Определение масс небесных тел реферат

Обновлено: 02.07.2024

� 58. Определение масс небесных тел

� Закон всемирного тяготения Ньютона позволяет измерить одну из важнейших физических характеристик небесного тела � его массу. �

� Массу небесного тела можно определить: а) из измерений силы тяжести на поверхности данного тела (гравиметрический способ); б) по третьему (уточненному) закону Кеплера; в) из анализа наблюдаемых возмущений, производимых небесным. телом в движениях других небесных тел.

Первый способ применим пока только к Земле и заключается в следующем.

На основании закона тяготения ускорение силы тяжести на поверхности Земли

где т � масса Земли, a R ее радиус. Отсюда масса Земли

Ускорение силы тяжести g (точнее, ускорение составляющей силы тяжести, обусловленной только силой притяжения), так же как и радиус Земли R , определяется из непосредственных измерений на поверхности Земли (см. � 46 и 62). Постоянная тяготения f достаточно точно определена из опытов Кэвендиша и Йолли, хорошо известных в физике.

С принятыми в настоящее время значениями величин g , R и f по формуле (2.25) получается масса Земли

Зная массу Земли и ее объем, легко найти среднюю плотность Земли. Она равна 5,52 г/см 3

Третий, уточненный закон Кеплера позволяет определить соотношение между массой Солнца и массой планеты, если у последней имеется хотя бы один спутник и известны его расстояние от планеты и период обращения вокруг нее.

Действительно, движение спутника вокруг планеты подчиняется тем же законам, что и движение планеты вокруг Солнца и, следовательно, уравнение (2.24) может быть записано в этом случае так:

где � М, т и mc � массы Солнца, планеты и ее спутника, Т и tc � периоды обращений планеты вокруг Солнца и спутника вокруг планеты, a и ас � расстояния планеты от Солнца и спутника от планеты соответственно.

Разделив числитель и знаменатель левой части дроби этого уравнения па т и решив его относительно масс, получим

Отношение � для всех планет очень велико; отношение же � � наоборот, мало (кроме Земли и ее спутника Луны) и им можно пренебречь. Тогда в уравнении (2.26) останется только одно неизвестное отношение , которое легко из него определяется. Например, для Юпитера определенное таким способом обратное отношение � равно 1 : 1050.

Так как масса Луны, единственного спутника Земли, сравнительно с земной массой достаточно большая, то отношением � в уравнении (2.26) пренебрегать нельзя. Поэтому для сравнения массы Солнца с массой Земли необходимо предварительно определить массу Луны. Точное определение массы Луны является довольно трудной задачей, и решается она путем анализа тех возмущений в движении Земли, которые вызываются Луной.

Под влиянием лунного притяжения Земля должна описывать в течение месяца эллипс вокруг общего центра масс системы Земля � Луна.

По точным определениям видимых положений Солнца в его долготе были обнаружены изменения с месячным периодом, называемые �лунным неравенством�. Наличие �лунного неравенства� в видимом движении Солнца указывает на то, что центр Земли действительно описывает небольшой эллипс в течение месяца вокруг общего центра масс �Земля � Луна�, расположенного внутри Земли, на расстоянии 4650 км от центра Земли. Это позволило определить отношение массы Луны к массе Земли, которое оказалось равным . Положение центра масс системы �Земля � Луна� было найдено также из наблюдений малой планеты Эрос в 1930�1931 гг. Эти наблюдения дали для отношения масс Луны и Земли величину � � . Наконец, по возмущениям в движениях искусственных спутников Земли отношение масс Луны и Земли получилось равным . Последнее значение наиболее точное, и в 1964 г. Международный астрономический союз принял его как окончательное в числе других астрономических постоянных. Это значение подтверждено в 1966 г. вычислением массы Луны по параметрам обращения ее искусственных спутников.

С известным отношением масс Луны и Земли из уравнения (2.26) получается, что масса Солнца M в 333 000 раз больше массы Земли, т.е.

M � 2 � 10 33 г.

Зная массу Солнца и отношение этой массы к массе любой другой планеты, имеющей спутника, легко определить массу этой планеты.

Массы планет, не имеющих спутников (Меркурий, Венера, Плутон), определяются из анализа тех возмущений, которые они производят в движении других планет или комет. Так, например, массы Венеры и Меркурия определены по, тем возмущениям, которые они вызывают в движении Земли, Марса, некоторых малых планет (астероидов) и кометы Энке � Баклунда, а также по возмущениям, производимым ими друг на друга.

В основе определения масс небесных тел лежит закон всемирного тяготения, выражаемый ф-лой:
(1)
где F - сила взаимного притяжения масс и , пропорциональная их произведению и обратно пропорциональная квадрату расстояния r между их центрами. В астрономии часто (но не всегда) можно пренебречь размерами самих небесных тел по сравнению с разделяющими их расстояниями, отличием их формы от точной сферы и уподоблять небесные тела материальным точкам, в к-рых сосредоточена вся их масса.

Вложенные файлы: 1 файл

Документ Microsoft Word (2).docx

1) Массы небесных тел (методы определения)

В основе определения масс небесных тел лежит закон всемирного тяготения, выражаемый ф-лой:
(1)
где F - сила взаимного притяжения масс и , пропорциональная их произведению и обратно пропорциональная квадрату расстояния r между их центрами. В астрономии часто (но не всегда) можно пренебречь размерами самих небесных тел по сравнению с разделяющими их расстояниями, отличием их формы от точной сферы и уподоблять небесные тела материальным точкам, в к-рых сосредоточена вся их масса.

Коэффициент пропорциональности G = наз. гравитационной постояннойили постоянной тяготения. Её находят из физического эксперимента с крутильными весами, позволяющими определить силу гравитац. взаимодействия тел известной массы.

В случае свободного падения тел сила F, действующая на тело, равна произведению массы тела на ускорение свободного падения g. Ускорение g может быть определено, напр., по периоду T колебаний вертикального маятника: , где l - длина маятника. На широте 45 o и на уровне моря g= 9,806 м/с 2 .

Подстановка выражения для сил земного притяжения в ф-лу (1) приводит к зависимости , где - масса Земли, а - радиус земного шара. Таким путём была определена масса Земли г. Определение массы Земли явл. первым звеном в цепи определений масс др. небесных тел (Солнца, Луны, планет, а затем и звёзд). Массы этих тел находят, опираясь либо на 3-й закон Кеплера (см. Кеплера законы), либо на правило: расстояния к.-л. масс от общего центра масс обратно пропорциональны самим массам. Это правило позволяет определить массу Луны. Из измерений точных координат планет и Солнца найдено, что Земля и Луна с периодом в один месяц движутся вокруг барицентра - центра масс системы Земля - Луна. Расстояние центра Земли от барицентра равно 0,730 (он расположен внутри земного шара). Ср. расстояние цeнтpa Луны от центра Земли составляет 60,08 . Отсюда отношение расстояний центров Луны и Земли от барицентра равно 1/81,3. Поскольку это отношение обратно отношению масс Земли и Луны, масса Луны
г.

Массу Солнца можно определить, применив 3-й закон Кеплера к движению Земли (вместе с Луной) вокруг Солнца и движению Луны вокруг Земли:
, (2)
где а - большие полуоси орбит, T - периоды (звёздные или сидерические) обращения. Пренебрегая по сравнению с , получим отношение , равное 329390. Отсюда г, или ок. .

Аналогичным путём определяют массы планет, имеющих спутников. Массы планет, не имеющих спутников, определяют по возмущениям, к-рые они оказывают на движение соседних с ними планет. Теория возмущённого движения планет позволила заподозрить существование тогда неизвестных планет Нептуна и Плутона, найти их массы, предсказать их положение на небе.

Массу звезды (помимо Солнца) можно определить со сравнительно высокой надёжностью только в том случае, если она явл. физ. компонентом визуально-двойной звезды (см. Двойные звезды), расстояние до к-рой известно. Третий закон Кеплера в этом случае даёт сумму масс компонентов (в ед. ):
,
где а'' -большая полуось (в секундах дуги) истинной орбиты спутника вокруг главной (обычно более яркой) звезды, к-рую в этом случае считают неподвижной, Р - период обращения в годах, - параллакс системы (в секундах дуги). Величина даёт большую полуось орбиты в а. е. Если можно измерить угловые расстояния компонентов от общего центра масс, то их отношение даст величину, обратную отношению масс: . Найденная сумма масс и их отношение позволяют получить массу каждой звезды в отдельности. Если компоненты двойной имеют примерно одинаковый блеск и сходные спектры, то полусумма масс даёт верную оценку массы каждого компонента и без дополнит. определения их отношения.

Для др. типов двойных звезд (затменно-двойных и спектрально-двойных) имеется ряд возможностей приблизительно определить массы звёзд или оценить их нижний предел (т.е. величины, меньше которых не могут быть их массы).

Совокупность данных о массах компонентов примерно ста двойных звёзд разных типов позволила обнаружить важную статистич. зависимость между их массами и светимостями (см. Масса-светимость зависимость). Она даёт возможность оценивать массы одиночных звёзд по их светимостям (иначе говоря, по их абс. звёздным величинам). Абс. звёздные величиныМ определяются по ф-ле: M = m + 5 + 5 lg - A(r) , (3) где m - видимая звёздная величина в выбранном оптич. диапазоне (в определённой фотометрич. системе, напр. U, В или V; см. Астрофотометрия), - параллакс и A(r) - величина межзвёздного поглощения света в том же оптич. диапазоне в данном направлении до расстояния .

Если параллакс звезды не измерен, то приближённое значение абс. звёздной величины можно определить по её спектру. Для этого необходимо, чтобы спектрограмма позволяла не только узнать спектральный класс звезды, но и оценить относительные интенсивности нек-рых пар спектр. линий, чувствительных к "эффекту абс. величины". Иначе говоря, сначала необходимо определить класс светимости звезды - принадлежность к одной из последовательностей на диаграмме спектр-светимость (см.Герцшпрунга-Ресселла диаграмма), а по классу светимости - её абс. величину. По полученной таким образом абс. величине можно найти массу звезды, воспользовавшись зависимостью масса-светимость (этой зависимости не подчиняются лишь белые карлики и пульсары).

Ещё один метод оценки массы звезды связан с измерением гравитац. красного смещения спектр. линий в её поле тяготения. В сферически-симметричном поле тяготения оно эквивалентно доплеровскому красному смещению , где - масса звезды в ед. массы Солнца, R - радиус звезды в ед. радиуса Солнца, а выражено в км/с. Это соотношение было проверено по тем белым карликам, к-рые входят в состав двойных систем. Для них были известны радиусы, массы и истинныелучевые скорости vr, являющиеся проекциями орбитальной скорости.

Невидимые (тёмные) спутники, обнаруженные около нек-рых звёзд по наблюдённым колебаниям положения звезды, связанным с её движением около общего центра масс (см. Невидимые спутники звезд), имеют массы меньше 0,02 . Они, вероятно, не явл. самосветящимися телами и больше похожи на планеты.

Из определений масс звёзд выяснилось, что они заключены примерно в пределах от 0,03 до 60 . Наибольшее количество звёзд имеют массы от 0,3 до 3 . Ср. масса звезд в ближайших окрестностях Солнца , т.е. 10 33 г. Различие в массах звёзд оказывается много меньшим, чем их различие в светимостях (последнее может достигать десятков млн.). Сильно отличаются и радиусы звёзд. Это приводит к разительному различию их ср. плотностей: от до г/см 3 (ср. плотность Солнца 1,4 г/см 3 ).

Массу рассеянного звёздного скопления можно определить, сложив массы всех его членов, светимости к-рых определяют по их видимому блеску и расстоянию до скопления, а массы - по зависимости масса-светимость.

Массу шарового звёздного скопления далеко не всегда можно оценить путём подсчёта звёзд, т.к. в центральной области большинства таких скоплений изображения отдельных звёзд на фотографиях, полученных с оптимальной экспозицией, сливаются в одно светящееся пятно. Есть методы оценки общей массы всего скопления, основанные на статистич. принципах. Так, напр., применение теоремы о вириале (см. Вириала теорема) позволяет оценить массу скопления (в ) по радиусу скопления r (пк) и ср. квадратич. отклонению лучевой скорости отдельных звёзд (в км/с) от ср. её значения (т.е. от лучевой скорости скопления как целого):
.

Если же подсчёт звёзд - членов шарового скопления возможен, то общую массу скопления можно определить как сумму произведений , где - функция светимости этого скопления, т.е. число звёзд, приходящихся на различные интервалы абс. звёздных величин Mi (обычно их подсчитывают в интервалах, равных 1 m ), a - масса, соответствующая данной абс. звёздной величине Mi по зависимости масса-светимость. Т.о., общая масса скопления , где сумма взята от самых ярких до самых слабых членов скопления.

Метод определения массы Галактики исходит из факта вращения Галактики. Устойчивость вращения позволяет предположить, что центростремит. ускорение для каждой звезды, в частности для Солнца, определяется притяжением вещества Галактики в пределах солнечной орбиты. Солнце притягивается к галактич. центру с силой , где R0 - расстояние Солнца от ядра Галактики, равное см. Сила F0 сообщает Солнцу ускорение , к-рое равно центробежному ускорению Солнца (без учёта влияния внеш. части Галактики и при условии эллипсоидальности поверхностей равной плотности по внутр. её части). Собственная галактич. скорость Солнца (т.н. круговая скорость на расстоянии R0 от центра) 220 км/с, отсюда см/с 2 . Масса Галактики, без учёта её частей, внешних по отношению к галактической траектории Солнца, г. Масса Галактики в сферич. объёме с радиусом 15 кпк, согласно подобным расчётам, равна . При этом учитывается также масса всей диффузной (рассеянной) материи в Галактике.

Масса спиральной галактики может быть определена по результатам изучения её вращения, напр. из анализа кривой лучевых скоростей, измеренных в различных точках большой оси видимого эллипса галактики. В каждой точке галактики центростремит. сила пропорциональна массе более близких к центру галактики областей и зависит от закона изменения плотности галактики с удалением от её центра. Спектроскопич. наблюдения в оптич. диапазоне позволили построить кривые вращения спиральных галактик до расстояний 20-25 кпк от центра (а у ряда галактик высокой светимости до 40 кпк и более). Вплоть до этих расстояний круговая скорость не уменьшается с увеличением R, т.е. масса галактики продолжает расти с расстоянием. Т.о., в галактиках имеется скрытая масса. Масса невидимого (несветящегося) вещества галактик может в 10 и более раз превосходить массу светящегося вещества; предположительно, скрытая масса может существовать в форме очень слабых маломассивных звёзд или чёрных дыр или в форме элементарных частиц (напр., нейтрино, если они обладают массой покоя).

Для медленно вращающихся галактик, какими явл., напр., эллиптич. галактики, трудно получить кривые лучевых скоростей, но зато можно по расширению спектр. линии оценить ср. скорость звёзд в системе и, сопоставив её с истинными размерами галактики, определить её массу. Чем больше ср. скорость звёзд, тем больше должна быть масса галактики (при одинаковых размерах). Зависимость между массой, размерами галактики и ср. скоростью звёзд вытекает из условия стационарности системы.

Ещё один способ оценки массы галактик-компонентов двойных систем аналогичен методу оценки масс компонентов спектрально-двойных звёзд (ошибка не превышает 20%). Используют также установленную статистич. зависимость между массой и интегр. светимостью галактик различного типа (своего рода зависимость масса-светимость для галактик). Светимость определяется по видимой интегр. звёздной величине и расстоянию, к-рое оценивается по красному смещению линий в спектре. Ср. масса галактик, входящих в скопление галактик, оценивается по числу галактик скопления и его общей массе, к-рую статистически определяют по дисперсии лучевых скоростей галактик, подобно тому как оценивается общая масса звёздного скопления на основе теоремы о вириале.

Известные ныне массы галактик заключены в пределах от ~10 5 (т.н. карликовые галактики) до 10 12 (сверхгигантские эллиптич. галактики, напр. галактика М 87), т.е. отношение масс галактик доходит до 10 7 .

Точность определения масс астрономич. объектов зависит от точности определения всех величин, входящих в соответствующие ф-лы. Масса Земли определена с погрешностью 0,05%, масса Луны 0,1%. Погрешность определения массы Солнца также составляет 0,1%, она зависит от точности определения астрономической единицы (ср. расстояния до Солнца). Вообще, в значит. степени точность определения массы зависит от точности измерения расстояния до космического объекта, в случае двойных звёзд - от расстояния между ними, от линейных размеров тел и т.д. Массы планет известны с погрешностью от 0,05 до 0,7%. Массы звёзд определены с погрешностью от 20 до 60%. Неуверенность определения масс галактик можно характеризовать коэфф. 2-5 (масса может быть в неск. раз больше или меньше), если надёжно определено расстояние до них.

Лит.:
Струве О., Линде Б., Пилланс Э., Элементарная астрономия, пер. с англ., 2 изд., М., 1967; Сагитов М.У., Постоянная тяготения и масса Земли, М., 1969; Климишин И.А., Релятивистская астрономия, М., 1983.

Масса — одна из важнейших характеристик небесных тел. Но как можно определить массу небесного тела? Ньютон доказал, что более точная формула третьего закона Кеплера такова:

Астрономия

где М1 и М2 — массы каких-либо небесных тел, а m1, и m2 — соответственно массы их спутников. В частности, планеты являются спутниками Солнца. Мы видим, что уточненная формула этого закона отличается от приближенной наличием множителя, содержащего массы Если под М1 = М2 = М понимать массу Солнца, а под m1 и m2 — массы двух разных планет, то отношение

Астрономия

будет мало отличаться от единицы, так как m1 и m2 очень малы по сравнению с массой Солнца. При этом точная формула не будет заметно отличаться от приближенной.

Уточненный третий закон Кеплера позволяет определить массы планет, имеющих спутников, и массу Солнца. Чтобы определить массу Солнца, перепишем формулу этого закона в следующем виде, сравнивая движение Луны вокруг Земли с движением Земли вокруг Солнца:

Астрономия

где Tз и аз — период обращения Земли (год) и большая полуось ее орбиты, Тл и ал — период обращения Луны вокруг Земли и большая полуось ее орбиты, Mс — масса Солнца, Mз — масса Земли, mл — масса Луны. Масса Земли ничтожна сравнительно с массой Солнца, а масса Луны мала (1:81) сравнительно с массой Земли. Поэтому вторые слагаемые в суммах можно отбросить, не делая большой ошибки. Решив уравнение относительно Mс/Mз имеем:

Астрономия

Эта формула позволяет определить массу Солнца, выраженную в массах Земли. Она составляет около 333 000 масс Земли.

Для сравнения масс Земли и другой планеты, например Юпитера, надо в исходной формуле индекс 1 отнести к движению Луны вокруг Земли массой М1 а 2 — к движению любого спутника вокруг Юпитера массой М2.

Более точная формула третьего закона Кеплера, которая была получена Ньютоном, даёт возможность определить одну из важнейших характеристик любого небесного тела — массу. Выведем эту формулу, считая (в первом приближении) орбиты планет круговыми.

Пусть два тела, имеющие массы m1 и m2, взаимно притягивающиеся и обращающиеся вокруг общего центра масс, находятся от центра масс на расстоянии r1 и r2 и обращаются вокруг него с периодом T. Расстояние между их центрами R = r1 + r2. На основании закона всемирного тяготения ускорение каждого из этих тел равно:

a1 = G , a2 = G .


Угловая скорость обращения вокруг центра масс составляет ω = . Тогда центростремительное ускорение выразится для каждого тела так:

a1 = r1, a2 = r2.

Приравняв полученные для ускорений выражения, выразив из них r1 и r2 и сложив их почленно, получаем:

G = = (r1 + r2),

= .

Поскольку в правой части этого выражения находятся только постоянные величины, оно справедливо для любой системы двух тел, взаимодействующих по закону тяготения и обращающихся вокруг общего центра масс, — Солнце и планета, планета и спутник. Определим массу Солнца, для этого запишем выражение:

= ,

где M — масса Солнца; m1 — масса Земли; m2 — масса Луны; T1 и a1 — период обращения Земли вокруг Солнца (год) и большая полуось её орбиты; T2 и a2 — период обращения Луны вокруг Земли и большая полуось лунной орбиты.

Пренебрегая массой Земли, которая ничтожно мала по сравнению с массой Солнца, и массой Луны, которая в 81 раз меньше массы Земли, получим:

= .

Подставив в формулу соответствующие значения и приняв массу Земли за единицу, мы получим, что Солнце примерно в 333 тыс. раз по массе больше нашей планеты.

Массы планет, не имеющих спутников, определяют по тем возмущениям, которые они оказывают на движение астероидов, комет или космических аппаратов, пролетающих в их окрестностях. Об определении массы звёзд см. в § 23.

Приливы

Под действием взаимного притяжения частиц тело стремится принять форму шара. Если эти тела вращаются, то они деформируются, сжимаются у полюсов.

Кроме того, изменение их формы происходит и под действием взаимного притяжения, которое вызывают явления, называемые приливами. Давно известные на Земле, они получили объяснение только на основе закона всемирного тяготения.


Рис. 3.13. Схема лунных приливов

Рассмотрим ускорения, создаваемые притяжением Луны в различных точках земного шара (рис. 3.13). Поскольку точки A, B и Oнаходятся на различных расстояниях от Луны, ускорения, создаваемые её притяжением, будут различны.

Разность ускорений, вызываемых притяжением другого тела в данной точке и в центре планеты, называется приливным ускорением.

Приливные ускорения в точках A и B направлены от центра Земли. В результате Земля, и в первую очередь её водная оболочка, вытягивается в обе стороны по линии, соединяющей центры Земли и Луны. В точках A и Bнаблюдается прилив, а вдоль круга, плоскость которого перпендикулярна этой линии, на Земле происходит отлив. Тяготение Солнца также вызывает приливы, но из-за большей его удалённости они меньше, чем вызванные Луной. Приливы наблюдаются не только в гидросфере, но и в атмосфере, и в литосфере Земли и других планет.

Вследствие суточного вращения Земля стремится увлечь за собой приливные горбы, в то же время вследствие тяготения Луны, которая обращается вокруг Земли за месяц, полоса приливов должна перемещаться по земной поверхности значительно медленнее. В результате между огромными массами воды, участвующей в приливных явлениях, и дном океана возникает приливное трение. Оно тормозит вращение Земли и вызывает увеличение продолжительности суток, которые в прошлом были значительно короче (5—6 ч). Тот же эффект ускоряет орбитальное движение Луны и приводит к её медленному удалению от Земли. При этом приливы со стороны Земли на Луне затормозили её вращение, и она теперь обращена к Земле одной стороной. Такое же медленное вращение характерно для многих спутников Юпитера и других планет. Сильные приливы, вызываемые на Меркурии и Венере Солнцем, по-видимому, являются причиной их крайне медленного вращения вокруг оси.

Движение искусственных спутников Земли и космических аппаратов к планетам


Возможность создания искусственного спутника Земли теоретически обосновал ещё Ньютон. Он показал, что существует такая горизонтально направленная скорость , при которой тело, падая на Землю, тем не менее на неё не упадёт, а будет двигаться вокруг Земли, оставаясь от неё на одном и том же расстоянии. При такой скорости тело будет приближаться к Земле вследствие её притяжения как раз на столько, на сколько из-за кривизны поверхности нашей планеты оно будет от неё удаляться (рис. 3.14). Эта скорость, которую называют первой космической (или круговой), известна вам из курса физики:


v1 = = 7,9•10 3 м/с = 7,9 км/с.


Рис. 3.14. Орбита искусственного спутника Земли

Практически осуществить запуск искусственного спутника Земли оказалось возможно лишь через два с половиной столетия после открытия Ньютона — 4 октября 1957 г. За время, прошедшее с этого дня, который нередко называют началом космической эры человечества, искусственные спутники самого различного устройства и назначения заняли важное место в нашей повседневной жизни. Они обеспечивают непрерывный мониторинг погоды и других природных явлений, трансляции телевидения и т. п. Спутниковая навигационная система ГЛОНАСС и другие системы глобального позиционирования позволяют в любой момент с высокой степенью точности определить координаты любой точки на Земле. Пожалуй, нет в наши дни ни одной глобальной проблемы, в решении которой не принимали участие искусственные спутники Земли (ИСЗ).

Космические аппараты (КА), которые направляются к Луне и планетам, испытывают притяжение со стороны Солнца и согласно законам Кеплера так же, как и сами планеты, движутся по эллипсам. Скорость движения Земли по орбитесоставляет около 30 км/с. Если геометрическая сумма скорости космического аппарата, которую ему сообщили при запуске, и скорости Земли будет больше этой величины, то КА будет двигаться по орбите, лежащей за пределами земной орбиты. Если меньше — то внутри орбиты Земли. В первом случае, если аппарат летит к Марсу (рис. 3.15) или другой внешней планете, энергетические затраты будут наименьшими, если КА достигнет орбиты этой планеты при своём максимальном удалении от Солнца — в афелии. Кроме того, необходимо так рассчитать время старта КА, чтобы к этому моменту в ту же точку своей орбиты пришла планета. Иначе говоря, начальная скорость и день запуска КА должны быть выбраны таким образом, чтобы КА и планета, двигаясь каждый по своей орбите, одновременно подошли к точке встречи. Во втором случае — для внутренней планеты — встреча с КА должна произойти в перигелии его орбиты (рис. 3.16). Такие траектории полётов называются полуэллиптическими. Большие оси этих эллипсов проходят через Солнце, которое находится в одном из фокусов, как и полагается по первому закону Кеплера.


Рис. 3.15. Траектория полёта KA к Марсу

Рис. 3.16. Траектория полёта KA к Венере

Конструкция и оборудование современных КА обеспечивают возможность совершения ими весьма сложных манёвров — выход на орбиту спутника планеты, посадка на планету, передвижение по её поверхности и т. п.


ВОПРОСЫ 1. Почему движение планет происходит не в точности по законам Кеплера? 2. Как было установлено местоположение планеты Нептун? 3. Какая из планет вызывает наибольшие возмущения в движении других тел Солнечной системы и почему? 4. Какие тела Солнечной системы испытывают наибольшие возмущения и почему? 5. По каким траекториям движутся космические аппараты к Луне; к планетам? 6*. Объясните причину и периодичность приливов и отливов. 7*. Будут ли одинаковы периоды обращения искусственных спутников Земли и Луны, если эти спутники находятся на одинаковых расстояниях от них?


УПРАЖНЕНИЕ 12 1. Определите массу Юпитера, зная, что его спутник, который отстоит от Юпитера на 422 000 км, имеет период обращения 1,77 суток. Для сравнения используйте данные для системы Земля—Луна. 2. Ускорение силы тяжести на Марсе составляет 3,7 м/с 2 , на Юпитере — 25 м/с 2 . Рассчитайте первую космическую скорость для этих планет. 3. Сколько суток (примерно) продолжается полёт КА до Марса, если он проходит по эллипсу, большая полуось которого равна 1,25 а. е.?

Характеристики планет Солнечной системы были известны еще в средневековье, во времена Кеплера и Галилея. То есть, массу планет приблизительно можно было определить даже простыми методами и инструментами. В современной астрономии есть несколько методов расчета характеристик планет, звезд, скоплений и галактик.

Планеты солнечной системы

Планеты солнечной системы

Интересный факт: 99,9% всей массы Солнечной системы сосредоточена в самом Солнце. На все планеты вместе взятые приходится не более 0,01%. При этом из этих 0,01%, в свою очередь, 99% массы приходится на газовые гиганты (в том числе 90% только на Юпитер и Сатурн).

Рассчитываем массу Земли и Луны

Чтобы измерить массу планет солнечной системы, проще всего в первую очередь найти значения для Земли. Как мы помним, ускорение свободного падения определяется по формуле F=mg, где m – масса тела, а F – действующая на него сила.

Параллельно вспоминаем универсальный закон всемирного тяготения Ньютона:

Сопоставив эти две формулы, и зная значение гравитационной постоянной 6,67430(15)·10−11 м³/(кг·с²), можно рассчитать массу Земли. Ускорение свободного падения на Земле мы знаем, 9,8 м/с2, радиус планеты тоже. Подставив все данные на выходе получим приблизительно 5,97 х 10²⁴ кг.

Земля и луна

Зная массу Земли, мы легко рассчитает параметры по другим объектам Солнечной системы – Луна, планеты, Солнце и так далее. С Луной вообще все довольно просто. Здесь достаточно учесть, что расстояния от центров тел до центра масс соотносятся обратно их массам. Подставив эти цифры для Земли и ее спутника получим массу Луны 7.36 × 10²² килограмма.

Перейдем теперь к методикам измерения массы планет земной группы – Меркурий, Венера, Марс. После чего рассмотрим газовые гиганты, и в самом конце – экзопланеты, звезды и галактики.

Общие методики определения масс планет

Наиболее классический способ, как узнать массу планет – расчет при помощи формул третьего закона Кеплера. Он гласит, что квадраты периодов обращения планет соотносятся так же, как кубы больших полуосей орбит. Ньютон немного уточнил этот закон, внеся в формулу массы небесных тел. На выходе получилась такая формула –


Таким способом можно найти массу всех планет Солнечной системы и самого Солнца.И периоды обращения, и большие полуоси орбит планет Солнечной системы легко измеряются астрономическими методиками, доступными даже без сложных инструментов. А так как массу Земли мы уже рассчитали, можно все цифры подставить в формулу и найти конечный результат.

В отношении же экзопланет и других звезд (но только двойных) в астрономии обычно применяется метод анализа видимых возмущений и колебаний. Он основан на том факте, что все массивные тела “возмущают” орбиты друг друга.

Такими расчетами были открыты планеты Нептун и Плутон, еще до их визуального обнаружения, как говорят “на кончике пера”.

Значения масс планет Солнечной системы

Итак, мы разобрались с общими методиками расчета масс разных небесных тел и посчитали значения для Луны, Земли и Галактики. Давайте теперь составим рейтинг планет нашей системы по их массе.

Возглавляет рейтинг с наибольшей массой планет Солнечной системы – Юпитер, которому не хватило одного порядка чтобы наша система стала двойной. Еще чуть-чуть и у нас могло быть два Солнца, второе вместо Юпитера. Итак, масса этого газового гиганта равняется 1,9 × 10²⁷ кг.

Интересно, что Юпитер – единственная планета нашей системы, центр масс вращения с Солнцем которой расположен вне поверхности звезды. Он отстоит примерно на 7% расстояния между ними от поверхности Солнца.

Вторая по массе планета – Сатурн, его масса 5,7 × 10²⁶ кг. Следующим идет Нептун – 1 × 10²⁶. Четвёртая по массе планета, газовый гигант Уран, масса которого – 8,7 × 10²⁵ кг.

Далее идут планеты земной группы, каменистые тела, в отличие от газовых гигантов с их большим радиусом и относительно малой плотностью.

Тела солнечной системы, расположенные по убыванию массы

Самой тяжелой из этой группы является наша планета, ее массу мы уже рассчитали. Далее идет Венера, масса этой планеты равняется 4,9 × 10²⁴ кг. После нее в рейтинге идет Марс, он почти в 10 раз легче – 6,4 × 10²³кг. И замыкает его, как планета самой маленькой массы, Меркурий – 3,3 × 10²³кг. Что интересно, Меркурий даже легче, чем два спутника в Солнечной системе – Ганимед и Каллисто.

Определение масс звезд и галактик

Для того чтобы найти характеристики одинарных звездных систем применяется гравиметрический метод. Его суть в измерении гравитационного красного смещения света звезды. Оно измеряется по формуле ∆V=0,635 M/R, где M и R – масса и радиус звезды, соответственно.

Косвенно можно также вычислить массу звезды по видимому спектру и светимости. Сначала определяется ее класс светимости по диаграмме Герцшпрунга-Рассела, а потом вычисляется зависимость масса/светимость. Такой способ не подходит для белых карликов и нейтронных звезд.

Масса галактик вычисляется в основном по скорости вращения ее звезд (или просто по относительной скорости звезд, если это не спиральная галактика). Все тот же всемирный закон тяготения Ньютона нам гласит, что центробежную силу звезд в галактике можно выразить в формуле:

Только в этот раз в формулу мы подставляем расстояние от Солнца до центра нашей галактики и его массу. Так можно рассчитать массу Млечного Пути, которая равняется 2,2 × 10⁴⁴г.

Не забываем, что эта цифра – это масса галактики без учета звезд, орбиты которых располагаются вне орбиты вращения Солнца. Поэтому для более точных расчетов берутся самые внешние звезды рукавов спиральных галактик.

Для эллиптических галактик способ нахождения массы схож, только там берется зависимость между угловым размером, скоростью движения звезд и общей массой.

Читайте также: