Органические вяжущие вещества реферат

Обновлено: 17.05.2024

Органические вяжущие вещества — это высокомолекулярные при­родные или синтетические вещества, способные:

• приобретать жидко-вязкую консистенцию при нагревании или при действии растворителей или же имеющие жидко-вязкую конси­стенцию в исходном состоянии;

• с течением времени самопроизвольно или под действием опре­деленных факторов (температуры, веществ-отвердителей и др.) пере­ходить в твердое состояние.

При этом как в жидком, так и в твердом состоянии эти вещества имеют хорошую адгезию к другим материалам.

В зависимости от происхождения, химического и вещественного состава органические вяжущие делят на следующие группы:

• черные вяжущие (битумы и дегти);

• природные смолы, клеи и полимеры;

• синтетические полимерные продукты.

Природные высокомолекулярные вещества применяют как в их естественном состоянии, так и после химической модификации, при­дающей им необходимые свойства. Например, целлюлозу применяют в виде эфиров (нитроцеллюлоза, метилцеллюлоза и т. п.). Битумы также часто подвергают модификации.

В зависимости от отношения к нагреванию и растворителям орга­нические вяжущие делят на термопластичные и термореактивные.

Термопластичными называют вещества, которые при нагревании переходят из твердого состояния в жидкое (плавятся), а при охлаждении вновь затвердевают; причем такие переходы могут повторяться много раз. Термопластичность объясняется линейным строением молекул и невысоким межмолекулярным взаимодействием. По этой же причине большинство термопластов способно растворяться в соответствующих растворителях. К термопластам относятся битумы, смолы, многие широко распространенные полимеры — полиэтилен, поливинилхло­рид, полистирол и др.

Термореактивными называют вещества, у которых переход из жид­кого состояния в твердое происходит необратимо. При этом у них

ОРГАНИЧЕСКИЕ ВЯЖУЩИЕ ВЕЩЕСТВА

К термореактивным органическим вяжущим относятся, например, эпоксидные и полиэфирные олигомеры (смолы), олифы, каучуки в смеси с вулканизаторами и др.

Органические вяжущие существенно отличаются от неорганиче­ских (минеральных). Адгезионные свойства многих органических вя­жущих значительно выше, чем минеральных. Прочность на сжатие у них сопоставима с прочностью минеральных, а при изгибе и растяже­нии во много раз выше. Следует помнить, что у термопластичных вяжущих прочность быстро падает при повышении температуры из-за размягчения полимера. Органические вяжущие характеризуются низ­кой термостойкостью. В зависимости от состава и строения темпера­тура их размягчения составляет 80. 250° С. В большинстве своем это горючие вещества.

Большинство органических вяжущих водо - и химически стойки (они хорошо противостоят действию кислот, щелочей и солевых растворов). Стоимость органических вяжущих значительно выше, чем минеральных, а объемы их производства — намного ниже.

Из сказанного видно, что отличия органических вяжущих от ми­неральных носят как положительный, так и отрицательный характер. Поэтому каждый вид вяжущих имеет свои рациональные области применения, выбираемые с учетом всех его свойств. В последние годы широко используется модификация минеральных вяжущих органиче­скими с целью получения композиционных материалов с принципиаль­но новым набором свойств (см. § 2.1).

Органические вяжущие[3] используются в строительстве для полу­чения клеев, мастик, лакокрасочных материалов (см. гл. 18), полимер­ных и полимерцементных растворов и бетонов (см. § 12.8). Большая же часть синтетических полимеров используется при производстве пластмасс, в состав которых, как правило, входят наполнители и другие компоненты, снижающие стоимость и придающие пластмассам спе­циальные свойства.

Высокая стоимость полимерных вяжущих выдвигает на первый план при их использовании задачу снижения полимероемкости, т. е. получения требуемого результата при минимальном расходе полимера. Поэтому полимерные вяжущие применяют в основном для получения тонких облицовочных изделий (плиток, пленок, погонажных изделий), покрасочных и клеящих составов, защитных химически стойких по­крытий, а также для изготовления газонаполненных пластмасс — теплоизоляционных материалов с уникально низкой плотностью (10. 50 кг/м3).

Хотя битумы и дегти имеют различное происхождение и несколько отличаются составом, оба обладают общими характерными свойства­ми. При нагревании они обратимо разжижаются и в таком состоянии хорошо смачивают другие материалы, а при охлаждении отвердевают, прочно склеивая смоченные ими материалы. Кроме того, битумы и дегти водостойки и водонепроницаемы, и если ими пропитать или покрыть другие материалы, то они преобретают гидрофобные (водо­отталкивающие) свойства. Битумы и дегти хорошо растворяются в органических растворителях. Перечисленные свойства предопределили использование битумов и дегтей для получения клеящих и гидроизо­ляционных материалов, а также для получения специальных дорожных бетонов — асфальтобетонов.

Битумы (от лат. bitumen — смола) — при комнатной температуре вязкопластичные или твердые вещества черного или темно-коричне­вого цвета, представляющие собой сложную смесь высокомолекуляр­ных углеводородов и их неметаллических производных. В зависимости от происхождения битумы могут быть природные и искусственные (техногенные); источником образования или получения битумов и в том, и в другом случае является нефть.

Природные битумы встречаются в виде асфальтовых пород, например, песка, пористого известняка, пропитанных битумом (содер - жание битума от 5 до 20 %). Такие породы встречаются в Венесуэле. Канаде, на острове Тринидад и др. Есть месторождения практически чистых битумов, например, битумные озера на Сахалине. Природные битумы образовались при разливе нефти в результате испарения из нее легких фракций и частичного окисления кислородом воздуха. Мировые запасы природного битума более 500 млрд. т.

Искусственные битумы образуются в виде остатка при получении из нефти топлива и масел — нефтяные битумы.

Битумы — сложные коллоидно-дисперсные системы, состоящие из нескольких групп веществ:

• твердые высокомолекулярные вещества (асфальтены, карбены, карбоиды), придающие битуму твердость;

• смолистые вещества, придающие битуму клейкость;

• нефтяные масла, придающие битуму вязкость и термопластйч - ность.

В этой дисперсной системе масла являются дисперсионной средой, а асфальтены — дис­персной фазой; смолы играют роль стабилиза­тора дисперсии (рис. 9.1). При нагреве масла разжижаются и битум становится жидко-вяз­ким, а при охлаждении густеют и затвердевают и битум становится твердым и даже хрупким.

Битумы делят на три типа по области их применения: дорожные (для асфальтобетонов), кровельные (для мягких кровельных материа­лов) и строительные (для изготовления мастик, гидроизоляции и др.). Каждый тип битумов в зависимости от состава может иметь различ­ные марки (табл. 9.1).

  • Для учеников 1-11 классов и дошкольников
  • Бесплатные сертификаты учителям и участникам

Институт физики и химии

Кафедра физической химии

Реферат по дисциплине Химия строительных материалов,

Выполнил студент 4-го курса,

специальности ХФиММ: Кутюшев Д. Р.

Проверил преподаватель: Арасланкин С. В.

Вяжущие вещества – вещества, затвердевающие в следствии действия различных физико-химических процессов, иными словами, они работают в качестве цементирующего элемента. Переходя из вязкой пастообразной фазы в камневидную фазу, вяжущие вещества соединяют друг с другом частицы какого-нибудь заполнителя (песка, каменной крошки, щебня и прочих). Данная функциональная черта вяжущих веществ, нашла довольно обширное применение в строительной промышленности, их используют в рецептурах растворов – кладочных, штукатурных и специализированных, а кроме того бетонов, силикатного кирпича, асбестоцементных и других необожженных строительных материалов искусственного происхождения[2].

Вяжущие вещества классифицируются на органические и неорганические (минеральные) вещества. К органическому классу вяжущих веществ, принадлежат битумы, дегти, животные клеи, различные высокомолекулярные соединения. Они все переходят в эксплуатационную фазу в следствии воздействия повышенных температур, расплавления, либо растворения в разных органических растворителях. К неорганическому классу вяжущих веществ, принадлежат строительный гипс, известь, различные виды цементов, растворимое стекло и прочие. Неорганические вяжущие вещества, как правило, затворяются водой, а иногда и водными растворами различных солей. Их классифицируют на воздушные, кислотостойкие, гидравлические и вяжущие вещества автоклавного твердения. Также вяжущие вещества подразделяются на множество разных марок. Марка вяжущего вещества говорит о его прочностных показателях при сжатии, в стандартных условиях эксперимента. Еще их классифицируют по быстроте затвердевания. Самую большую скорость затвердевания имеют вяжущие вещества на основе гипса (до нескольких часов). Самую маленькую скорость затвердевания имеет воздушная известь (не один месяц)[5].

О примитивных вяжущих веществах знали уже за несколько тысячелетий до нашей эры, их прародителем была необожженная глина. Уже в древнем династическом Египте, в эпоху властвования фараонов, при строительстве пирамид активно употребляли вяжущие вещества, которые получали из гипса. Наглядным примером является известная египетская пирамида Хеопса, построенная приблизительно 4000 лет назад, которая возведена именно на гипсовом растворе. Тогда вяжущие вещества получали в следствии обжига гипсового камня и известняковых пород. Римляне для повышения стойкости к воде, к ним добавляли различные сильно измельченные минеральные порошки, например вулканический пепел, туф или пемзу. В древней Руси вяжущие вещества на основе гипса начали применять приблизительно в XI веке, при строительстве Софийского храма в Киеве[1]. В растворы, обладающие хорошими гидравлическими показателями, наши предки также добавляли бычью кровь, творожную массу, яйца и прочие похожие материалы. В 1584 году в Москве был издан Каменный приказ, который наряду с заготовкой строительного камня и выпуском кирпича ведал также изготовлением извести.

Большой вклад в развитие производства вяжущих веществ внесли англичане. В 1796 году Джеймс Паркер получил патент на производство романцемента. А в 1824 году Джозефом Аспдином был заявлен патент на производство портландцемента[1].

В нашей стране первые рецептуры по приготовлению вяжущих веществ были разработаны в XVIII веке. Данные рецептуры были обобщенным плодом многолетних исследований многих русских ученых.

Так, Василий Михайлович Севергин говорил о целесообразности применения известняковых пород с примесями глин и мергелистых пород для приготовления вяжущих веществ, обладающих хорошими гидравлическими свойствами[2].

Совершенно новым стали правила технологии получения гидравлических вяжущих, представленные в научной работе русского военного техника Егора Герасимовича Челиева, изданной в XIX веке. В своих исследованиях он приводит описание изготовления гидравлического вяжущего, полученного из извести и глины (в отношении 1:1) смешанных в присутствии воды; изготовления кирпичей и обжига их в горне на сухих дровах (примерно при температуре 1100 – 1200 ° C ). Уже тогда Егор Челиев предложил применять гипс при затворении получаемого им цемента водой, как для повышения устойчивости к воздушной среде только что обожженного продукта, так и для повышения прочности лежавшего без употребления в течение долгого времени цемента[1].

В XIX – XX веках в усовершенствование базы по производству вяжущих большой вклад внесли исследования Дмитрия Ивановича Менделеева, а также работы таких великих ученых, как Алексей Романович Шуляченко, Иван Григорьевич Малюга, Николай Николаевич Лямин, Николай Аполонович Белелюбский[1].

1. Неорганические вяжущие

Неорганическими вяжущими называют порошкообразные вещества высокой степени перемола, которые переходят в следствии затворения водой в вязкотекучее сходное с тестом вещество, затвердевающее при конкретных условиях до камневидного состояния.

По своему составу, важным показателям и применению выделяют несколько разновидностей неорганических вяжущих: воздушные, кислотоустойчивые, гидравлические и вяжущие автоклавного затвердевания. Каждую из приведенных групп подразделяют еще на некоторое количество различных подгрупп[2].

Таблица 1. Классификация минеральных вяжущих

В контакте с воздухом, затворенные воздушные вяжущие схватываются, затвердевают и упрочняются. В конечном итоге выходит камневидный материал, долго сохраняющий свои прочностные показатели, но исключительно на воздухе. Эти материалы, в силу особенности своих свойств, не используются ни в каких сооружениях, кроме наземных, в коих исключено действие не воздушных сред. К этому классу принадлежат строительная воздушная известь, гипсовые и магнезиальные вяжущие[2].

Кислотостойкие вяжущие после затвердевания в воздухе некоторый период сохраняют свои прочностные характеристики под влиянием неорганических кислот. К данному классу вяжущих принадлежат кислотостойкий цемент и прочие[ 1 ].

Затворенные водой, гидравлические вяжущие обладают особенностью, увеличивать свои прочностные характеристики в воде. По клинкерному и вещественному составу бывают: цементы на базе портландцементного клинкера (портландцемент, портландцемент с неорганическими добавками) и цементы на базе глиноземистого клинкера (глиноземистый и гипсоглиноземистый).

Вяжущие автоклавного твердения превращаются в камень исключительно в автоклавных условиях, то есть при паровом давлении 0,9 – 1,3 МПа и температуре 440 – 470 K . К ним принадлежат, к примеру известково-кремнеземистые, известково-пуццолановые, известково-зольные вяжущие и прочие [2].

Важными показателями вяжущих являются плотность, насыпная плотность, показатель водопотребления, быстрота схватывания и твердения, прочностные показатели.

Плотность сильно зависит от класса неорганического вяжущего. Больше остальных у негашеной извести – 3,1 – 3,3 г/см 3 и портландцемента – 3 – 3,2 г/см 3 , меньше всего у гипсовых вяжущих – 2,6 – 2,7 г/см 3 .

Насыпная плотность вяжущих сильно зависит от основной плотности и степени перемола порошка. Насыпная плотность портландцемента – 900 – 1100 кг/м 3 .

Водопотребление – это объем воды, нужный для достижения вязкотекучего тестообразного состояния. Маленький показатель водопотребления дает лучшее качественные и прочностные характеристики. Самый маленький показатель у портландцемента – 24 – 28%, самый большой у вяжущих на базе гипса – 50 – 80 %.

Время схватывания – это время, за которое затворенное неорганическое вяжущее, поддерживает свои показатели пластичности. Очень скоро схватываются гипсовые вяжущие: начинают через 4 – 5 минут, заканчивают через 10 – 15 минут после затворения водой. Очень долго схватывается гидратная известь, аж через 3 – 5 суток.

Быстрота затвердевания зависит от взаимодействия компонентов неорганического вяжущего с водой. У гипсовых вяжущих скорость затвердевания около 1 – 2 часов. Гашеная известь затвердевает не один год. Цементы по быстроте твердения выделяют: обычные (с нормировкой прочностных показателей за срок 28 суток), быстротвердеющие (с нормировкой прочностных показателей за срок 1 – 28 суток), быстротвердеющие (с нормировкой прочностных показателей за 1 сутки и меньше).

Прочность показывает способность вяжущего сохранять свои свойства под действием различных внешних нагрузок. Прочностные показатели камневидной фазы являются зависимыми от нескольких условий: вида вяжущего, тонкости его перемола, показателя водопотребления, быстроты твердения. По прочностным характеристикам выделяют цементы: высокопрочные (550 – 600 и более), повышенной прочности (500), рядовые (300 – 400), низкомарочные (менее 300). Большие прочностные показатели имеют вяжущие автоклавного твердения. А вот, прочностные показатели воздушных вяжущих намного меньше (5 – 20 МПа)[ 5 ].

1.1 Воздушные вяжущие

Затворенные водой воздушные вяжущие затвердевают и сохраняют прочностные характеристики исключительно в воздухе. Под влиянием водной среды такие материалы достаточно быстро подвергаются разрушению. Из-за этого воздушные вяжущие используются только при возведении наземных сооружений. К таким материалам принадлежат гипсовые вяжущие, воздушная известь (негашеная комовая известь, гашеная молотая известь), магнезиальные вяжущие, кислотостойкий цемент, растворимое стекло и прочие[2].

Гипсовые вяжущие классифицируются на две группы – низко обжиговые и высоко обжиговые. Исходным сырьем для них служит гипсовый камень – двухводный гипс – CaSО 4 ·2H 2 О, и ангидрит, в его состав входит безводный гипс – CaSО 4 , а кроме того отходы химической индустрии, содержащее двухводный или безводный сернокислый кальций. Чистый двухводный гипс состоит из 32,56% СаО; 46,51% SО 3 и 20,93% воды, а ангидрит – из 41,19% СаО и 58,81% SО 3 . Растворимость двухводного гипса, равна 2,05 грамм в одном литре воды при 20 ° С. Растворимость ангидрита – один грамм на один литр воды[ 3 ].

Магнезит широко распространенный минерал, который назван от области Магнесия (Фессалия, Греция), где был впервые обнаружен. В природных условиях магнезит существует в двух разновидностях – кристаллическом и аморфном. Прочностные показатели и того и другого вида магнезита по шкале Мооса находится в интервале 3,5 – 4,5; плотность 2,9 – 3,1. Состав магнезита 47,82% оксида магния и 52,18% CO 3 . В природном магнезите имеют место разные примеси: глинистые породы, углекислый кальций и прочие. В зависимости от состава примесных компонентов различают белый, бурый, серый и желтый магнезит. В аморфном состоянии всегда есть наличие кремнезема, но отсутствуют соединения железа. В природных условиях магнезит более редкий минерал, чем известняк и доломит. Наиболее известны два магнезиальных вяжущих: каустический магнезит и доломит. Каустический магнезит получают в следствии обжига магнезита (MgCО 3 ) и перемолом его в порошок высокой степени тонкости. Отличие между каустическим доломитом и каустическим магнезитом в исходном сырье. Для каустического доломита им является не магнезит, а доломит (CaCО 3 ·MgCО 3 ). И то и другое вяжущие затворяют раствором хлористого магния, сернокислого магния или прочих солей.

Доломит – это минерал, который имеет состава CaCO 3 – MgCO 3 . Еще доломитом называют осадочную карбонатную горную породу, которая состоит из минерала доломита на 95 %. Доломит назвали в честь геолога из Франции Деода де Доломье, он первым описал характерные особенности доломитовых пород. Прочностные показатели доломита по шкале Мооса 3,5 – 4; плотность 2,85 – 2,95. Содержание в доломите СаСО 3 – 54,27%; MgCО 3 – 45,73% или в окислах: СаО – 30,41%; MgO – 21,87% и СО 2 – 47,72%. Доломит, который встречается в природе, как правило, имеет избыток углекислого кальция. Кроме него, в доломите имеются глинистые и прочие примеси. Доломит бывает белого, желтого и бурого цвета, в зависимости от примесного состава[4].

Воздушная известь одно из самых древних вяжущих, которое до сих пор применяется в строительстве. Известь получается в следствии обжигания кальциевых и кальциево-магниевых карбонатных пород до избавления от углекислого газа. В следствии обжигания получается белый материал, который имеет название негашеная комовая известь. Исходным сырьем для получения извести являются достаточно распространенные осадочные горные породы: известняки, доломиты, мел, доломитизированные известняки. В составе сырья имеет преимущество карбонат кальция СаСО 3 , а также содержатся карбонат магния и прочие примеси. Сырье, обжигают в шахтных или вращающихся печах при температуре 900 – 1200 ° C , по итогам обжигания комовую известь гасят водой. В контакте с водной средой комки извести активно с ней взаимодействуют, преобразуясь в порошок, а при излишнем количестве воды – в пластичное тестообразное вещество. Такой процесс, сопровождающийся очень большим выделением тепла и нагреванием воды до кипения, называют гашением извести. В зависимости от времени гашения различают быстро гасящуюся известь (время гашения до 8 минут) средне гасящуюся (до 25 минут) и медленно гасящуюся (более 25 минут)[3].

1.2 Гидравлические вяжущие

Гидравлические вяжущие являются порошками высокой степени перемола, состоящие из силикатов и алюминатов кальция, которые реагируют с водой, переходя в твердую камневидную фазу. Состав компонентов, из которых состоят гидравлические вяжущие, записывают в виде различных оксидов. Например, силикат кальция CaSiО 3 , трехкальциевый алюминат Са 3 А1 2 О 3 [3].

К гидравлическим вяжущим принадлежат гидравлическая известь, которая занимает среднее положение между воздушными и гидравлическими вяжущими, романцемент, портландцемент, разновидности портландцемента и специализированные виды цементов[2].

Цементы готовят из мергеля конкретного химического состава или из смеси известняковых горных пород и глин (известняк 75 %, глина 25 %). Эту смесь подвергают обжигу в печах при 1450 ° C . Результатом обжига является частичное оплавление, и получение гранул, которые называют клинкером. Типичный клинкер имеет примерный состав 67% СаО, 22% SiO 2 , 5% A l 2 O 3 , 3% Fe 2 O 3 и 3% других компонентов и обычно содержит четыре фазы: алит, белит, алюминатная и ферритная фаза. В клинкере также обычно присутствуют в небольших количествах и несколько других фаз, таких как щелочные сульфаты и оксид кальция. При едином перемоле клинкера с гипсом и прочими добавками получается порошок серого цвета – это и есть цемент. Гипс регулирует быстроту схватывания; его можно частично заменить другими формами сульфата кальция. Степень перемола цемента также оказывает влияние на быстроту его схватывания, а еще и на прочностные показатели после затвердевания. Цементы разделяют: по виду клинкера и вещественному составу; прочностным показателям; быстроте затвердевания; специальным свойствам. Портландцемент готовят путем совместного перемола портландцементного клинкера, доменного шлака и гипса. Шлаковый портландцемент схватывается и затвердевает намного дольше, чем обычный портландцемент[5].

Вяжущие вещества по составу делятся на
1. неорганические (известь, цемент, строительный гипс, магнезиальный цемент, жидкое стекло и др.), которые затворяют водой (реже водными растворами солей). Включают: вяжущие воздушные, вяжущие гидравлические, вяжущие автоклавного твердения.
2. органические (битумы, дёгти, животный клей, полимеры), которые переводят в рабочее состояние нагреванием, расплавлением или растворением в органических жидкостях.

Прикрепленные файлы: 1 файл

реферат текст.doc

Вяжущие материалы — вещества, способные затвердевать в результате физико-химических процессов. Переходя из тестообразного в камневидное состояние, вяжущее вещество скрепляет между собой камни либо зёрна песка, гравия, щебня. Это свойство вяжущих используется для изготовления: бетонов, силикат ного кирпича, асбоцементных и других необожжённых искусственных материалов; строительных растворов — кладочных, штукатурных и специальных.

Вяжущие вещества по составу делятся на

1. неорганические (известь, цемент, строительный гипс, магнезиальный цемент, жидкое стекло и др.), которые затворяют водой (реже водными растворами солей). Включают: вяжущие воздушные, вяжущие гидравлические, вяжущие автоклавного твердения.

2. органические (битумы, дёгти, животный клей, полимеры), которые переводят в рабочее состояние нагреванием, расплавлением или растворением в органических жидкостях.

ГЛАВА 1. ТЕХНАЛОГИЯ ИЗГОТОВЛЕНИЯ ПОРТЛАНДЦЕМЕНТА

Портландцемент получают тонким измельчением клинкера и гипса. Клинкер — продукт равномерного обжига до спекания однородной сырьевой смеси, состоящей из известняка и глины определённого состава, обеспечивающего преобладание силикатов кальция (3СаО∙SiO2 и 2СаО∙SiO2 70-80 %).

При измельчении клинкера вводят добавки: 1,5…3,5 % гипса СaSO4∙2H2O (в перерасчёте на ангидрид серной кислоты SO3) для регулирования сроков схватывания, до 15 % активных минеральных добавок — для улучшения некоторых свойств и снижения стоимости цемента.

Сырьём для производства портландцемента служат смеси, состоящие из 75…78 % известняка (мела, ракушечника, известнякового туфа, мрамора) и 22…25 % глин (глинистых сланцев, суглинков), либо известняковые мергели, использование которых упрощает технологию. Для получения требуемого химического состава сырья используют корректирующие добавки: пиритные огарки, колошниковую пыль, бокситы, пески, опоки, трепелы.

При мокром способе производства уменьшается расход электроэнергии на измельчение сырьевых материалов, облегчается транспортирование и перемешивание сырьевой смеси, выше гомогенность шлама и качество цемента, однако расход топлива на обжиг и сушку составляет на 30-40 % больше чем при сухом способе.

Обжиг сырьевой смеси проводится при температуре 1 470°C в течение 2…4 часов в длинных вращающихся печах (3,6х127 м, 4×150 м и 4,5х170 м) с внутренними теплообменными устройствами, для упрощения синтеза необходимых минералов цементного клинкера. В обжигаемом материале происходят сложные физико-химические процессы. Вращающуюся печь мокрого способа условно можно поделить на зоны:

  • сушки (температура материала 100…200 °C — здесь происходит частичное испарение воды);
  • подогрева (200…650 °C — выгорают органические примеси и начинаются процессы дегидратации и разложения глинистого компонента). Например, разложение каолинита происходит по следующей формуле: Al2O3∙2SiO2∙2H2O → Al2O3∙2SiO2 + 2H2O; далее при температурах 600…1 000 °C происходит распад алюмосиликатов на оксиды и метапродукты.
  • декарбонизации (900…1 200 °C) происходит декарбонизация известнякового компонента: СаСО3 → СаО + СО2, одновременно продолжается распад глинистых минералов на оксиды. В результате взаимодействия основных (СаО, MgO) и кислотных оксидов (Al2O3, SiO2) в этой же зоне начинаются процессы твердофазового синтеза новых соединений (СаО∙ Al2O3 — сокращённая запись СА, который при более высоких температурах реагирует с СаО и в конце жидкофазового синтеза образуется С3А), протекающих ступенчато;
  • экзотермических реакций (1 200…1 350 °C) завершется процесс твёрдофазового спекания материалов, здесь полностью завершается процесс образования таких минералов как С3А, С4АF (F — Fe2O3) и C2S (S — SiO2) — 3 из 4 основных минералов клинкера;
  • спекания (1 300→1 470→1 300 °C) частичное плавление материала, в расплав переходят клинкерные минералы кроме C2S, который взаимодействуя с оставшимся в расплаве СаО образует минерал АЛИТ (С3S);
  • охлаждения (1 300…1 000 °C) температура понижается медленно. Часть жидкой фазы кристаллизуется с выделением кристаллов клинкерных минералов, а часть застывает в виде стекла.

Узнать данный вид цемента можно по внешнему виду — это зеленовато-серый порошок. Как и все цементы, если к нему добавить воду, он при высыхании принимает камнеобразное состояние и не имеет существенных отличий по своему составу и физико-химическим свойствам от обычного цемента.

ГЛАВА 2. РАЗНОВИДНОСТИ ПОРТЛАНЦЕМЕНТА

Для более полного удовлетворения специфических требований отдельных видов строительства промышленность выпускает особые виды портландцемента.

При получении портландцементов с заданными специальными свойствами используют следующие основные пути: 1) регулирование минерального состава и структуры цементного клинкера, оказывающих решающее влияние на строительно-технические свойства цемента; 2) регулирование тонкости помола и зернового состава цемента, влияющих на скорость твердения, прочность, тепловыделение и другие важнейшие свойства вяжущего; 3) изменение вещественного состава портландцемента введением в него активных минеральных и органических добавок, позволяющих направленно изменять свойства вяжущего, экономить клинкер и расход цемента в бетоне.

Быстротвердеющий портландцемент (БТЦ) отличается от обычного более интенсивным набором прочности в первые 3 сут. В соответствии с требованиями ГОСТ 10178—85 БТЦ М400 должен иметь через 3 сут твердения в нормальных условиях предел прочности при сжатии не менее 24,5 МПа, а БТЦ М500 — не менее 27,5 МПа. В дальнейшем рост прочности замедляется ,и к 28 сут прочность БТЦ такая же, как обычного портландцемента М400 и 500.

Быстрое твердение БТЦ достигается повышенным содержанием в клинкере активных минералов (содержание C3S+C3A составляет 60. 65%) и более тонкого помола цемента (удельная поверхность 3500. 4000 см2/г).

При помоле БТЦ допускается введение активных минеральных добавок осадочного происхождения (не более 10 %) или доменных гранулированных шлаков (до 20 % от массы цемента).

Разновидностью быстротвердеющего цемента является особо быстротвердеющий портландцемент (ОБТЦ), который характеризуется не только большой скоростью твердения в начальный период, но и высокой маркой (М600. 700). Его изготовляют тонким измельчением клинкера, содержащего C3S 65. 68% и СзА не более 8 %, совместно с добавкой гипса, до удельной поверхности 4000. 4500 см2/г и более. Введение минеральных добавок не допускается.

Разработан также сверхбыстротв ердеющий цемент (СБТЦ) специального минерального состава, который обеспечивает интенсивное нарастание прочности уже в первые сутки его твердения (через 6 ч — 10 МПа).

Быстротвердеющие портландцементы целесообразно применять при массовом производстве сборных железобетонных изделий, а также при зимних бетонных работах. Их применение дает возможность сократить расход цемента, длительность тепловлажностной обработки или даже отказаться от нее, тем самым увеличить оборот форм и сэкономить металл. Нельзя применять такие цементы для бетонов массивных конструкций и подвергающихся сульфоалюминатной коррозии.

Сульфатостойкий портландцемент (СПЦ) отличается от обычного портландцемента не только более высокой стойкостью к сульфатной коррозии, но и пониженной экзотермией при твердении и повышенной морозостойкостью. Клинкер для изготовления СПЦ должен содержать не более 50 % QS, не выше 5 % С3А и не более 22 % C3A+C4AF. Сульфатостойкий портландцемент выпускают М400. Его целесообразно применять в тех случаях, когда одновременно требуется высокая стойкость против воздействия сульфатных вод и попеременного замораживания и оттаивания, высыхания и увлажнения в пресной или слабоминерализованной воде.

Белый и цветные портландцементы — это декоративные вяжущие материалы, использование которых в строительстве позволяет улучшить эстетический вид зданий и сооружений при меньших затратах, чем с другими отделочными материалами.

Белый портландцемент получают путем измельчения белого клинкера совместно с добавками гипса и белого диатомита (до 6 %). Чтобы получить белый клинкер, необходимо для приготовления сырьевой смеси применять карбонатные породы и глины с ничтожно малым содержанием оксидов железа (до 0,4. 0,5 %) и марганца (до 0,005. 0,15 %). Для повышения белизны клинкера его подвергают отбеливанию, сущность которого заключается в восстановлении присутствующего в клинкере Fe2C>3 до Fe3O4, обладающей малой красящей способностью.

Основным показателем качества белого цемента как декоративного материала является степень его белизны. По степени белизны белый портланд цемент разделяют на три сорта (первый, второй и третий), а по прочности при сжатии — на М400 и 500.

Цветные цементы изготовляют путем совместного помола белого клинкера и свето- и щелочестойких пигментов или непосредственно из цветного цементного клинкера. Цветные клинкеры, по предложению П. И. Боже-нова, получают, вводя в сырьевые смеси небольшое количество (0,05. 1 %) оксидов некоторых металлов (кобальта— коричневый цвет, хрома — желто-зеленый, марганца — голубой и бархатно-черный и др.).

Портландцементы с органическими поверхностно-активными добавкамиполучают путем совместного помола портландцементного клинкера, гипса и небольшого количества (0,1. 0,3 % от массы цемента) добавок поверхностно-активных веществ (ПАВ). В соответствии с ГОСТ 10178—85 допускается по согласованию с потребителем выпускать не только портландцемент, но все цементы с поверхностно-активными добавками, не выделяя их в особый класс. Основное назначение добавок ПАВ (см. гл. б) сводится к повышению пластичности цементного теста, растворных и бетонных смесей при том же содержании в них воды, либо к снижению водопотребно-сти смеси и расхода цемента при сохранении заданной подвижности и проектной прочности бетона. Вместе с тем ПАВ оказывают положительное влияние на формирование структуры цементного камня и способствуют повышению морозостойкости, водонепроницаемости и других свойств бетона, а также повышают производительность мельниц (на 10. 15 %) при одновременном снижении расхода электроэнергии.

Поверхностно-активные вещества в зависимости от их влияния на свойства цементов и цементного камня подразделяют на гидрофильно-пластифицирующие, повышающие смачиваемость цементного порошка . водой, и гидрофобно-пластифицирующие, понижающие смачиваемость. В соответствии с этим портландцемента с гидрофильными добавками называют пластифицированными, а с гидрофобными добавками — гидрофобными.

Пластифицированный портландцемент получают при помоле клинкера с добавкой гидрофильно-пластифицирующих веществ (0,15. 0,25 % массы цемента). В качестве такой добавки используют лигносульфонат технический (ЛСТ), который получают, как отход при сульфитной варке целлюлозы. ЛСТ состоит в основном из лигносульфонатов кальция.

Адсорбируясь на поверхности зерен цемента, лигносульфонат кальция улучшает их смачивание водой. Образующиеся адсорбционно-гидратные слои воды обеспечивают гидродинамическую смазку зерен, уменьшая трение между ними, и одновременно препятствуют их слипанию в хлопья (флокулы), благодаря чему повышается пластичность цементного теста, а следовательно, и бетонной смеси и их устойчивость к расслоению. Другие свойства пластифицированного портландцемента (сроки схватывания, скорость твердения, прочность) примерно те же, что и у обычных портландцементов. Применение пластифицированного портландцемента дает возможность снизить трудоемкость укладки бетонной смеси, уменьшить расход цемента или (при том же расходе цемента и равной подвижности смеси) снизить водоцементное отношение и тем самым увеличить плотность, прочность, морозостойкость и водонепроницаемость бетона. Этот цемент широко используют в дорожном, аэродромном и гидротехническом строительстве.

Битумы применялись в качестве строительного материала еще в глубокой древности. За 3000 лет до нашей эры в Вавилоне и Ассирии, расположенных в междуречье Тигра и Евфрата, природный битум использовали в качестве цементирующего и водоизолирующего материала.
Органические вяжущие вещества делят на две основные группы: битумные и дегтевые.

Файлы: 1 файл

Реферат.docx

Реферат: Органические вяжущие вещества (Битум) Название: Органические вяжущие вещества (Битум)

Битумы применялись в качестве строительного материала еще в глубокой древности. За 3000 лет до нашей эры в Вавилоне и Ассирии, расположенных в междуречье Тигра и Евфрата, природный битум использовали в качестве цементирующего и водоизолирующего материала.

Органические вяжущие вещества делят на две основные группы: битумные и дегтевые.

К битумным материалам относятся следующие:

Природные битумы — вязкие жидкости или твердообразные вещества, состоящие из смеси углеводов и их неметаллических производных. Природные битумы получились в результате естественного процесса окислительной полимеризации нефти. Природные битумы встречаются в местах нефтяных месторождений, образуя линзы, а иногда и асфальтовые озера. Однако природные битумы в чистом виде встречаются редко, чаще они пронизывают осадочные горные породы.

Асфальтовые породы — пористые горные породы (известняки, доломиты, песчаники, глины, пески), пропитанные битумом. Из этих пород извлекают битум или их размалывают и применяют в виде асфальтового порошка.

Нефтяные (искусственные) битумы, получаемые переработкой нефтяного сырья, в зависимости от технологии производства могут быть: остаточные, получаемые из гудрона путем дальнейшего глубокого отбора из него масел; окисленные, получаемые окислением гудрона в специальных аппаратах (продувка воздухом); крекинговые, получаемые переработкой остатков, образующихся при крекинге нефти.

Гудрон — остаток после отгонки из мазута масляных фракций;

он является основным сырьем для получения нефтяных битумов, используется в виде связующего вещества в дорожном строительстве.

К дегтевым материалам относят различные виды дегтя и пеки.

Наиболее широкое применение органические вяжущие вещества получили в гидротехническом, дорожном, промышленно-гражданском строительстве в виде кровельных, гидроизоляционных материалов, асфальтобетона, асфальтораствора, уплотняющих материалов. Органические вяжущие хорошо совмещаются с резиной и полимерами, что позволяет значительно улучшить качество битумных материалов в соответствии с требованиями современного строительства.

Возникла новая отрасль, производящая гидроизоляционные материалы (изол, бризол и др.) из вторичного резинового сырья. Изготовление рулонных кровельных и гидроизоляционных материалов осуществляется на полностью механизированных поточных линиях непрерывного действия.

Битумные вяжущие вещества

1. Состав и строение битумов

Битумы относятся к наиболее распространенным органическим вяжущим веществам.

Элементарный состав битумов колеблется в пределах: углерода 70 - 80%, водорода 10 - 15%, серы 2 - 9%, кислорода 1 - 5%, азота 0 - 2%. Эти элементы находятся в битуме в виде углеводородов и их соединений с серой, кислородом и азотом. Химический состав битумов весьма сложен. Так, в них могут находиться предельные углеводороды от С9Н20 до С30Н62. Все многообразные соединения, образующие битум, можно свести в три группы: твердая часть, смолы и масла.

Твердая часть битума — это высокомолекулярные углеводороды и их производные с молекулярной массой 1000—5000, плотностью более 1, объединенные общим названием асфальтены”. В асфальтенах содержатся карбены, растворимые только в СCl4, и карбоиды, не растворимые в маслах и летучих растворителях. В состав битумов могут входить также твердые углеводороды — парафины.

Смолы представляют собой аморфные вещества темно-коричневого цвета с молекулярной массой 500—1000, плотностью около 1.

Масляные фракции битумов состоят из различных углеводородов с молекулярной массой 100—500, плотностью менее 1.

По своему строению битум представляет коллоидную систему, в которой диспергированы асфальтены, а дисперсионной средой являются смолы и масла. Асфальтены битума, диспергированные в виде частиц размером 18—20 мкм, являются ядрами, каждое из них окружено оболочкой убывающей плотности — от тяжелых смол к маслам.

Свойства битума, как дисперсной системы, определяются соотношением входящих в него составных частей: масел, смол и асфальтенов. Повышение содержания асфальтенов и смол влечет за собой возрастание твердости, температуры размягчения и хрупкости битума. Наоборот, масла, частично растворяющие смолы, делают битум мягким и легкоплавким. Снижение молекулярной массы масел и смол также повышает пластичность битума.

Парафин, содержащийся в нефтяных битумах, ухудшает их свойства, повышает хрупкость при пониженных температурах. Поэтому стремятся к тому, чтобы содержание парафина в битуме не превышало 5%.

Состав определил практические способы перевода твердых битумов в рабочее состояние: 1) нагревание до 140—170°С, размягчающее смолы и увеличивающее их растворимость в маслах; 2) растворение битума в органическом растворителе (зеленое нефтяное масло, лакойль и др.) для придания рабочей консистенции без нагрева (холодные мастики и т. п.); 3) эмульгирование и получение битумных эмульсий и паст.

2. Свойства битумов

Физические свойства органических и неорганических вяжущих веществ и материалов, изготовляемых на их основе, различны; Для органических веществ в отличие от минеральных характерны гидрофобность, атмосферостойкость, растворимость в органических растворителях, повышенная деформативность, способность размягчаться при нагревании вплоть до полного расплавления. Эти свойства обусловили применение органических вяжущих для производства кровельных, гидроизоляционных и антикоррозионных материалов, а также их широкое распространение в гидротехническом и дорожном строительстве.

Плотность битумов в зависимости от группового состава колеблется в пределах от 0,8 до 1,3 г/см3. Теплопроводность характерна для аморфных веществ и составляет 0,5—0,6 Вт/(м•°С); теплоемкость — 1,8—1,97 кДж/кг•°С. Коэффициент объемного теплового расширения при 25°С находится в пределах от 5•10-4 до 8•10-4°С1, причем более вязкие битумы имеют больший коэффициент расширения; при пониженных температурах — около 2•104°С-1. Устойчивость при нагревании характеризуется: 1) потерей массы при нагревании пробы битума при 160°С в течение 5 ч (не более 1%) и 2) температурой вспышки (230—240°С — в зависимости от марки).

Водостойкость характеризуется содержанием водорастворимых соединений (в битуме не более 0,2—0,3% по массе). Электроизоляционные свойства используют при устройстве изоляции электрокабелей.

Физико-химические свойства. Поверхностное натяжение битумов при температуре 20—25°С составляет 25—35 эрг/см2. От содержания поверхностно-активных полярных компонентов в органическом вяжущем зависит смачивающая способность вяжущего и его сцепление с каменными материалами (порошкообразными наполнителями, мелким и крупным заполнителем). Прочные хемосорбционные связи битум образует с наполнителем из известняка, доломита с большим количеством адсорбционных центров в виде катионов Са3+ и Ме+2.

Старение — процесс медленного изменения состава и свойств битума, сопровождающийся повышением хрупкости и снижением гидрофобности. Ускоряется под действием солнечного света и кислорода воздуха вследствие возрастания количества твердых хрупких составляющих за счет уменьшения содержания смолистых веществ и масел.

Реологические свойства битума зависят от группового состава и строения. Жидкие битумы, имеющие структуру типа золь, ведут себя как жидкости, течение которых подчиняется закону Ньютона. Твердые битумы, имеющие структуру типа гель, относятся к вязко-упругим материалам, так как при приложении к ним нагрузки одновременно возникает упругая (обратимая) и пластическая (необратимая) составляющие деформации. Для описания процесса деформирования вязко-упругих тел используют реологическую модель Максвелла и др. (см. разд. 1).

Химические свойства. Наиболее важным свойством является химическая стойкость битумов и битумных материалов к действию агрессивных веществ, вызывающих коррозию цементных бетонов, металлов и других строительных материалов. По данным Н. А. Мощанского, битумные материалы хорошо сопротивляются действию щелочей (с концентрацией до 45%), фосфорной кислоты (до 85%), а также серной (с концентрацией до 50%), соляной (до 25%) и уксусной (до 10%) кислот. Менее стойки битумы в атмосфере, содержащей окислы азота, а также при действии концентрированных растворов кислот (особенно окисляющих). Битум растворяется в органических растворителях. Благодаря своей химической стойкости и экономичности битумные материалы широко применяют для химической защиты железобетонных конструкций, стальных труб и др.

Физико-механические свойства. Марку битума определяют твердостью, температурой размягчения и растяжимостью.

Твердость находят по глубине проникания в битум иглы (в десятых долях миллиметра).

Температуру размягчения определяют на приборе “кольцо и шар”, помещаемом в сосуд с водой; она соответствует той температуре нагреваемой воды, при которой металлический шарик под действием собственной массы проходит через кольцо, заполненное испытуемым битумом.

Растяжимость характеризуется абсолютным удлинением (см) образца битума (“восьмерки”) при температуре 25°С, определяемым на приборе — дуктилометре.

Марку битума выбирают в зависимости от назначения. По назначению различают битумы строительные, кровельные и дорожные.

Строительные битумы применяют для изготовления асфальтовых бетонов и растворов, приклеивающих и изоляционных мастик, покрытия и восстановления рулонных кровель.

Кровельные битумы используют для изготовления кровельных рулонных и гидроизоляционных материалов. Легкоплавким битумом марки БНК 45/180 пропитывают основу (кровельный картон); а тугоплавкие битумы служат для покровного слоя.

Читайте также: