Определение температуры солнца на основе измерения солнечной постоянной реферат

Обновлено: 07.07.2024

П. Я. ДАВИДОВИЧ.

Изучение Солнца сделало огромные успехи в течение последних 15—20 лет. Если в 19 столетии наши познания о Солнце носили преимущественно описательный характер, то теперь, благодаря введению новых методов исследования и новых остроумных приборов, стало возможным проникнуть в физическую сторону явлений, наблюдаемых на Солнце.

В настоящее время определенно установлено, что Солнце представляет собой газообразное тело, газовый раскаленный шар, в котором все переходы постепенны и плотность прогрессивно уменьшается от центра к периферии. Самый глубокий слой, доступный нашему наблюдению, это — ослепительно блестящая зернистая фотосфера, ограничивающая Солнце в виде шара c поперечником в 1.400.000 километров. Фотосфера оказывается ареной, где разыгрываются явления солнечных пятен; последние, по современным данным, нужно рассматривать, как такие области, в которых происходит циркуляция газов в вертикальном направлении. В наиболее глубоких частях пятна, доступных нашему наблюдению, — в фотосфере и в следующем за нею т. наз. обращающем слое, вещество растекается из пятна и поднимается в солнечной атмосфере вверх; при этом истечение замедляется и, начиная с некоторой высоты, в хромосфере (она окутывает Солнце поверх первых двух слоев) вещество уже устремляется к пятну. При поднятии паров они быстро охлаждаются, и эти сравнительно остывшие и темные массы мы и наблюдаем в виде пятен на Солнце.

Благодаря замечательным исследованиям в знаменитой обсерватории на горе Вильсон (Калифорния) мы узнали, что солнечные пятна являются аренами деятельности мощных магнитных сил, которые в несколько тысяч раз превышают силу магнетизма Земли. Весь солнечный шар в целом также обладает магнитными свойствами, которые, нужно заметить, похожи на магнетизм земного шара; именно, так же, как и у Земли, северный магнитный полюс Солнца находится около северного географического или, лучше сказать — гелиографического (Гелиос по греч. — Солнце) полюса, а южный — соответственно около южного полюса.

Каковы причины, вызывающие упомянутые выше движения газов в солнечных пятнах, мы достоверно пока не знаем. Также остается пока невыясненной причина периодичности пятен, а вместе с ними и всей 11-ти летней периодической деятельности Солнца. Возможно, что эта периодичность имеет свою причину в том, что Солнце вращается около его оси. Как известно, вращение Солнца происходит зонами (поясами), с различными скоростями в разных его широтах, и это вызывает трение соседних зон и род явлений, которые могут вызывать периодические пульсации в пятнообразовательной и иной деятельности Солнца.


К фотосфере прилегает, окутывая ее, т. наз. обращающий слой, состоящий из паров более холодных, чем фотосфера, и потому поглощающий часть света форосферы. Обращающий слой охватывает беспрестанно волнующаяся, малинового цвета, оболочка, состоящая преимущественно из кальция и водорода и называемая хромосферой, которую постоянно пронизывают огромные взрывы, т. наз. протуберанцы.

А дальше простирается обширное нежное, матовое сияние солнечной короны, жемчужный блеск которой так слаб, что мы ее можем наблюдать лишь во время полных солнечных затмений, когда темный шар Луны закрывает ослепительный лик Солнца. Хромосферой, собственно говоря, кончаются готовые оболочки самого Солнца, солнечную же корону нельзя, по причинам которые мы здесь рассматривать не можем, считать его атмосферой в общепринятом смысле этого слова; скорее нужно предположить, что корона состоит из отдельных мельчайших частиц, которые, однако, не падают на Солнце, несмотря на его притяжение, вследствие того, что на них действует световое давление 1) солнечных лучей, отталкивающее их от Солнца и тем уравновешивающее силу его притяжения. Плотность короны ничтожна.


Протуберанцы (сняты во время последнего затмения).

Важный вопрос о химической природе Солнца, получил недавно (1921 г.) новое интересное освещение; этим мы обязаны проф. Мег Саха (Megh Saha). Дело в том, что из 92 известных нам на Земле химических элементов, на Солнце найдено, по его спектру 2) , всего 32 элемента. Возникает вопрос, действительно ли на Солнце отсутствуют остающиеся 60 элементов. Благодаря работам М. Саха и некоторых других ученых мы узнали, что тот или иной химический элемент может быть обнаружен при помощи спектрального анализа лишь при совершенно опреленных физических условиях, в которых возбуждается свечение (и — спектр) этого вещества, и эти необходимые условия различны для разных химических элементов. И вот, поскольку мы теперь знакомы с физическими условиями господствующими в газовых оболочках Солнца, эти условия таковы, что если пока не относительно всех, то по крайней мере уже некоторых элементов, которые нам не удается обнаружить в спектре Солнца, мы с уверенностью можем сказать, что эти элементы благополучно могут, инкогнито для нас, находиться на Солнце, ибо условия господствующие во внешних слоях Солнца, неблагоприятны для возбуждения доступного нам спектра этих элементов. К таким элементам относятся, редкие металлы Рубидий и Цезий.

Чрезвычайно большой интерес представляет вопрос об излучении и температуре Солнца. Было время, когда о температуре Солнца можно было лишь строить догадки, но в наше время измерение его радиации (излучения) и определение его температуры построено на прочном физическом базисе.

К проблеме, интересующей нас, можно подойти с разных отправных точек. Можно поставить вопрос о том, каково то количество тепла, которое посылается Солнцем в пространство в течении определенного промежутка времени.

Это приводит нас к определению, так называемой солнечной постоянной; под последней подразумевают то количество тепла, которое в течении одной минуты получает один квадратный сантиметр поверхности Земли, при вертикальном падении солнечных лучей, и при том, если бы Земля была лишена ее атмосферы. Обычно, солнечную постоянную выражают в калориях, при чем как известно из физики, калорией, (малой) называется то количество тепла, которое нужно затратить, чтобы 1 грамм воды нагреть на 1 градус Цельсия. Точное определение солнечной постоянной очень затрудняются тем, что непосредственные измерения тепла посылаемого Солнцем необходимо затем освобождать от того ослабления (поглощения), которое они перетерпевают при пронизывании атмосферы Земли. Наиболее тщательные и современные работы Аббота (Abbot) и его сотрудников (в Америке), дают для солнечной постоянной число 1,94, или округляя 2 калории. Отсюда можно подсчитать, что того количества тепла, которое посылает нам Солнце в течении одного года, достаточно, чтобы растопить слой льда в 40 метров толщиной, если бы он сплошной оболочкой покрывал Землю. Изумление овладевает нами, перед этим процессом передачи в природе энергии на расстояние, когда Солнце с коллосального расстояния в 150 миллионов километров, отделяющих его от Земли, посылает нам энергию в количестве не более и не менее как 250 биллионов лошадинных сил. И нужно сказать, что это лишь ничтожная часть всего потока энергии, расточаемой Солнцем по всем направлениям в мировое пространство, которую нужно оценить не менее, чем в 580.000 триллионов лошадинных сил 3) .

Раз известна солнечная постоянная, то дальше уже легко определить температуру Солнца, для чего нужно воспользоваться физическим законом Стефана (Stefan), который связывает полное излучение тела с его температурой.

Другой способ определения температуры Солнца дает нам закон Вина (Wien), по которому произведение из температуры тела на длину световой волны наиболее ярких лучей в спектре этого тела, есть величина постоянная. Эта постоянная в законе Вина определяется опытным путем в лабораториях.

Если измерять в спектре Солнца интенсивность (яркость) лучей с разной длиной волны, т. е. — разного цвета, то можно определить, какие именно лучи являются наиболее интенсивными в его спектре, и тогда легко можно вычислить при помощи закона Вина температуру Солнца.

Наконец, можно измерить интенсивность лучей в нескольких или двух каких-нибудь местах спектра, и тогда также можно будет вычислить температуру Солнца, применяя на этот раз физический закон Планка (Planck), который связывает температуру светящегося раскаленного тела с интенсивностью (яркостью) лучей какой-нибудь определенной длины волны (т. е. определенного цвета).





Изменение формы солнечного пятна в течении 4 дней.

Эти различные способы дают весьма согласные выводы касательно температуры Солнца, которую мы можем принять равной 6.000 градусов. Разумеется, это не есть температура Солнца в целом, а лишь температура определенного слоя, того именно, который испускает большую часть солнечного излучения — т. наз. фотосферы. Но так как над фотосферой лежит, как мы знаем, слой более холодных газов, поглощающих свет (т. наз. обращающий слой и хромосфера), то температура фотосферы должна быть на самом деле несколько выше. Учитывая упомянутое поглощение, мы получаем для температуры собственно фотосферы 6.500°.

Более глубокие слои Солнца, лежащие под фотосферой, обладают значительно более высокими температурами, а в самом центре Солнца температура должна достать по новейшим (1922 г.) теоретическим рассчетам проф. Эддигтона (Eddington) 18 миллионов градусов.


Солнечная обсерватория на горе Вильсон
(Калифорния).

Возвращаясь к солнечной постоянной, мы отметим, что многолетние ее определения проливают свет на важный вопрос о том, изменяется-ли сила солнечного излучения. Тщательные исследования этого рода, производившиеся долгое время Абботом и его сотрудниками, привели его не так давно к заключению, что сила солнечного излучения, величина солнечной постоянной, периодически изменяется на целых 4%, следуя известной одиннадцатилетней периодической деятельности Солнца. Однако этот важный результат находится в противоречии с тем, который несколько лет тому назад получил независимо и из наблюдений другого рода Гутник (Guthnick) в Германии. Таким образом вопрос о постоянстве солнечной радиации опять остается открытым.

1) Свет, как показал теоретически Максвель (Maxwell), и опытным путем доказал впервые П. Н. Лебедев, оказывает давление на тела, находящиеся на пути лучей: понятно, это давление весьма мало.

2) Спектором, как известно из физики, называется радужная, цветная полоска, на которую разлагается луч белого света (белый свет — сложный), если его пропустить через призму (скажем, — стеклянную). Спектр Солнца пересечен множеством темных тонких линий, которыми и пользуются, опираясь на лабораторные исследования спектров, для определения химической природы Солнца так, как это делается при спектральном анализе света (см. элем. физику).

3) На странице журнала здесь рукописная пометка: 580 квадрильонов (примечание составителя).

Солнце можно разделить на внутреннюю часть и атмосферу. Температура внутренней части превышает 5 ∙10 6 . Здесь возника­ют термоядерные реакции перехода водорода в гелий. Энергия этих реакций распространяется из недр Солнца путем поглощения и пе­реизлучения световых квантов вышележащими слоями. В верхнем слое (толщиной около 100 000 км) этой части, называемом конвек­тивной зоной, перенос энергии осуществляется также путем кон­векции (скорость подъема горячих масс газа и опускания холодных масс -1- 2м/с).

Атмосфера Солнца состоит из трех слоев. Самый нижний слой толщиной 100—300 км носит название фотосферы. Она представля­ет собой сильно ионизированный газ с температурой 5000—6000 К и давлением на верхней границе около 100 гПа. Фотосфера излучает практически всю энергию, поступающую на Землю от Солнца. Выше фотосферы расположена хромосфера, простирающаяся до вы­соты 10 000—15 000 км, и солнечная корона, представляющая со­бой почти полностью ионизированный газ — плазму (с числом час­тиц в 1 см 3 около 3 ∙10 7 у основания короны и около 200 вблизи ор­биты Земли).

Температура Солнца понижается с увеличением расстояния от центра его лишь до верхней границы фотосферы. В хромосфере тем­пература возрастает с увеличением высоты, сначала медленно (до десятков тысяч Кельвинов), а затем быстро, и достигает миллиона Кельвинов на границе между хромосферой и солнечной короной.

Повышение температуры в хромосфере и короне принято объяс­нять рассеянием энергии звуковых и других волн, которые возника­ют в конвективной зоне.

Скорость истечения плазмы вблизи Солнца относительно мала (порядка десятков километров в секунду), затем она возрастает и вблизи орбиты Земли достигает нескольких сотен километров в се­кунду. Поток заряженных частиц — корпускул, летящих от Солнца во всех направлениях, получил название солнечного ветра.

Солнечная атмосфера, и в частности фотосфера, весьма неодно­родна и неспокойна. В ней наблюдаются факелы, флоккулы, хромосферные вспышки и другие процессы, являющиеся источниками корпускулярных потоков, более сильных, чем солнечный ветер. Особенно резко возрастает корпускулярное и электромагнитное из­лучение Солнца при хромосферных вспышках продолжительностью от нескольких минут до нескольких часов. Плотность вещества в местах вспышки значительно больше, чем в окружающих областях хромосферы, а скорость движения корпускул достигает 1000 км/с. При определенной ориентации такой поток корпускул через 1—2 сут достигает Земли и вызывает магнитные бури, полярные си­яния и другие геофизические явления. Во время вспышки сильно возрастает интенсивность рентгеновского и радиоволнового излуче­ния, а также излучения в некоторых участках ультрафиолетовой и видимой областей спектра.

В фотосфере возникают относительно холодные образования (с температурой около 4600 К) неправильной формы с очень сильны­ми магнитными полями, получившими название солнечных пятен. Они обычно появляются группами в широтных зонах 35—5° по обе стороны от солнечного экватора и существуют от нескольких часов до нескольких месяцев.

Весь комплекс кратко описанных нестационарных явлений в солнечной атмосфере называют солнечной активностью. Для ее ко­личественной характеристики используются различные индексы. Наиболее распространенный среди них — число Вольфа W, пропор­циональное сумме общего числа пятен f удесятеренного числа их групп g:


где k — эмпирический коэффициент.

Число Вольфа обнаруживает колебания во времени со средним периодом около 11 лет (при изменении отдельных периодов от 7 до 17 лет). Такие колебания свойственны и другим проявлениям сол­нечной активности и обусловленным ею геофизическим явлениям. Число Вольфа во время минимума солнечной активности изменяет­ся от 0 до 11, а во время максимума — от 40 до 240. В течение 11-летнего цикла меняется не только число солнечных пятен, но и положение зоны их образования. Кроме колебания с периодом око­ло 11 лет, наблюдения позволили выявить ряд колебаний солнечной активности с другими периодами (27 сут, 22 года, 80—90 лет).

Важнейшее значение имеет проблема выяснения связи солнеч­ной активности с процессами и явлениями в земной атмосфере — так называемая проблема солнечно-земных связей. По этой пробле­ме за последние десятилетия выполнено много исследований. Одна­ко в целом она еще не решена. В частности, остается неясным меха­низм связи с солнечной активностью погодообразующих процессов, наблюдаемых в тропосфере и стратосфере.

Весь спектр излучения Солнца принято делить на ряд областей (в скобках указаны граничные длины волн λ):

1) гамма-излучение (λ -5 мкм);

2) рентгеновское излучение (10 -5 мкм -2 мкм);

3) ультрафиолетовая радиация (0,01 мкм

радиоволновое излучение (λ > 0,3 см).

Выделяют также ближний ультрафиолетовый (0,29—0,39 мкм) и ближний инфракрасный (0,76—2,4 мкм) участки спектра.

Большая часть(свыше 95 %) излучения Солнца приходится на область так называемого оптического окна (0,29—2,4 мкм), включа­ющего видимый, ближние ультрафиолетовый и инфракрасный уча­стки спектра. Эта область носит название оптического окна по той причине, что именно здесь земная атмосфера наиболее прозрачна для солнечного излучения (пропускает около 80 %), в то время как излучение в дальних ультрафиолетовой и инфракрасной областях (на которые приходится около 1 и 3,6 %) полностью или почти пол­ностью поглощается атмосферой. Отметим попутно, что, помимо волн оптического диапазона атмосфера прозрачна также для радио­волнового излучения в интервале длин волн 1—20 см.

Излучательная способность Солнца близка к излучательной спо­собности абсолютно черного тела с температурой около 5800 К. В табл. 5.1 и на рис. 5.3 приведено распределение по длинам волн сол­нечной радиации на верхней границе земной атмосферы. Однако из­лучение Солнца близко к излучению абсолютно черного тела только в видимой и ближних инфракрасной и ультрафиолетовой областях спектра. В интервале 0,29—0,21 мкм излучение Солнца убывает с длиной волны быстрее, чем у черного тела. Однако далее оно убыва­ет медленнее, и уже вблизи λ≈ 0,1 мкм Солнце излучает в 2—3 раза больше энергии, чем черное тело.

При λ * λ0 сол.радиации на верх­ней границе атмосферы (при I * 0= 1,353 кВт/м2) и доля (Dλ) потока солнечной радиации во всем интервале длин волн короче λ


Рис. 5.3. Спектральная плотность I * λ0 потока солнечной радиации на верхней границе

атмосферы. I-по данным Такаекары и Драммонда (1970), 2 — по данным Джонсона (1954).

Интенсивность излучения Солнца в области очень коротких волн (особенно интенсивность рентгеновского излучения) подвержена резким колебаниям во времени — в десятки и сотни раз в 11-летнем цикле солнечной активности. Эти колебания, несмотря на малую энергию, оказывают определенное влияние на процессы, протекаю­щие в самых верхних слоях земной атмосферы. Однако вклад рент­геновского излучения, равно как и радиоволнового, которое подвер­жено еще более значительным колебаниям, в общий поток солнеч­ной радиации ничтожно мал. По этой причине даже резкие колеба­ния этих излучений практически не сказываются на интегральном потоке солнечной радиации, для которого характерно постоянство во времени.

Считая Солнце по своим характеристикам близким к абсолютно черному телу, можно оценить температуру Солнца. При этом раз­ные методы дают несколько различные результаты. Максимум излучательной способности Солнца приходится на видимый участокспектра, на длину волны λт =0,4738мкм. На основании закона Вина получаем так называемую цветовую температуру Солнца: Тс = 6116 К

Второй метод определения температуры Солнца основан на фор­муле (5.1.17) для потока излучения и на понятии солнечной посто­янной. Количество солнечной радиации, поступающее в единицу времени на единичную поверхность на верхней границе земной ат­мосферы, перпендикулярную солнечным лучам, при среднем рас­стоянии Земли от Солнца, называется солнечной постоянной. Обо­значим солнечную постоянную через I * 0 значение солнечной постоянной вследствие тех больших трудностей, которые возника­ют при ее определении, не установлено до настоящего времени.

Широкие возможности для определения I*0оявились в послед­ние десятилетия на основе наблюдений потока солнечной радиации с помощью ИСЗ. Согласно новейшим данным актинометрических измерений на спутниках, наиболее вероятное значение солнечной постоянной заключено в интервале 1,368 — 1,377 кВт/м 2 (макси­мальный разброс составляет 1,322 — 1,428 кВт/м 2 при отсутствии какой-либо регулярности изменения во времени — отсюда и термин „солнечная постоянная").

Международная комиссия по радиации рекомендовала принять в качестве стандартного значения солнечной постоянной (по Меж­дународной пиргелиометрической шкале 1956 г.)


К. Я. Кондратьев и Г. А. Никольский на основе данных измере­ний на аэростатах, поднимавшихся до высоты около 30 км, получили (путем экстраполяции аэростатных данных за пределы атмосфе­ры) для I*0 6 кВт/м2. Не исключено, что солнечная по­стоянная испытывает некоторые изменения во времени под влияни­ем колебаний активности Солнца. По К. Я. Кондратьеву и Г. А. Ни­кольскому, наибольшее значение /0 наблюдается при W = 90. 100. При значениях числа Вольфа вне этого интервала солнечная посто­янная уменьшается, при этом максимальное отклонение достигает 2 %.

Наряду с понятием солнечной постоянной, включающей энер­гию всех длин волн (ее называют также астрономической солнечной постоянной), некоторые авторы (Дж. Джордж, С. И. Сивков) пред­ложили ввести понятие метеорологической солнечной постоянной. Последняя представляет собой поток солнечной радиации на верх­ней границе атмосферы в спектральном интервале 0,346—2,4 мкм. Из спектра солнечной радиации исключается, таким образом, та часть излучения, которая никогда не достигает тропосферы и не оказывает влияния на ее тепловой режим. Метеорологическая сол­нечная постоянная равна по Джорджу 1,26 кВт/м 2 , по Сивкову 1,25 кВт/м 2 .

Если известно значение солнечной постоянной, то можно под­считать поток излучения Солнца Bс. Обозначим через г0 среднее расстояние Земли от Солнца (г0= 149,5 млн. км), через а радиус Солнца (а = 696,6 тыс. км).

Каждый квадратный метр сферы радиусом г0 получает за 1 с энергию I*0; количество энергии, получаемое всей сферой радиусом Го, равно количеству энергии, излучаемой Солнцем



Зная поток Bс и приравнивая его σТс 4 , находим температуру фо­тосферы Солнца: Tс = 5805 К. Температура Солнца, определенная по значениям I * 0и Bс, носит название эффективной или радиаци­онной температуры. При практических расчетах температуру Солнца полагают равной 6000 К.

Количество энергии, излучаемое Солнцем, распределяется меж­ду различными участками спектра следующим образом: ультрафио­летовая область (λ 0,76 мкм) — 44 %.

Из изложенного выше следует, что Солнце излучает энергию в широком диапазоне длин волн. Однако свыше 99 % этой энергии приходится на участок спектра, заключенный между 0,10 и 4 мкм. Солнечную радиацию по этой причине часто называют коротковол­новой, в отличие от инфракрасной (длинноволновой) радиации Зем­ли и атмосферы, свыше 99 % которой приходится на интервал длин волн от 3—4 до 80—120 мкм.

Первая попытка определения солнечной постоянной была сделана французским учёным К. М. Пуйе в 1837. В начале XX века в Смитсонианской астрофизической обсерватории проводилась серия высокогорных измерений солнечной постоянной. Согласно полученным данным вариации солнечной постоянной составили от 0,1 до 1%, а средняя величина оказалась равной 1352 Вт/м2.

Исторически первые прямые измерения солнечной постоянной вне тропосферы были выполнены в Ленинградском университете в 1961 группой К.Я. Кондратьева. Комплекс приборов поднимался аэростатом на высоту до 32 км. Всего до 1967 года было проведено 28 подъемов аэростата. Среднее значение по результатам всего комплекса измерений составило 1356 ± 14 Вт/м2.

В период 1968–1969 Р. Уилсоном также были проведены аэростатные измерения. Среднее полученное значение равнялось 1373 ± 14 Вт/м2. Точность аэростатных измерений 0,2–0,5%.

Пиргелиометр – абсолютный прибор для измерений прямой солнечной радиации, падающей на поверхность, перпендикулярную лучам. Принцип действия – измерение количества тепла, образующегося при поглощении солнечного излучения

В 1892 русский физик Хвольсон разработал теорию абсолютных измерений. солнечной

В России в качестве эталонного принят пиргелиометр Ангстрема, созданный в 1896. Он представляет собой две одинаковые тонкие зачерненные пластины и термопару, соединённую с ними. Одна из пластин нагревается солнечным излучением, вторая, защищённая от солнечных лучей, нагревается током.

При равных температурах пластин термопара не даёт тока. Количество солнечного тепла, поглощённого первой пластиной определяется по радиации с помощью пиргелиометра. Измерения в пиргелиометре Хвольсона производились с помощью двух медных пластин, одна из которых нагревалась солнечными лучами, и термопары, выделявшей ток, который измерялся гальванометром значению тока, подаваемого на вторую пластину для компенсации разницы

В США эталонным прибором является водоструйный пиргелиометр Аббота с конструктивными температур поправками советского учёного В. М. Шульгина. Датчиком служит помещённая под солнечный свет зачернённая камера, омываемая потоком воды. Такая же камера, но затенённая, нагревалась электрическим током так, чтобы температура выходящих из этих камер потоков воды была одинакова, что измерялось термоэлементами

В современных пиргелиометрах сенсором служат термобатареи — ряд последовательно соединённых термоэлементов (полупроводниковые элементы, использующие термоэлектрические явления)

Наш пиргелиометр решено было сделать из пластиковогоконтейнера для соуса

  • Для учеников 1-11 классов и дошкольников
  • Бесплатные сертификаты учителям и участникам

на тему: Солнце

1. Общие сведения о Солнце

Солнце - центральное тело Солнечной системы представляет собой очень горячий плазменный шар. Солнце - ближайшая к Земле звезда. Свет от него доходит до нас за 8,3 минуты. Солнце решающим образом повлияло на образование всех тел Солнечной системы и создало те условия, которые привели к возникновению и развитию жизни на земле. Ещё задолго до наступления НТР люди наблюдали Солнце. Они знали его животворную силу, почитали и поклонялись ему как богу. Кроме того, люди использовали его для исчисления времени.

Культовые сооружения в древние времена строились большей частью так, чтобы по ним можно было определить точки восхода и захода Солнца в начале весны и лета.

2. Всегда ли существовало Солнце?

Наше Солнце светит уже много млн. лет. Сегодня известно, что оно возникло вместе с планетами своей системы из большого холодного облака газа и пыли. Сначала образовалось сферическое облако, которое, сжимаясь, вращалось всё быстрее. Под действием центробежных сил оно превратилось в диск. Почти всё вещество облака сгустилось в центре этого диска в большой шар. Именно так, по-видимому, возникло Солнце. По краям диска сформировались меньшие небесные тела, планеты и луны. Только что родившееся Солнце сначала было холодным, но оно всё время сжималось, становясь, становясь при этом горячее и горячее. Так родилась новая звезда. Она окружена планетами. Есть среди них и ЗЕМЛЯ. Благодаря Солнцу на ней появилась жизнь.

3. Как устроено Солнце.

4. Солнечная активность.

Сильный источник теплового радиоизлучения – Солнце. В периоды повышенной солнечной активности появляется радиоизлучение нетеплового характера. Нетепловое радиоизлучение наблюдается и у планет Солнечной системы. На некоторых больших планетах, особенно на Юпитере, происходят сильные всплески нетеплового радиоизлучения – облака ионизированного межзвездного газа. Солнечная активность – совокупность явлений, периодически возникающих в солнечной атмосфере. Проявления солнечной активности тесно связаны с магнитными свойствами солнечной плазмы. Возникновение активной области начинается с постепенного увеличения магнитного потока в некоторой области фотосферы. В соответствующих местах хромосферы вскоре после этого наблюдается увеличение яркости в линиях водорода и кальция. Такие области называют флоккулами. Примерно в тех же участках на Солнце в фотосфере (т.е. несколько глубже). При этом также наблюдается увеличение яркости в белом (видимом) свете - факелы. Увеличение энергии, выделяющейся в области факела и флоккула, является следствием увеличивающейся до нескольких десятков эрстед напряженности

Магнитного поля. Через 1 -2 дня после появления флоккула в активной области появляются солнечные пятна в виде маленьких черных точек – пор. Многие из них вскоре исчезают, и лишь отдельные поры за два – три дня превращаются в крупные темные образования. Типичное солнечное пятно имеет размеры в несколько десятков тысяч километров и состоит из темной центральной части – тени и волокнистой полутени. Важнейшая особенность пятен – наличие в них сильных магнитных полей, достигающих в области тени наибольшей напряженности, в несколько тысяч эрстед. В целом пятно представляет собой выходящую в фотосферу трубку силовых линий магнитного поля, целиком заполняющих одну или несколько ячеек хромосферной сетки. Верхняя часть трубки расширяется, и силовые линии в ней расходятся, как колосья в снопе.

Поэтому вокруг тени магнитные силовые линии принимают направление, близкое к горизонтальному. Полное, суммарное давление в пятне включает в себя давление магнитного поля и уравновешивается давлением окружающей фотосферы, поэтому газовое давление в пятне оказывается в меньшим, чем в фотосфере. Магнитное поле как бы расширяет пятно изнутри. Кроме того, магнитное поле подавляет конвективные движения газа, переносящие энергию из глубины вверх. Вследствие этого в области пятна температура оказывается меньше примерно на 1000 К. Пятно как бы охлажденная и скованная магнитным полем яма в солнечной фотосфере.

Большей частью пятна возникают целыми группами, в которых, однако, выделяются два больших пятна. Одно, небольшое, - на западе, а другое, чуть поменьше, - на востоке. Вокруг и между ними часто бывает множество мелких пятен. Такая группа пятен называется биполярной, потому что у обоих больших пятен всегда противоположная полярность магнитного поля. Они как бы связаны с одной и той же трубкой силовых линий магнитного поля, которая в виде гигантской петли вынырнула из – под фотосферы, оставив концы где-то в ненаблюдаемых , глубоких слоях. То пятно, которое соответствует выходу магнитного поля из фотосферы, имеет северную полярность, а то, в области которого силовые линии входят обратно под фотосферу, - южную.

Самое мощное проявление солнечной активности – это вспышка. Они происходят в сравнительно небольших областях хромосферы и короны, расположенных над группами солнечных пятен. По своей сути вспышка - это взрыв, вызванный внезапным сжатием солнечной плазмы. Сжатие происходит под давлением магнитного поля и приводит к образованию длинного плазменного жгута или ленты. Длина такого образования составляет десятки, и даже сотни тысяч километров. Общее количество энергии, выделяющееся в результате взрыва, может составлять в зависимости от его силы от 100000000000000000000 до 10000000000000000000000000 Дж. Продолжается вспышка обычно около часа.

Мощность энерговыделения 1 г. вещества в области вспышки в среднем в десять в двенадцатой степени раз больше, чем мощность энерговыделения 1 г.вещества всего Солнца. Это говорит о том, что источник энергии вспышек отличается от источника энергии всего Солнца. Хотя детально физические процессы, приводящие к возникновению вспышек, еще не изучены, ясно, что они имеют электромагнитную природу. Основной жгут вспышки обычно располагается вдоль нейтральной линии магнитного поля – направления, разделяющего области различной полярности. При некоторых условиях возникает неустойчивость, магнитные поля вблизи нейтральной линии сильно сближаются, сливаются и нейтрализуются (аннигилируют). При этом энергия магнитного поля переходит в другие формы: в излучение, тепло и кинетическую энергию движущихся газов. В электромагнитное излучение переходит примерно половина всей энергии. Это излучение может наблюдаться в видимых ультрафиолетовых, рентгеновских лучах и даже гамма – лучах. Особенно много энергии излучается в красной спектральной линии водорода, в которой вспышки чаще всего и наблюдаются при помощи узкополосных светофильтров. Энергия, излучаемая вспышкой в коротковолновой области спектра, состоит из ультрафиолетовых и рентгеновских лучей. Эти лучи испускаются очень сильно ионизованными атомами. Например, во время некоторых вспышек наблюдалось рентгеновское излучение, характерное для атома железа, лишенного 25 электров, которые, по сути дела, представляет собой атомное ядро, обладающее подобно водороду, только одним электроном!

Другая половина энергии вспышки идет на ускорение, иногда до релятивистских скоростей, элементарных частиц, главным образом электронов и протонов. Поток таких частиц добавляется во время вспышек к общему потоку космических лучей, наблюдаемых вблизи Земли. Сталкиваясь с другими атомами, энергетические ядра вызывают их необычайно сильную рентгеновскую ионизацию, а в некоторых случаях проникают даже через электронные оболочки атомов и приводят к ядерным превращениям, сопровождающимся испусканием гамма – квантов. Как и всякий сильный взрыв, вспышка порождает ударную волну, распространяющуюся как вверх в корону, так и горизонтально вдоль поверхностных слоёв солнечной атмосферы. Излучение солнечных вспышек оказывает особо сильное воздействие на верхний слой земной атмосферы и ионосферу и приводит к возникновению целого комплекса геофизических явлений. Наиболее грандиозными образованиями в солнечной атмосфере являются протуберанцы – сравнительно плотные облака газов, возникающие в солнечной короне или выбрасываемые в нее из хромосферы. Типичный протуберанец имеет вид гигантской светящейся арки, опирающейся на хромосферу и образованной струями и потоками более плотного и холодного, чем окружающая корона, вещества. Иногда это вещество удерживается прогнувшимися под его тяжестью силовыми линиями магнитного поля, а иногда медленно стекает вдоль магнитных силовых линий. Имеется множество различных типов протуберанцев. Области Солнца, в которых наблюдаются интенсивные проявления солнечной активности, называются центрами солнечной активности. Общая активность Солнца, характеризуемая количеством и силой проявления центров солнечной активности, периодически изменяется. Обычно пользуются наиболее простым и раньше всех введенным индексом солнечной активности – числами Вольфа(W). Числа Вольфа пропорциональны сумме полного числа пятен, наблюдаемых в данный момент на Солнце(f), и удесятеренного числа групп, которые они образуют(g).

W = R ( f +10 g )

Где R– коэффициент, учитывающий качество инструмента и производимых с его помощью наблюдении. Эпоху, когда количество центров активности наибольшее, считают максимумом солнечной активности, а когда их совсем нет или почти нет – минимумом. Максимумы и минимумы чередуются в среднем с периодом в 11 лет. Это составляет 11 циклов солнечной активности.

5. Строение Солнца:

а) Солнечная Корона

Солнечная Корона – самые внешние, очень разряженные слои атмосферы Солнца. Во время полной фазы солнечного затмения вокруг диска Луны, который закрывает от наблюдателя яркую фотосферу, внезапно как - бы вспыхивает лучистое жемчужное сияние. Это на несколько секунд становится видимой солнечная Корона. Важной особенностью короны является ее лучистая структура. Лучи бывают различной длины, вплоть до десятка и более солнечных радиусов. После изобретения коронографа, солнечную корону можно наблюдать вне затмений. Общая форма короны меняется с фазами цикла солнечной активности: в годы максимума корона почти сферична, в годы минимума она сильно вытянута вдоль экватора. Корона представляет собой сильно разреженную высокоионизированную плазму с температурой 1 – 2 млн. градусов. Причина столь большого нагрева солнечной короны связана с волновыми движениями, возникающими в конвективной зоне Солнца. Это связано с тем, что находящиеся в короне свободные электроны, возникающие в результате сильной ионизации газов, рассеивают излучения, приходящие от фотосферы.

б) Фотосфера.

в) Хромосфера.

Хромосфера - внешняя область атмосферы Солнца. Яркость хромосферы во много раз меньше яркости фотосферы. Из-за рассеяния солнечного света в земной атмосфере эти слабосветящиеся внешние оболочки не удается видеть вне затмения без специальных приспособлений.

Хромосфера простирается до высоты 10 – 14 тыс. км. В самых нижних слоях температура около 5000 К, она начинает постепенно расти, достигая в верхних слоях атмосферы (от 20000 до 50000 К). В хромосфере наблюдаются самые мощные и быстроразвивающиеся процессы, называемые вспышками.

6. Служба Солнца.

Сильная зависимость жизни всей Земли от деятельности Солнца и особенно воздействие проявлений солнечной активности на состояние верхних слоёв земной атмосферы определяют большое значение контроля за состоянием Солнца для практической деятельности людей. Радиационная опасность для космонавтов, возникающая во время солнечных вспышек, требует постоянного наблюдения этих явлений и поисков способов их предсказаний. Связанные со вспышками нарушение связи, магнитные бури представляют серьезные препятствия для навигации судов и пилотирования самолетов. Существует зависимость важнейших биологических процессов от солнечной активности. Для решения подобных задач в международном масштабе организована система непрерывных наблюдений Солнца, называемая службой Солнца. В этих наблюдениях участвуют все крупные астрофизические обсерватории, а также множество специальных станции . Они расположены почти равномерно по всем географическим долготам с тем, чтобы обеспечивалось непрерывная слежение за Солнцем, по возможности не слишком зависящее от погодных условии.

Основные задачи службы Солнца – регистрация центров солнечной активности (например, определение ежедневных чисел Вольфа и др.), а также всех солнечных вспышек. Собранные материалы сопоставляются с данными геофизических исследований. Для более эффективного решения проблем, связанных с солнечно-земными связями, организуется специальные международные комплексные программы исследовании, выполняемые в определенные периоды времени, например международный геофизический год, год спокойного Солнца и т.д.

7. Солнечное затмение.

Если Луна оказывается между Солнцем и Землей в новолуние, тогда случаются солнечные затмения. При полном затмении Луна совсем закрывает солнечный диск. Среди бела дня вдруг на несколько минут наступают сумерки и невооруженному глазу становятся видны слабо светящаяся корона Солнца и ярчайшие звезды.

8. Конец Солнца.

Мы знаем, что Солнце имело запас топлива на 10-11 млрд. лет. Для того, чтобы точно предсказать, сколько еще будет светить Солнце, мы должны знать, какую часть жизни оно уже прожило. Если подсчитать, что метеоритам и лунным камням не более 5 млрд. лет, значит таков возраст Солнца. В конце своей жизни Солнце не будет просто медленно остывать, как думали раньше, Звезды не умирают тихо, а заканчивают существование в борьбе со смертью. Когда полностью выгорит солнечное ядро, атомный огонь начнет медленно пожирать внешние слои звезды. Солнце начнет увеличиваться в размерах и превратится в огромную красную звезду. Оно поглотит Меркурии и Венеру и нагреет Землю до большой температуры. Жизнь исчезнет, вода испарится из рек и океанов. Затем во внешних слоях Солнца возникнет новый источник энергии: из гелия - тяжелые атомы. Внешняя оболочка будет сброшена, а ядро сожмется до белого карлика. Но Солнце не останется в состоянии белого карлика , а закончит жизнь в виде черной дыры.

Читайте также: