартом ряда международных организаций. С другой стороны, свободное распространение программного обеспечения, основанного на RSA, ограничено тем, что алгоритм RSA защищен в США рядом патентов.

Способы взлома криптосистемы RSA

Фактически, задача восстановления частного (private) ключа эквивалентна задаче разложения на множители (факторинга) модуля: можно использовать d для поиска сомножителей n, и наоборот можно использовать n для поиска d. Надо отметить, что усовершенствование вычислительного оборудования само по себе не уменьшит стойкость криптосистемы RSA, если ключи будут иметь достаточную длину. Фактически же совершенствование оборудования увеличивает стойкость криптосистемы.

Разумеется, существуют и атаки нацеленные не на криптосистему

непосредственно, а на уязвимые места всей системы коммуникаций в целом; такие атаки не могут рассматриваться как взлом RSA, так как говорят не о слабости алгоритма RSA, а скорее об уязвимости его конкретной реализации. Например, нападающий может завладеть закрытым ключом, если тот хранится без должных предосторожностей. Необходимо подчеркнуть, что для полной защиты недостаточно защитить выполнение алгоритма RSA и принять меры вычислительной безопасности, то есть использовать ключ достаточной длины. На практике же наибольший успех имеют атаки на незащищенные этапы управления ключами системы RSA.

Ключи должны быть действительными только на протяжении определенного периода. Дату истечения срока действия ключа следует выбирать очень внимательно и сообщать заинтересованным организациям о соблюдении мер безопасности. Некоторые документы должны иметь подписи, действительные после истечения срока действия ключа, с помощью которого они были подписаны. Хотя большинство проблем управления ключами возникает в любой криптосистеме.

Содержание
Прикрепленные файлы: 1 файл

электронно цифровая подпись.docx

  1. Введение………………………………………………………… …………………
  2. Управление ключами…………………………………………………………… …
  3. Раскрытие ключей……………………………………………………………… ….
  4. Хранение ключей……………………………………………………………… …..
  5. Пересылка ключей……………………………………………………………… …..
  6. Получение пар ключей………………………………………………………………
  7. Разделение личных ключей…………………………………………………………
  8. Серверы открытых ключей…………………………………………………………
  9. Список используемой литературы…………………………………………………

Организации должны иметь возможность безопасным способом получать пары ключей, соответствовать эффективности их работы и требованиям системы безопасности. Кроме того, они должны иметь доступ с открытым ключам других компаний, а так же возможность опубликовать свой открытый ключ.

Организации также должны обладать уверенностью в законности открытых ключей других компаний, так как пользователь нарушитель может изменить открытые ключи, хранящиеся в каталоге, или действовать от лица другого пользователя.

Для всех этих целей используется сертификаты. Они должны быть такими, чтобы из нельзя было подделать. Получать их следует из надежных источников и надежным способом, и обрабатывать так, чтобы ими не мог воспользоваться нарушитель. Издание сертификатов также должно происходить безопасным путем, невосприимчивым к атаке.

Ключи должны быть действительными только на протяжении определенного периода. Дату истечения срока действия ключа следует выбирать очень внимательно и сообщать заинтересованным организациям о соблюдении мер безопасности. Некоторые документы должны иметь подписи, действительные после истечения срока действия ключа, с помощью которого они были подписаны. Хотя большинство проблем управления ключами возникает в любой криптосистеме.

Трудности, связанные с управлением ключами, существенно усложняют управление процессом шифрования и разработку правил. Путаницу вызывают не только эти вопросы, но и то, что процесс шифрования зависит от того, используются ли в вашей организации аппаратные акселераторы или системы реализованы чисто программными средствами. Существует также разница между симметричным и асимметричным шифрованием.

Когда возникают вопросы о том, какую использовать технологию, ответ, обычно, заключается в использовании стандартов. Однако, если в организации применяется открытый криптографический ключ и делаются попытки создать инфраструктуру открытого ключа (PKI), то стандарты постоянно меняются, и ответить на этот вопрос сложно. Производители могут предоставлять инструкции, но нужно проявлять осторожность, чтобы эти инструкции не противоречили принятым в организации правилам, потому что это может привести к блокированию собственных решений. Для получения более подробной информации о PKI и связанных с ней правилах см. раздел "Применение PKI и других средств контроля" в главе 6 "Правила безопасности Internet".

Исходя из задач, поставленных политикой безопасности, можно выделить три области, которые необходимо рассмотреть в правилах управления ключами: раскрытие и изъятие ключей, хранение ключей и пересылка ключей. Это, конечно, не полный перечень, но это главные вопросы, с которых необходимо начать разработку правил.

Независимо от типа используемой системы шифрования на каком-то этапе ключи должны быть раскрыты. Если организация подключена к виртуальной частной сети, то с помощью сетевых устройств, на которых осуществляется шифрование, ключи генерируются для тех, кто начинает работу, либо заменяются, если истек срок их действия. Это будет происходить независимо от того, будет ли организация сама поддерживать среду или среду поддерживает провайдер услуг.

Ключи могут быть раскрыты по постановлению правоохранительных органов. Правоохранительные органы могут получить приказ контролировать пересылки данных в сети вашей организации. Если они зашифрованы, то суд может затребовать предоставление всех особенностей используемого алгоритма шифрования, а также ключи, с помощью которых шифруются данные. Несмотря на то, что это может смутить кого угодно, приходится с этим мириться.

Если организация пользуется внешними услугами, в которых используется система шифрования, то часто провайдеры управляют ключами с помощью систем изъятия ключей. Провайдеры будут утверждать, что это упрощает процесс замены ключей. Но это также упрощает раскрытие ключей, причем в организации будет неизвестно, кем это было сделано. Если речь идет об уголовном расследовании, касающемся каким-то образом организации, то правоохранительные органы могут представить ордер провайдеру услуг, а организация даже не будет знать об этом деле. Несмотря на то, что эти фразы могут расцениваться так, как будто автор выступает в защиту сокрытия незаконной деятельности, автор считает, что в данном случае соблюдение организацией законов, а тем более содействие правоприменению будет затруднено.

Обеспечение управления ключами очень важно для обеспечения конфиденциальности зашифрованных данных. Несмотря на то, что правила выглядят весьма проработанными, для избежания путаницы необходимо добавить некоторые предписания. Формулировка правил управления ключами может выглядеть следующим образом.

Криптографические ключи могут быть раскрыты только по требованию правовых органов.

Данная формулировка не затрагивает изъятие ключей, управление ключами сторонними организациями или раскрытие ключей служащих при их увольнении. Это реальные аспекты правил, которые нельзя рассматривать в общем виде. При работе с провайдером услуг организация должна получить от провайдера формулировку правил, разъясняющую его подход к правилам раскрытия ключей.

Определенные аспекты хранения ключей контролировать невозможно. Аппаратные средства шифрования обладают ресурсами памяти, необходимыми для их надлежащей работы. Программное обеспечение должно иметь ресурсы онлайновой памяти, включая те, что имеются в оперативной памяти. В сферу правил, регламентирующих хранение ключей, входит создание резервных копий и другие возможности хранения ключей.

Правила хранения ключей могут предписывать, каким образом хранить ключи, как делать резервные копии или обеспечивать их пересылку. Но особенно важно рассмотреть случай хранения ключей на том же устройстве или носителе, где хранятся защищенные данные. В одной из дискуссий кто-то подметил, что хранить ключи на том же диске, где находятся защищенные данные, все равно, что оставлять ключ от дома под ковриком перед дверью. Формулировка правил очень простая.

Ключи не должны храниться на том же диске, где находятся защищенные данные.

Что касается правил, касающихся иных аспектов хранения ключей, таких как уничтожение ключей на носителе, то в большинстве организаций предпочитают не включать эти требования в правила, а включать их в процедуры.

В любом алгоритме шифрования ключей присутствует функция замены ключей. Открытый ключ или асимметричные технологии шифрования предполагают меньше вопросов, поскольку открытый ключ может пересылаться открыто без того, чтобы беспокоиться о взломе. Открытые ключи используются как часть PKI, и их также можно заменять на основе сертификационных полномочий, которые позволяют не только хранить ключи, но и снабжать их цифровой подписью для проверки их принадлежности.

При использовании симметричного шифрования необходимо найти альтернативные способы пересылки ключей. При инициализации связи, которая для защиты пересылок имеет криптографическую поддержку на основе симметричного шифрования, должен быть найден внеполосный метод пересылки ключа на удаленное рабочее место. Слово "внеполосный" подразумевает некоторый метод пересылки ключей не по тому пути, по которому пересылаются данные. Например, использование автономных методов наподобие курьера, передающего гибкий диск или ленту, считается методом внеполосной пересылки. В некоторых организациях вводятся процедуры для инициализации устройства шифрования (или VPN) перед отправлением ключа на удаленное рабочее место. После инициализации старый ключ можно использовать для пересылки нового ключа. Однако, если старый ключ был скомпрометирован, то электронная пересылка нового ключа таким способом становится бессмысленной с точки зрения безопасности.

Если организация пользуется внешними услугами VPN, то эти вопросы будет решать провайдер услуг. Однако, организация может поинтересоваться у провайдера, каким образом тот управляет и пересылает эти ключи через множество сетевых соединений. Несмотря на то, что данные вопросы никогда не отражаются в правилах, можно разработать правила пересмотра данной информации совместно с провайдером услуг.

Многие из тех, кто управляет пересылкой своих собственных ключей, пересылают ключи, используя те же методы, которые используются для пересылки обычных данных. Одна организация установила PKI, имеющую проверку сертифицированных полномочий, для управления своими ключами через модем, установленный в системе, практически полностью изолированной от остальной сети организации. Организация руководствовалась простым правилом, которое предписывает внеполосную пересылку. Вот оно.

При любом управлении открытый ключ/асимметричные криптографические ключи не должны пересылаться с помощью той же сети, через которую пересылаются зашифрованные данные. Все симметричные криптографические ключи необходимо заменять физически, а не пересылать их по какой-либо сети.

Отметим, что в правилах не определяется пересылка симметричных ключей. В этой организации понимали, что если старые ключи скомпрометированы, то пересылка новых ключей, при которой используются для шифрования старые ключи, становится бессмысленной.

Получение пар ключей

Каждому пользователю сети организации следует генерировать свою пару ключей. Возможно, компании покажется удобным иметь единый узел, генерирующий ключи для всех служащих, в них нуждающихся, при этом они подвергнут риску систему безопасности, поскольку это будет означать передачу личных ключей по сети, а также действовать катастрофические последствия в случае, если нарушитель проникнет на этот узел.

Каждый узел сети должен быть способен генерировать ключи для своего участка, чтобы ключи не передавались, и не надо было доверяться единому источнику ключей, при этом, разумеется, само программное обеспечение, применяется для генерирования ключей, должно быть проверенным и надежным. Система аутентификации секретных ключей, подобные Kerberos, зачастую не позволяют локального генерирования ключей, однако в них для этой цели применяется центральный сервер.

Разделение личных ключей

Каждый пользователь организации должен иметь уникальный модуль и личный показатель (уникальный личный ключ). Открытый показатель, с другой стороны, может быть общим для группы пользователей, не подвергая при этом риску системы безопасности. Открытые показатели, обычно применяемые в наши дни – 3 и 2 16 + 1, поскольку эти цифры малы, а операции с личным ключом (шифрование и верификация подписи) быстры по сравнению с операциями с личным ключом (дешифрация и подпись). Если один показатель станет стандартом, программное и аппаратное обеспечение может быть оптимизировано под это значение.

В системах открытых ключей, базирующихся на дискретных логарифмах, таких как Е1 Gamal, Diffie – Helmann или DSS одним модулем может воспользоваться группа пользователей. Такое общее пользование делает разделение на ключи более привлекательным для нарушителей, так как в этом случае можно взломать все ключи, приложив для этого совсем немного больше усилий, чем для того, чтобы взломать один ключ. Таким образом, организациям следует быть очень осторожными, применяя общие модули при управлении и распределении больших баз данных открытых ключей. В любом случае, если компания выбирает такие модули, они должны быть очень большими и подсоединяться к серверу открытых ключей.

Серверы открытых ключей

Постоянная большая база данных электронной почты (SLED)

Построенная большая база данных электронный почты (SLED – Stahle Large E-mail Database) должна обеспечить эффективную работу механизма, подобного серверу открытых ключей, целью которого является обслуживание и поиск адресов электронной почты как для частных лиц, так и для организаций. SLED идеален для пользователей внутри организации, имеющих один и более почтовых ящиков (на которые можно посылать почту по Internet), которые они должны ежедневно проверять.

Вернемся к формальному описанию основного объекта криптографии
(рис. №1). Теперь в него необходимо внести существенное изменение - добавить недоступный для противника секретный канал связи для обмена ключами (см. рис. №2).


Создать такой канал связи вполне реально, поскольку нагрузка на него, вообще говоря, небольшая. Отметим теперь, что не существует единого шифра, подходящего для всех случаев. Выбор способа шифрования зависит от особенностей информации, ее ценности и возможностей владельцев по защите своей информации. Прежде всего подчеркнем большое разнообразие видов защищаемой информации: документальная, телефонная, телевизионная, компьютерная и т.д. Каждый вид информации имеет свои специфические особенности, и эти особенности сильно влияют на выбор методов шифрования информации. Большое значение имеют объемы и требуемая скорость передачи шифрованной информации. Выбор вида шифра и его параметров существенно зависит от характера защищаемых секретов или тайны. Некоторые тайны (например, государственные, военные и др.) должны сохраняться десятилетиями, а некоторые (например, биржевые) - уже через несколько часов можно разгласить. Необходимо учитывать также и возможности того противника, от которого защищается данная информация. Одно дело - противостоять одиночке или даже банде уголовников, а другое дело - мощной государственной структуре.

Любая современная криптографическая система основана (построена) на использо­вании криптографических ключей. Она работает по определенной методологии (процедуре), состоящей из: одного или более алгоритмов шифрования (математических формул); ключей, используемых этими алгоритмами шифрования; системы управления ключами; незашифрованного текста; и зашифрованного текста (шифртекста).

2.1.1. Симметричная (секретная) методология.

В этой методологии и для шифрования, и для расшифровки отправителем и получателем применяется один и тот же ключ, об использовании которого они договорились до начала взаимодействия. Если ключ не был скомпрометирован, то при расшифровке автоматически выполняется аутентификация отправителя, так как только отправитель имеет ключ, с помощью которого можно зашифровать информацию, и только получатель имеет ключ, с помощью которого можно расшифровать информацию. Так как отправитель и получатель - единственные люди, которые знают этот симметричный ключ, при компрометации ключа будет скомпрометировано только взаимодействие этих двух пользователей. Проблемой, которая будет актуальна и для других криптосистем, является вопрос о том, как безопасно распространять симметричные (секретные) ключи.

Алгоритмы симметричного шифрования используют ключи не очень большой длины и могут быстро шифровать большие объемы данных.

Порядок использования систем с симметричными ключами:

1. Безопасно создается, распространяется и сохраняется симметричный секретный ключ.

2. Отправитель создает электронную подпись с помощью расчета хэш-функции для текста и присоединения полученной строки к тексту

3. Отправитель использует быстрый симметричный алгоритм шифрования-расшифровки вместе с секретным симметричным ключом к полученному пакету (тексту вместе с присоединенной электронной подписью) для получения зашифрованного текста. Неявно таким образом производится аудентификация, так как только отправитель знает симметричный секретный ключ и может зашифровать этот пакет. Только получатель знает симметричный секретный ключ и может расшифровать этот пакет.

4. Отправитель передает зашифрованный текст. Симметричный секретный ключ никогда не передается по незащищенным каналам связи.

5. Получатель использует тот же самый симметричный алгоритм шифрования-расшифровки вместе с тем же самым симметричным ключом (который уже есть у получателя) к зашифрованному тексту для восстановления исходного текста и электронной подписи. Его успешное восстановление аутентифицирует кого-то, кто знает секретный ключ.

6. Получатель отделяет электронную подпись от текста.

7. Получатель создает другую электронную подпись с помощью расчета хэш-функции для полученного текста.

Доступными сегодня средствами, в которых используется симметричная методология, являются:

· Kerberos, который был разработан для аутентификации доступа к ресурсам в сети, а не для верификации данных. Он использует центральную базу данных, в которой хранятся копии секретных ключей всех пользователей.

· Сети банкоматов (ATM Banking Networks). Эти системы являются оригинальными разработками владеющих ими банков и не продаются. В них также используются симметричные методологии.

Раздел: Криптология
Количество знаков с пробелами: 61238
Количество таблиц: 6
Количество изображений: 2


СОВРЕМЕННЫЕ ПРОБЛЕМЫ ШКОЛЬНОГО ОБРАЗОВАНИЯ




ИСПОЛЬЗОВАНИЕ КРИПТОГРАФИИ ДЛЯ ЗАЩИТЫ ИНФОРМАЦИИ


Автор работы награжден дипломом победителя III степени

Текст работы размещён без изображений и формул.
Полная версия работы доступна во вкладке "Файлы работы" в формате PDF

Проблема защиты информации путем ее преобразования, исключающего ее прочтение посторонним лицом, волновала человеческий ум с давних времен. История криптографии — ровесница истории человеческого языка. Более того, первоначально письменность сама по себе была криптографической системой, так как в древних обществах ею владели только избранные. Священные книги Древнего Египта, Древней Индии и других народов тому являются примером.

Криптографические методы защиты информации — это специальные методы шифрования, кодирования или иного преобразования информации, в результате которого ее содержание становится недоступным для посторонних лиц без предъявления ключа криптограммы и обратного преобразования. Криптографический метод защиты, безусловно, самый надежный метод защиты, так как охраняется непосредственно сама информация, а не доступ к ней (например, зашифрованный файл нельзя прочесть даже в случае кражи носителя). Данный метод защиты информации реализуется в виде программ или пакетов программ.

Актуальность темы очевидна, т.к. информация в современном обществе – одна из самых ценных вещей в жизни, требующая защиты от несанкционированного проникновения лиц, не имеющих к ней доступа.

Объектом изучения в проектной работе является криптография.

Предметом изученияявляются криптографические методы защиты информации.

Задачи исследования:

- изучить основные задачи криптографии;

- изучить способы защиты информации с помощью криптографии.

1. Криптография, её история и основные задачи

1.1 Криптография

Криптография — наука о методах обеспечения конфиденциальности (невозможности прочтения информации посторонними лицами), целостности данных (невозможности незаметного изменения информации), аутентификации (проверки подлинности авторства или иных свойств объекта), а также невозможности отказа от авторства.

Изначально криптография изучала методы шифрования информации — обратимого преобразования открытого (исходного) текста на основе секретного алгоритма или ключа в шифрованный текст (шифротекст). Традиционная криптография образует раздел симметричных криптосистем, в которых зашифровывание и расшифровывание проводится с использованием одного и того же секретного ключа. Помимо этого раздела современная криптография включает в себя асимметричные криптосистемы, системы электронной цифровой подписи (ЭЦП), хеш-функции, управление ключами, получение скрытой информации, квантовую криптографию.

Рис.1. Диск и додекаэдр Энея. Гибрид шифровальной кости, диска и линейки Энея.[ 2]

1.2. История криптографии

История криптографии насчитывает около 4 тысяч лет. В качестве основного критерия периодизации криптографии возможно использовать технологические характеристики используемых методов шифрования.

Первый период (приблизительно с 3-го тысячелетия до н. э.) характеризуется господством моноалфавитных шифров (основной принцип — замена алфавита исходного текста другим алфавитом через замену букв другими буквами или символами). Второй период (хронологические рамки — с IX века на Ближнем Востоке (Ал-Кинди) и с XV века в Европе (Леон Баттиста Альберти) — до начала XX века) ознаменовался введением в обиход полиалфавитных шифров. Третий период (с начала и до середины XX века) характеризуется внедрением электромеханических устройств в работу шифровальщиков. При этом продолжалось использование полиалфавитных шифров.

Современный период развития криптографии (с конца 1970-х годов по настоящее время) отличается зарождением и развитием нового направления — криптография с открытым ключом. Её появление знаменуется не только новыми техническими возможностями, но и сравнительно широким распространением криптографии для использования частными лицами (в предыдущие эпохи использование криптографии было исключительной прерогативой государства). Правовое регулирование использования криптографии частными лицами в разных странах сильно различается — от разрешения до полного запрета.

Современная криптография образует отдельное научное направление на стыке математики и информатики — работы в этой области публикуются в научных журналах, организуются регулярные конференции. Практическое применение криптографии стало неотъемлемой частью жизни современного общества[3].

1.3. Основные задачи криптографии:

Обеспечение конфиденциальности данных (предотвращение несанкционированного доступа к данным). Это одна из основных задач криптографии, для ее решения применяется шифрование данных, т.е. такое их преобразование, при котором прочитать их могут только законные пользователи, обладающие соответствующим ключом

Обеспечение целостности данных— гарантии того, что при передаче или хранении данные не были модифицированы пользователем, не имеющим на это права. Под модификацией понимается вставка, удаление или подмена информации, а также повторная пересылка перехваченного ранее текста. name= ‘more’>

Обеспечение невозможности отказа от авторства - предотвращение возможности отказа субъектов от совершенных ими действий (обычно — невозможности отказа от подписи под документом). Эта задача неотделима от двойственной — обеспечение невозможности приписывания авторства. Наиболее яркий пример ситуации, в которой стоит такая задача — подписание договора двумя или большим количеством лиц, не доверяющих друг другу. В такой ситуации все подписывающие стороны должны быть уверены в том, что в будущем, во-первых, ни один из подписавших не сможет отказаться от своей подписи и, во-вторых, никто не сможет модифицировать, подменить или создать новый документ (договор) и утверждать, что именно этот документ был подписан. Основным способом решения данной проблемы является использование цифровой подписи. [4]

2. Современная криптография и криптосистемы

2.1. Симметричные криптосистемы. Современная криптография включает в себя четыре крупных раздела.

В симметричных криптосистемах и для шифрования, и для дешифрования используется один и тот же ключ. (Шифрование — преобразовательный процесс: исходный текст, который носит также название открытого текста, заменяется шифрованным текстом, дешифрование — обратный шифрованию процесс.На основе ключа шифрованный текст преобразуется в исходный);

Электроная подпись (ЭП) - это программно-криптографическое средство, которое обеспечивает:

проверку целостности документов;

установление лица, отправившего документ

Электронная подпись используется физическими и юридическими лицами в качестве аналога собственноручной подписи для придания электронному документу юридической силы, равной юридической силе документа на бумажном носителе, подписанного собственноручной подписью правомочного лица и скрепленного печатью.

Электронный документ - это любой документ, созданный при помощи компьютерных технологий и хранящийся на носителях информации, обрабатываемых при помощи компьютерной техники, будь то письмо, контракт или финансовый документ, схема, чертеж, рисунок или фотография.

Преимущества использования ЭП

Использование ЭП позволяет:

значительно сократить время, затрачиваемое на оформление сделки и обмен документацией;

усовершенствовать и удешевить процедуру подготовки, доставки, учета и хранения документов;

гарантировать достоверность документации;

минимизировать риск финансовых потерь за счет повышения конфиденциальности информационного обмена;

построить корпоративную систему обмена документами.

Подделать ЭП невозможно - это требует огромного количества вычислений, которые не могут быть реализованы при современном уровне математики и вычислительной техники за приемлемое время, то есть пока информация, содержащаяся в подписанном документе, сохраняет актуальность. Дополнительная защита от подделки обеспечивается сертификацией Удостоверяющим центром открытого ключа подписи.

3. Управление криптографическими ключами

Криптографические ключи различаются согласно алгоритмам, в которых они используются.

- Секретные (Симметричные) ключи — ключи, используемые в симметричных алгоритмах (шифрование, выработка кодов аутентичности). Главное свойство симметричных ключей: для выполнения как прямого, так и обратного криптографического преобразования необходимо использовать один и тот же ключ (либо же ключ для обратного преобразования легко вычисляется из ключа для прямого преобразования, и наоборот).

3.2. Симметричные криптографические алгоритмы.

Классическими примерами таких алгоритмов являются симметричные криптографические алгоритмы, перечисленные ниже:

Одиночная перестановка по ключу

Простая перестановка

Одиночная перестановка по ключу

Более практический метод шифрования, называемый одиночной перестановкой по ключу, очень похож на предыдущий. Он отличается лишь тем, что колонки таблицы переставляются по ключевому слову, фразе или набору чисел длиной в строку таблицы.

Двойная перестановка

Параметры алгоритмов: Существует множество (не менее двух десятков) алгоритмов симметричных шифров, существенными параметрами которых являются:

длина обрабатываемого блока

сложность аппаратной/программной реализации

4. Сравнение с асимметричными криптосистемами

4.1. Достоинства асимметричных криптосистем

скорость шифрования и дешифрования;

простота реализации (за счёт более простых операций);

уменьшение требуемой длины ключа для сопоставимой стойкости

изученность криптосистемы (за счёт большего возраста)

4.2. Основные недостатки

сложность управления ключами в большой сети

сложность обмена ключами. Для применения необходимо решить проблему надёжной передачи ключей каждому абоненту, так как нужен секретный канал для передачи каждого ключа обеим сторонам

Для компенсации недостатков симметричного шифрования в настоящее время широко применяется комбинированная (гибридная) криптографическая схема, где с помощью асимметричного шифрования передаётся сеансовый ключ, используемый сторонами для обмена данными с помощью симметричного шифрования.

Важным недостатком симметричных шифров является невозможность их использования в механизмах формирования электронной цифровой подписи и сертификатов, так как ключ известен каждой стороне. [6]

Схема 1. Симметричное шифрование

Криптосистемы с открытым ключом

Преимущества

Преимущество асимметричных шифров перед симметричными шифрами состоит в отсутствии необходимости предварительной передачи секретного ключа по надёжному каналу.

В симметричной криптографии ключ держится в секрете для обеих сторон, а в асимметричной криптосистеме только один секретный.

При симметричном шифровании необходимо обновлять ключ после каждого факта передачи, тогда как в асимметричных криптосистемах пару (E,D) можно не менять значительное время.

В больших сетях число ключей в асимметричной криптосистеме значительно меньше, чем в симметричной.

Несимметричные алгоритмы используют более длинные ключи, чем симметричные. Ниже приведена таблица, сопоставляющая длину ключа симметричного алгоритма с длиной ключа несимметричного алгоритма с аналогичной криптостойкостью.

Читайте также: