Определение качества бензина реферат

Обновлено: 05.07.2024

ВВЕДЕНИЕ…………………………………………………………………….3
Раздел 1. ТЕХНОЛОГИЯ ПРОИЗВОДСТВА……………………. ….5
Раздел 2. АССОРТИМЕНТ БЕНЗИНА………………………………..12
Раздел 3. ПОКАЗАТЕЛИ КАЧЕСТВА………………………………..13
Раздел 4. ПРОВЕРКА КАЧЕСТВА………………………………. ….16
Раздел 5. ТРЕБОВАНИЯ БЕЗОПАСНОСТИ
И ОХРАНЫ ОКРУЖАЮЩЕЙ СРЕДЫ..……………………………..28
ВЫВВОД………………………………………………………………………30
СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ……………………….…32

Работа содержит 1 файл

ассортимент и оценка качества бензина.doc

Министерство образования и науки Украины

Одеський государственный экономический университет

Кафедра экспертизы и ЭРПС

Студента 4-го курсу 9-ой группы

Факультета международной экономики

Дневной формы обучения

Раздел 1. ТЕХНОЛОГИЯ ПРОИЗВОДСТВА……………………. ….5

Раздел 2. АССОРТИМЕНТ БЕНЗИНА…………………………… …..12

Раздел 3. ПОКАЗАТЕЛИ КАЧЕСТВА………………………………..13

Раздел 4. ПРОВЕРКА КАЧЕСТВА………………………………. ….16

Раздел 5. ТРЕБОВАНИЯ БЕЗОПАСНОСТИ

И ОХРАНЫ ОКРУЖАЮЩЕЙ СРЕДЫ..……… ……………………..28

Топливо – горючие вещества, выделяющие при сжигании значительное количество теплоты, которая используется непосредственно в технологических процессах или преобразуется в другие виды энергии. Существует много горючих веществ, однако к топливу относят только те, которые достаточно широко распространены в природе, причем добыча их не связана с большими затратами, а продукты сгорания практически безвредны. Таким требованиям отвечают вещества, основная часть которых – углерод. К ним относятся полезные ископаемые органического происхождения – бурый уголь, горючие газы, горюче сланцы, каменный уголь, нефть, торф, а также древесина и растительные отходы (солома, лузга, и др.).

Природное органическое топливо – основной источник теплоты, используемой человечеством. На сырье из природного топлива почти полностью базируется нефтехимическая промышленность, производство смазочных материалов и т.д.

Нефть – горючая, маслянистая жидкость со специфическим запахом, распространённая в осадочной оболочке Земли, являющаяся важнейшим полезным ископаемым. Образуется вместе с газообразными углеводородами, обычно на глубинах более 1,2-2 км. Вблизи земной поверхности нефть преобразуется в густую мальту, полутвёрдый асфальт и др.

Бензин (франц. benzine) – это самая легкая из жидких фракций нефти, смесь углеводородов различного строения, бесцветная жидкость с пределами кипения 33—205°С. Температура замерзания бензина ниже -60°С, температура вспышки ниже 0°С, плотность 700—780 кг/м3 (0,70—0,78 г/см3).

Основной источник получения бензина — перегонка и каталитическая переработка нефти, также небольшие количества бензина получают переработкой каменных углей и горючих сланцев, и из природных и попутных газов. Обычный углеводородный состав бензина – молекулы длиной от С5 до С10. Бензин применяют главным образом в качестве топлива для двигателей внутреннего сгорания с воспламенением от искры (карбюраторные и с непосредственным впрыском). Около 10% бензина используют как растворители, промывочные жидкости и для др. целей. Но бензины отличаются друг от друга, как по составу, так и по свойствам, ведь их получают не только как продукт первичной возгонки нефти. Бензин получают из попутного газа (газовый бензин) и из тяжелых фракций нефти (крекинг-бензин)

Бензины являются одним из основных видов горючего для двигателей современной техники. Автомобильные и мотоциклетные, лодочные и авиационные поршневые двигатели потребляют бензины. В настоящее время производство бензинов является одним из главных в нефтеперерабатывающей промышленности и в значительной мере определяющим развитие этой отрасли.

Современные автомобильные и авиационные бензины должны удовлетворять ряду требований, обеспечивающих экономичную и надежную работу двигателя, и требованиям эксплуатации: иметь хорошую испаряемость, позволяющую получить однородную топливовоздушную смесь оптимального состава при любых температурах; иметь групповой углеводородный состав, обеспечивающий устойчивый, бездетонационный процесс сгорания на всех режимах работы двигателя; не изменять своего состава и свойств при длительном хранении и не оказывать вредного влияния на детали топливной системы, резервуары, резинотехнические изделия и др. В последние годы экологические свойства топлива выдвигаются на первый план.

Раздел 1. ТЕХНОЛОГИЯ ПРОИЗВОДСТВА

Нефть - не одно химическое соединение, а смесь нескольких тысяч разных соединений. Если нагреть нефть до температуры кипения и выдерживать её в этом состоянии, она полностью не испарится.

Большинство веществ, входящих в состав нефти, - это определённые комбинации атомов углерода и водорода, которые называются углеводородами. Каждое из этих соединений характеризуется своей собственной температурой кипения.

Как правило, чем больше атомов углерода в соединении, тем выше его температура кипения.

Определённые соединения объединяются в группы, называемые фракциями. Фракция объединяет все соединения, которые кипят между какими-либо двумя температурами. Обычно сырая нефть содержит следующие фракции:

- температура кипения менее 32°С - углеводородные газы (бутан и более лёгкие газы)

- выше 430°С - мазут.

Различные нефти сильно различаются по составу. В лёгких нефтях обычно больше бензина, нафты и керосина, а в тяжёлых - газойля и мазута.

При простой перегонке смесь нагревают до кипения. Светлый продукт испаряется. В виде пара он оказывается легче жидкости. Поэтому он перемещается вверх, отделяется от жидкости и попадает в холодильник, где охлаждается и снова превращается в жидкость (конденсируется). Полученную жидкость можно снова перегнать, получив продукт качеством выше. Такой процесс можно превратить в непрерывный.

Ректификация. Ректификационная колонна позволяет проводить перегонку постоянно. Внутрь колонны поступает сырая нефть, а наружу выходят углеводородные газы (бутан и более лёгкие газы), бензин, нафта, керосин, лёгкий газойль, тяжёлый газойль и кубовый остаток.

Сначала нефть проходит через печь, в которой нагревается до температуры около 385°С, при которой, как правило, испаряется больше половины нефти. Полученная таким образом смесь жидкости и паров подаётся снизу в ректификационную колонну. Когда смесь пара и жидкости поднимается по колонне, то более плотная и тяжёлая часть отделяется и опускается на дно, а лёгкие пары поднимаются вверх.

Внутри ректификационной колонны находится набор тарелок, в которых проделаны отверстия. Отверстия в тарелках снабжены колпачками, которые нужны для того, чтобы пары, поднимающиеся через тарелки, проходили через слой жидкости, находящийся на тарелке. Это прохождение газа через слой жидкости и составляет суть ректификации: горячие пары (при температуре не ниже 400°С) проходят через жидкость. При этом тепло передаётся от паров к жидкости. Соответственно пузырьки пара несколько охлаждаются и часть углеводородов из них переходит в жидкое состояние. После того как пары прошли через слой жидкости и потеряли часть более тяжёлых углеводородов, они поднимаются к следующей тарелке, где повторяется тот же процесс.

Тем временем количество жидкости на каждой тарелке растёт за счёт углеводородов, конденсирующихся из паров. Избыток жидкости перетекает вниз на следующую тарелку. Некоторые молекулы несколько раз путешествуют туда и обратно - в виде пара поднимаются на несколько тарелок вверх, затем конденсируются и стекают уже как жидкость на несколько тарелок вниз. Именно эта промывка пара жидкостью обеспечивает чёткое разделение фракций.

На различных уровнях колонны имеются боковые отводы для отбора фракций - более лёгкие продукты отбираются в верхней части колонны, а тяжёлая жидкость выходит внизу.

Несколько дополнительных операций, происходящих вне ректификационной колонны, способствуют более успешному проведению процесса перегонки. Чтобы тяжёлые продукты случайно не попали в верхнюю часть колонны вместе с лёгкими фракциями, пары периодически направляют в холодильник. Вещества, которые конденсируются в холодильнике, снова поступают на одну из расположенных ниже тарелок. Это своего рода орошение ректификационной колонны.

И наоборот, некоторое количество лёгких углеводородов может быть увлечено током жидкости в нижнюю часть колонны вместе с тяжёлыми продуктами. Чтобы избежать этого, жидкость, выходящую через боковой отвод, снова пропускают через нагреватель. В результате остатки лёгких углеводородов отделяются и повторно поступают в ректификационную колонну в виде пара. Этот процесс называется повторным испарением.

Границами кипения фракций называют температуры, при которых продукты перегонки отделяются друг от друга. В частности, температура, при которой продукт начинает кипеть, называется точкой начала кипения. Температура, при которой 100% данной фракции испарилось, называется точкой выкипания этой фракции. Точка начала кипения и точка выкипания двух соседних фракций совпадают, по крайней мере, номинально.

Однако они могут и не совпадать - это зависит от того, насколько хорошее разделение обеспечивает процесс ректификации.

При температурах около и выше 480°С происходит явление, которое называется крекинг. Когда сложные углеводородные молекулы - те, что не испарились до 480°С - нагревают до более высоких температур, то энергии оказывается достаточно для того, чтобы расколоть большую молекулу на две (или больше) маленьких. Маленькие молекулы кипят при значительно более низких температурах, чем большие. Как только они образуются в результате крекинга, они выпрыгивают из кипящей жидкости в пары.

Продукты крекинга при сохранении исходной массы сырья, занимают больший объём, так как маленькие молекулы занимают больше места, чем большие: более крупные молекулы стремятся упаковать свои атомы плотнее, чем мелкие молекулы.

Крекинг - интересный и выгодный процесс, но только в том случае, если им управлять. В ректификационной колонне этот процесс не контролируется, поэтому при перегонке избегают температур, при которых возможен крекинг. Наиболее высокая температурная граница при перегонке находится в районе 400°С. Но прямогонный остаток также содержит множество углеводородов, которые следует разделить на фракции. С этой целью разработан метод вакуумной перегонки.

Температура кипения зависит от давления следующим образом. Нагревание требуется для того, чтобы молекулы набрали достаточно энергии и могли покинуть жидкую фазу. Скорость, с которой это происходит, зависит от того, с какой скоростью тепло к ним подводится, а также от давления воздуха над жидкостью. Чем ниже давление, тем меньше энергии требуется и, значит, тем ниже температура, при которой начинается парообразование в жидкости, то есть кипение.

Крекинг прямогонного остатка происходит, когда температура поднимается слишком высоко. Прямогонный остаток нужно как-то разделить на дополнительные фракции, что решается при проведении фракционирования при пониженном давлении.

Прямогонный остаток перекачивают из ректификационной колонны непосредственно на установку вакуумной перегонки. В соответствии с режимом работы ректификационной колонны, температура остатка при этом отвечает началу его кипения или на пару градусов выше на случай охлаждения. Остаток поступает в колонну, давление в которой понижено. Внутри ректификационной колонны давление приблизительно равно атмосферному. Давление же в вакуумной ректификационной колонне составляет около 0,32-0,40 атм. При пониженном давлении лёгкая фракция остатка сразу начинает кипеть и быстро испаряется.

Отечественные легковые автомобили и автобусы, а также большинство грузовых автомобилей имеют карбюраторные двигатели. Топливом для этих двигателей служит автомобильный бензин.

Основные технико-экономические требования к бензинам сводятся к следующему:

— бензин должен обеспечивать безотказную работу автомобильного двигателя на всех режимах и во всех практически встречающихся условиях эксплуатации;

— двигатель должен развивать предусмотренную для него мощность при минимальном расходе бензина;

— бензин должен обеспечивать минимальные износы двигателя, трудовые и материальные затраты на ремонт и техническое обслуживание двигателя;

— качество бензина не должно ухудшаться при транспортировании, хранении и использовании;

— обращение с бензином не должно вызывать повышенной опасности для персонала, занимающегося эксплуатацией, техническим обслуживанием и ремонтом автомобилей.

Исходя из названных выше требований устанавливается соответствие бензина данным конкретным условиям и возможность его применения.

Физико-химические свойства

Соответствие бензина перечисленным требованиям зависит, прежде всего, от его физико-химических свойств, которые определяются рядом показателей. Основные показатели физико-химических свойств бензинов указываются в стандарте или в технических условиях на бензин данной марки.

Приведенные показатели могли бы значительно изменяться в зависимости от природы нефти, способов ее переработки и очистки бензина. Стандартизация основных показателей физико-химических свойств обеспечивает одно и то же качество бензина данной марки.

Фракционный состав, давление насыщенных паров, детонационная стойкость, а также содержание механических примесей и воды в бензине определяют способность данного бензина образовывать бензино-воздушную смесь нужного состава при различных условиях работы двигателя, в том числе при низких и высоких температурах, минимальных и максимальных числах оборотов коленчатого вала, при приоткрытом или полностью открытом дросселе, т. е. определяют карбюрационные качества бензина, от которых зависит безотказность работы двигателя.

От них зависят также быстрота и полнота сгорания бензино-воздушной смеси в цилиндрах двигателя, возможность работы двигателя на наиболее экономичных режимах, т. е, мощность, развиваемая двигателем, и количество расходуемого при этом бензина.

Фракционный состав устанавливает зависимость между количеством топлива (в % по объему) и температурой, при которой оно перегоняется. Для характеристики фракционного состава в стандарте указывается температура, при которой перегоняется 10, 50 и 90 % бензина, а также температура конца его перегонки, иногда и начала.

Применение бензина с высокой температурой конца перегонки приводит к повышенному износу цилиндров и поршневой группы вследствие смывания масла со стенок цилиндров и его разжижения в картере, а также вследствие неравномерного распределения рабочей смеси по цилиндрам.

Давление насыщенных паров характеризует испаряемость головных фракций бензинов, и в первую очередь их пусковые качества. Чем выше давление насыщенных паров бензина, тем легче он испаряется и тем быстрее происходит пуск и нагрев двигателя. Однако если бензин имеет слишком высокое давление насыщенных паров, то он может испаряться до смесительной камеры карбюратора.

Это приведет к ухудшению наполнения цилиндров, возможному образованию паровых пробок в системе питания и снижению мощности, перебоям и даже остановке двигателя.

Поэтому давление насыщенных паров бензина устанавливается таким, чтобы при хорошем его испарении не образовывались паровые пробки в системе питания двигателя.

При оценке испаряемости бензина необходимо наряду с давлением насыщенных паров учитывать его фракционный состав.

Октановое число характеризует детонационную стойкость бензина, являющуюся важнейшим его эксплуатационным качеством.

Детонационная стойкость бензина оценивается октановым числом, указываемым в стандартах или технических условиях в числе важнейших физико-химических свойств бензина. Показатель октанового числа входит и маркировку бензина. Октановое число бензина численно равно процентному (по объему) содержанию изооктана в такой смеси с нормальным гептаном, которая равноценна по детонационной стойкости испытуемому бензину.

Чем выше октановое число, тем более стоек бензин перед детонацией и тем лучшими эксплуатационными качествами он обладает.

При сопоставимых условиях бензины с более легким фракционным составом имеют более высокое октановое число. Лучше противостоят детонации бензины, в которых преобладают ароматические углеводороды, затем следуют нафтеновые, и наименьшая детонационная стойкость у бензинов, состоящих в основном из нормальных парафиновых углеводородов.

Наличие в бензине сернистых соединений и смолистых веществ понижает его октановое число, поэтому содержание их в бензине строго контролируется.

Детонация чаще всего возникает при работе прогретого двигателя на полной нагрузке при небольшом числе oборотов коленчатого вала. Возникновению детонации способствует ухудшение охлаждения двигателя (нагар, накипь, пробуксовка ремня вентилятора и др.), увеличение открытия дросселя, уменьшение числа оборотов коленчатого вала двигателя, увеличение угла опережения зажигания.

Изменяя режим работы двигателя, можно предотвратить или прекратить уже начавшуюся детонацию

Октановое число бензина повышается путем добавления к бензину высокооктановых компонентов или присадок-антидетонаторов.

Механические примеси в бензине не допускаются. Они приводят к засорению топливных фильтров, топливопроводов, жиклеров, что нарушает нормальную работу двигателя, увеличивает износ цилиндров и поршневых колец,

Наличие воды в бензине также исключено. Она опасна прежде всего при температуре ниже 0°С, так как, замерзая, образует кристаллы, которые могут преградить доступ бензина в цилиндры двигателя; она способствует осмолению бензина, а также вызывает коррозию топливных баков и резервуаров.

На безотказную работу двигателя, развиваемую им мощность и расход бензина кроме рассмотренных свойств оказывают некоторое влияние и другие физико-химические свойства. Так, развиваемая двигателем мощность зависит от теплоты сгорания топлива. В то же время у применяемых марок бензинов теплота сгорания практически различается незначительно.

Для автомобильных бензинов не нормируются вязкость и плотность. Фактическое отклонение вязкости и плотности бензинов одной марки не вызывает необходимости изменять регулировку и режим работы двигателя для разных партий бензина. Однако в этом может возникнуть необходимость при переходе на летний или зимний период эксплуатации или на бензин другой марки.

Плотностью бензина называется его масса, содержащаяся в единице объема. Чаще всего плотность определяется нефтеденсиметром при 20°С. С понижением температуры вязкость и плотность возрастают. Увеличение вязкости уменьшает пропускную способность жиклеров, а с повышением плотности увеличивается количество одного и того же объема бензина, поступающего через жиклеры,

Автохозяйства получают бензин с нефтебаз в весовых единицах (кг), а при заправке автомобилей через заправочные станции (бензоколонки) замер производится в объемных (л). Поэтому, зная плотность, производят пересчет весовых единиц (единиц массы) в объемные.

Кроме перечисленных физико-химических свойств на износ двигателя и на затраты по уходу за автомобилем влияет также содержание в бензине минеральных и органических кислот, щелочей, смол, серы и ее соединений.

Водорастворимые (минеральные) кислоты и щелочи коррозируют металлы, и их присутствие в бензине вызывает интенсивный износ деталей двигателя. В бензине в результате некачественной очистки могут оказаться серная кислота и щелочь. Стандартами на автомобильные бензины не допускается содержание в них хотя бы следов водорастворимых кислот и щелочей. Поэтому бензин подвергают качественной проверке на нейтральность, чтобы установить его соответствие требованиям стандарта и части содержания в нем водорастворимых кислот и щелочей.

Для этой цели бензин тщательно перемешивают с таким же количеством дистиллированной воды и после отстоя йодную вытяжку сливают в две пробирки, в которые соответственно добавляют по 1—2 капли индикаторов метилоранжа и фенолфталеина. Если в бензине присутствует кислота, то при добавлении к водной вытяжке метилоранжа она окрашивается в оранжево-красный цвет, если щелочь — то при добавлении фенолфталеина ее цвет становится розовым или красным.

Органические (высокомолекулярные нафтеновые нерастворимые в воде) кислоты коррозируют металлы значительно слабее, чем минеральные, В основном, они представляют опасность для цветных металлов, и в первую очередь для свинца и меди. Железо, например, поддастся коррозии под действием органических кислот в десятки раз слабее, чем свинец и медь. Поэтому органические кислоты в бензине приводят к ускоренному износу вкладышей; коренных шатунных подшипников коленчатого вала,, втулок верхней головки шатуна и других деталей из цветных металлов (кроме алюминиевых).

Органические кислоты могут вызвать закупорку топливопроводов системы питания в результате попадания в них смол, вызванных наличием кислоты и продуктов коррозии.

Содержание органических кислот в автомобильных бензинах строго ограничивается и оценивается по количеству едкого калия (КОН) в мг, требующегося для нейтрализации кислот, находящихся в 300-м 3 бензина. Для этой цели 50 см 3 бензина кипятят в смеси с таким, же количеством нейтрализованного этилового (винного) спирта с добавкой нескольких капель индикатора нитрозинового желтого для извлечения из бензина органических кислот и затем нейтрализуют горячую смесь спиртовым раствором едкого калия до тех пор, пока ее цвет не начнет переходить из желтого в зеленый.

Кислотность бензинов не должна превышать 3 мг/100 см 3 .

Особой коррозионной, агрессивностью отличаются активные сернистые соединения, к которым относятся элементарная сера (S), сероводород (H2 S) и меркаптаны (R-S-H). Присутствие активной серы в бензине не допускается. Неактивные сернистые соединения вызывают коррозию только при их сгорании вместе с бензином. При этом образуются газы вызывающие коррозию деталей двигателя. Кроме того, эти газы, проникая в картер двигателя и соприкасаясь с конденсировавшимися парами воды и кислородом воздуха, образуют сильно коррозирующие серную и сернистую кислоты, которые окисляют масло и вызывают износ деталей. Некоторое количество неактивной серы в бензине все же допускается, так как избавиться от нее трудно, особенно при переработке сернистых нефтей. Так, содержание серы стандартом ограничено до G.,00i —ОД %. Проверка -присутствия в бензине активной .серы производится качественной пробой путем наблюдения за поверхностью медной отполированной пластинки до и после пребывания ее в течение 3 ч в бензине, подогретом до температуры 50 ± 2°С, или в течение 18 мин при 100С. Пластинка не должна покрываться черными, тёмно - коричневыми и серо-стальными пятнами и налетами.

Количество неактивной серы в бензине определяется так называемым ламповым методом.

Смолы в бензине образуют нерастворимые липкие, вязкие осадки темного цвета, которые отлагаются на стенках топливных баков, топливопроводов, в карбюраторе, во впускном трубопроводе, камере сгорания, на стержнях и тарелках впускных клапанов и т. д. Под действием высокой температуры смолистые образования коксуются и превращаются в нагар. Осадки смолы ухудшают подачу бензина в цилиндры двигателя, а иногда и полностью нарушают ее, превратившись в нагар, приводят к описанию клапанов, самовоспламенению рабочей смеси, работе с детонацией и другим неисправностям Количество смол в бензине непостоянно, оно увеличивается за счет полимеризации непредельных углеводородов и окисления их кислородом воздуха. Процесс усиливается при повышенной температуре и хорошем доступе воздуха.

Кроме смол, которые могут образовываться, различают фактические смолы, т. е. те, которые уже имелись и бензине или же образовались при испытании. Содержание фактических смол в бензине строго ограничивается и устанавливается предельное их содержание на месте производства и на месте потребления, т. е. на нефтебазе, в момент получения бензина. Содержание фактических смол определяется прибором, в котором при температуре 150 ± 3°С производится выпаривание 25 мл бензина, омываемого струей горячего воздуха. Полученный после выпаривания остаток взвешивается (в мг) и увеличивается в 4 раза.

Первоначальные качества бензина вследствие происходящих в них физико-химических процессов постепенно ухудшаются. Особенно это характерно для бензинов термического крекинга.

Сохранение первоначальных качеств бензина в процессе транспортирования, хранения и применения зависит от его физической и химической стабильности.

Окисление и осмоление возрастает с повышением температуры бензина. Поэтому все меры, которые способствуют понижению температуры бензина при хранении и транспортировании, будут уменьшать его окисление и осмоление. Понижение температуры также уменьшает потери легкоиспаряемых углеводородов.

Окислению и осмолению способствует контакт бензина с воздухом, поэтому он быстрее осмоляется при неполном заполнении тары.

Процесс окисления является самоускоряющимся и поэтому бензин, залитый в тару, не очищенную от остатков старого осмолившегося бензина, осмоляется преждевременно.

Ускоряют образование смол ржавчина и загрязнение тары, нежелательно попадание в бензин воды, О химической стабильности бензина судят по величине индукционного периода.

Токсичность является важнейшей характеристикой бензина.

В связи с этим чрезвычайно важно, чтобы ни сам бензин, ни его пары и нагар не представляли повышенной опасности для здоровья лиц, соприкасающихся с ними.

Определение качества и марки бензина

Рассмотренные физико-химические свойства бензинов, которые указываются в ГОСТ и технических условиях, достаточно полно характеризуют их эксплуатационные качества. Для определения качества полученного бензина необходимо правильно отобрать пробу. Для отбора проб бензина используют пробоотборники или

приспособления с бутылкой. После опускания на необходимую глубину открывается крышка пробоотборника или пробка бутылки и после прекращения выделения пузырьков воздуха извлекают пробоотборник (бутылку) с пробой бензина.

Когда нет возможности провести лабораторный анализ и важно ориентировочно определить возможность применения имеющегося бензина, внешним осмотром определяют цвет, прозрачность, а также простейшими способами проверяют смолистость и испаряемость бензина.

Для проверки испаряемости на белую бумагу стеклянной палочкой наносят каплю топлива и по истечении 1—2 мин осматривают остаток после испарения. После испарения бензина А-76 остается незначительное пятно, после испарения бензина остальных марок следок практически не остается. Бензин, содержащий смолистые вещества, оставляет на белой бумаге кольца желтого или коричневого цвета.

  • Для учеников 1-11 классов и дошкольников
  • Бесплатные сертификаты учителям и участникам

Муниципальное образовательное учреждение

Реферат по химии:

«Бензин. Состав и свойства.

учащейся 9 класса

Руководитель: Луговая Вера Александровна

ГЛАВА I . ОСНОВНЫЕ ПОКАЗАТЕЛИ КАЧЕСТВА БЕНЗИНА

1.1 ДЕТОНАЦИОННАЯ СТОЙКОСТЬ 4

1.2 ФРАКЦИОННЫЙ СОСТАВ 6

ГЛАВА II . ОСНОВНЫЕ СВОЙСТВА БЕНЗИНА 8

2.2 ИСПАРЯЕМОСТЬ 8

2.3 ХИМИЧЕСКАЯ СТАБИЛЬНОСТЬ 9

2.4 СКЛОННОСТЬ К ОБРАЗОВАНИЮ ОТЛОЖЕНИЙ И НАГАРООБРАЗОВАНИЮ 10
ГЛАВА III . МАРКИ АВТОМОБИЛЬНЫХ БЕНЗИНОВ 12
ЗАКЛЮЧЕНИЕ 14

СПИСОК ЛИТЕРАТУРЫ 16

В конце XIX века бензин не находил лучшего применения, чем антисептическое средство (бензин продавался в аптеках) и топлива для примусов. Зачастую из нефти отгоняли только керосин, а все остальное, включая бензин, либо сжигали, либо просто выбрасывали. Однако с появлением двигателя внутреннего сгорания, бензин стал одним из главных продуктов нефтепереработки.

В наше время количество автомобилей на душу населения возрастает с каждым днем. И, несмотря на различные новые технологии и внедрение новых альтернативных видов топлив, для автомобилей одним из основных является бензин. В год автомобилисты России потребляют около 35 млн т автомобильного бензина. И даже в кризисные годы спрос на моторное топливо в РФ не снижался, благодаря увеличению автомобильного парка за счет современных автомобилей. Несмотря на то, что автомобили в РФ становятся все более технологичными, внутренний рынок моторного топлива не успевает за техническим прогрессом.

Россия пока только на пути к переходу на экологический класс топлива "Евро-5", который регулирует содержание вредных примесей в выхлопных газах, в то время как Евросоюз с 2009г. сделал этот стандарт обязательным для всех легковых автомобилей. Но пока на автозаправочных станциях владельцы автомобилей могут столкнуться с проблемой некачественного бензина. Это приводит к потере мощности и неустойчивой работе двигателя после заправки. В современных инжекторных системах возможен даже полный отказ топливной системы, что делает невозможным дальнейшее движение автомобиля без посещения автосервис

Цель данного исследования: раскрыть основные показатели качества и свойства бензина, дать характеристику основным маркам бензина.

Глава I . ПОКАЗАТЕЛИ КАЧЕСТВА БЕНЗИНА

ДЕТОНАЦИОННАЯ СТОЙКОСТЬ

Основным эксплуатационным свойством бензинов является детонационная стойкость. Детонация - это процесс очень быстрого сгорания рабочей смеси (взрывной) с образованием в камере сгорания ударных волн. Детонация приводит к прогоранию поршней и выпускных клапанов. Внешние признаки детонации - характерный металлический стук и вибрация, черный цвет отработавших газов (дым), неровная работа двигателя. Главным признаком детонации служит резкий звонкий стук в двигателе, который хорошо слышен с места водителя, источником этих звуков являются вибрации деталей двигателя от действия детонационной (ударной) волны.

Основные причины детонации следующие: несоответствие сорта бензина степени сжатия двигателя (слишком низкое октановое число): раннее зажигание, большое количество нагара в камере сгорания, работа двигателя при полностью открытой дроссельной заслонке и низкой частоте вращения коленчатого вала, что бывает, например, при движении на подъеме, когда водитель своевременно не перешел на низшую передачу. Длительная работа двигателя с интенсивной детонацией недопустима, так как это может привести к повреждению прокладки головки блока цилиндров, прогоранию поршней и клапанов.

Детонационная стойкость бензина оценивается октановым числом, указываемым в стандартах или технических условиях в числе важнейших физико-химических свойств бензина. Показатель октанового числа входит и маркировку бензина. Октановое число бензина численно равно процентному (по объему) содержанию изооктана в такой смеси с нормальным гептаном, которая равноценна по детонационной стойкости испытуемому бензину. Оно определяется двумя методами - исследовательским и моторным. Как правило, в обозначении бензина вместе с октановым числом указывается и метод, по которому оно определено(буква И - исследовательский). Чем выше октановое число, тем больше стойкость к детонации, тем больше и возможная степень сжатия двигателя, а следовательно, и больше мощность и экономичность. Высокооктановые бензины получают двумя способами: сложным технологическим - увеличивают долю высокооктановых компонентов при производстве (неэтилированный бензин); более простой и дешевый способ - добавка к бензину тетраэтилсвинца (этилированный бензин).

Детонационная стойкость автомобильных бензинов определяется их углеводородным составом. Наибольшей детонаци­онной стойкостью обладают ароматические углеводороды. Самая низ­кая детонационная стойкость у парафиновых углеводородов нормаль­ного строения, причем она уменьшается с увеличением их молеку­лярной массы.

Октановое число бензина можно повысить добавлением в него ароматических углеводородов изостроения или присадок-антидетонаторов. Антидетонаторы – вещества, которые добавляются в бензин с целью повышения его детонационной стойкости. Изменить октановое число топлива можно путем смешения низко - и высококтанового бензинов.

Детонация чаще всего возникает при работе прогретого двигателя на полной нагрузке при небольшом числе o боротов коленчатого вала. Возникновению детонации способствует ухудшение охлаждения двигателя (нагар, накипь, пробуксовка ремня вентилятора и др.), увеличение открытия дросселя, уменьшение числа оборотов коленчатого вала двигателя, увеличение угла опережения зажигания. Изменяя режим работы двигателя, можно предотвратить или прекратить уже начавшуюся детонацию.

ФРАКЦИОННЫЙ СОСТАВ

Если в бензине присутствует значительное количество парафиновых углеводородов так называемого нормального строения, то есть такие, в которых атомы углерода соединены в виде прямой цепочки, качество бензина низкое. И наоборот, парафиновые углеводороды изомерного строения, с разветвленной цепочкой углеводородных атомов, имеют высокое октановое число, а бензин, содержащий такие углеводороды, отличается хорошей октановой характеристикой.

Содержание в бензине ароматических углеводородов желательно, так как они имеют более высокие октановые числа, чем парафиновые углеводороды нормального строения. Однако усиленное применение ароматических компонентов вместо этиловой жидкости для повышения октановой характеристики бензина может привести к увеличению выбросов ароматических углеводородов, в частности бензола, с отработавшими газами.

Для бензина с высоким содержанием низкокипящих фракций характерны большие потери при хранении и транспортировании. Такой бензин может приводить к обледенению карбюратора, так как быстро испаряющиеся низкокипящие фракции отнимают теплоту из воздуха, а также от металлических деталей впускной системы карбюратора. Чем больше низкокипящих фракций в бензине, тем ниже температура топливо-воздушной смеси.

От фракционного состава зависят показатели как скорость прогрева двигателя, его приемистость, износ цилиндро-поршневой группы. Приемистость - способность бензинов к повышению детонационной стойкости при добавлении антидетонаторов.

ГЛАВА II . ОСНОВНЫЕ СВОЙСТВА БЕНЗИНА

Одним из основных показателей качества бензина является его цвет. Хорошее топливо должно быть бесцветным или иметь небольшой желтоватый оттенок, которое обусловлено наличием в нем антидетонаторов (специальные присадки, повышающие октановое число). Если бензин мутный, то в нем, скорее всего, имеется вода. Наличие воды можно определить с помощью марганцовки. Если образец окрасится в фиолетовый цвет, то значит в нем присутствует вода.
С теоретической точки зрения, если она находится во взвешенном состоянии, то улучшается процесс сгорания топлива, усиливается его детонационная стойкость. На практике же наличие воды в бензине исключено. Она опасна прежде всего при температуре ниже 0°С, так как, замерзая, образует кристаллы, которые могут преградить доступ бензина в цилиндры двигателя; она способствует осмолению бензина, а также вызывает коррозию топливных баков и резервуаров. Зимой вода имеет свойство замерзать, и машина попросту может не завестись.

ИСПАРЯЕМОСТЬ

Для полного сгорания топлива в двигателе необходимо перевести его в короткий промежуток времени из жидкого состояния в парообразное. Затем смешать с воздухом в определенном соотношении, т.е. создать рабочую смесь. В зависимости от конструкции двигателя возможны два способа образования рабочей смеси.

При первом способе в карбюраторе происходит частичное испарение бензина и образование горючей смеси, затем паровоздушный поток распределяется по цилиндрам. Вследствие неполного испарения бензина часть капель из паровоздушного потока оседает в виде жидкой пленки на стенках впускного трубопровода. Из-за разности в скоростях движения паров и жидкой пленки в цилиндры поступает горючая смесь, неоднородная по качеству и составу.

При втором способе бензин впрыскивается с помощью форсунок непосредственно в камеру сгорания или во впускной трубопровод. От содержания в бензине легкокипящих фракций зависит его физическая стабильность, т.е. склонность к потерям от испарения. Наибольшие потери от испарения имеют бензины, содержащие в своем составе низкокипящие углеводороды: бутаны, изопентан.

Высокая испаряемость бензина может иногда стать причиной обледенения карбюратора. Испарение бензина в карбюраторе сопровождается понижением температуры его деталей. В условиях высокой влажности при температуре воздуха около 4 0 С происходит вымерзание влаги из окружающего воздуха, которое вызывает обледенение карбюратора. Снижая испаряемость бензина, можно предотвратить обледенение карбюратора, однако это ухудшает пусковые свойства бензинов. Поэтому в бензин вводят специальные антиобледенительные присадки или осуществляют конструктивные меры.

2.3 ХИМИЧЕСКАЯ СТАБИЛЬНОСТЬ

Этот показатель характеризует способность бензина сохранять свои свойства и состав при длительном хранении, перекачках, транспортировании или при нагревании впускной системы двигателя. Химические изменения в бензине, происходящие в условиях транспортирования или хранения, связаны с окислением входящих в его состав углеводородов. Следовательно, химическая стабильность бензинов определяется скоростью реакций окисления, которая зависит от условий процесса и строения окисляемых углеводородов. При окислении бензинов происходит накопление в них смолистых веществ, образующихся в результате окислительной полимеризации и конденсации продуктов окисления. На начальных стадиях окисления содержание в бензине смолистых веществ невелико, и они полностью растворимы в нем. По мере углубления процесса окисления количество смолистых веществ увеличивается, и снижается их растворимость в бензине.

Низкую химическую стабильность имеют олефиновые углеводороды, особенно диолефины с сопряженными двойными связями. Высокой реакционной способностью обладают также ароматические углеводороды с двойной связью в боковой цепи. Наиболее устойчивы к окислению парафиновые углеводороды нормального строения и ароматические углеводороды. Химическая стабильность автомобильных бензинов определяется в основном их углеводородным составом. Наибольшей склонностью к окислению обладают бензины термического крекинга, коксования, пиролиза, каталитического крекинга. Бензины каталитического риформинга, прямогонные бензины, алкилбензин химически стабильны.

Накопление в бензинах продуктов окисления резко ухудшает их эксплуатационные свойства. Смолянистые вещества могут выпадать из топлива, образуя отложения в резервуарах, трубопроводах и др. Окисление нестабильных бензинов при нагревании во впускной системе двигателя приводит к образованию отложений на ее элементах, а также увеличивает склонность к нагарообразованию на клапанах, в камере сгорания и на свечах зажигания.

СКЛОННОСТЬ К ОБРАЗОВАНИЮ ОТЛОЖЕНИЙ И НАГАРООБРАЗОВАНИЮ

Применение автомобильных бензинов, особенно этилированных, сопровождается образованием отложений во впускной системе двигателя, в топливном баке, на впускных клапанах и поршневых кольцах, а также нагара в камере сгорания. Наиболее интенсивное образование отложений происходит на деталях карбюратора. Образование отложений на указанных деталях приводит к нарушению регулировки карбюратора, уменьшению мощности и ухудшению экономичности работы двигателя, увеличению токсичности отработавших газов.

Образование отложений в топливной системе частично зависит от содержания в бензинах смолистых веществ, нестабильных углеводородов, неуглеводородных примесей, от фракционного и группового состава, которые определяют моющие свойства бензина. Установлено, что повышенному нагарообразованию способствует высокое содержание в бензинах олефиновых и ароматических углеводородов, особенно высококипящих. Однако в большей степени этот процесс определяется конструктивными особенностями двигателя.

Наиболее эффективным способом борьбы с образованием отложений во впускной системе двигателя является применение специальных моющих или многофункциональных присадок. Такие присадки широко применяют за рубежом. В России также разработаны и допущены к применению присадки аналогичного назначения. Автомобильные бензины должны быть химически нейтральными и не вызывать коррозию металлов и емкостей, а продукты их сгорания - коррозию деталей двигателя. Коррозионная активность бензинов и продуктов их сгорания зависит от содержания серы, кислотности, содержания водорастворимых кислот и щелочей, присутствия воды.

Эти показатели нормируются в нормативно-технической документации на бензины. Бензин должен выдерживать испытание на медной пластинке. Эффективным средством защиты от коррозии топливной аппаратуры является добавление в бензины специальных антикоррозионных или многофункциональных присадок.

ГЛАВА III . МАРКИ АВТОМОБИЛЬНЫХ БЕНЗИНОВ

Одним из принципов классификации различных марок бензина является октановое число. Существуют два метода его определения: исследовательский (ОЧИ — октановое число по исследовательскому методу) и моторный (ОЧМ — октановое число по моторному методу). Моторный метод лучше характеризует антидетонационные свойства бензина в условиях форсированной работы двигателя и его высокой теплонапряженности, исследовательский — при эксплуатации двигателя в городе, когда работа его связана с относительно невысокими скоростями, частыми остановками и меньшей теплонапряженностью.

В России производятся автомобильные бензины пяти марок (ГОСТ 2084-77):

Бензин А-72 практически не вырабатывается из-за отсутствия техники, которая бы его потребляла. Наиболее велика в производстве доля бензина марок А-76, А-92, который вырабатывается по ТУ 38.001 165 — 97. Кроме перечисленных в ГОСТ 2084—77 в России производятся также автомобильные бензины марок А-80, А-96, АИ-98.

Проведя данное исследование, я пришла к выводу о том, что современный бензин должен обеспечивать безотказную работу автомобильного двигателя на всех режимах, двигатель должен развивать предусмотренную для него мощность при минимальном расходе бензина. Бензин должен обеспечивать минимальные износы двигателя, трудовые и материальные затраты на ремонт и техническое обслуживание двигателя. Качество бензина не должно ухудшаться при транспортировании, хранении и использовании. Обращение с бензином не должно вызывать повышенной опасности для персонала, занимающегося эксплуатацией, техническим обслуживанием и ремонтом автомобилей.

Исходя из вышесказанного, можно сделать заключение о том, что современный автомобильный бензин должен удовлетворять требованиям, обеспечивающим экологическую и надежную работу двигателя: Он должен иметь хорошую испаряемость, позволяющую получить однородную топливовоздушную смесь оптимального состава при любых температурах. Автомобильный бензин должен иметь фракционный состав, обеспечивающий устойчивый, бездетонационный процесс сгорания на всех режимах работы двигателя, не изменять своего состава и свойств при длительном хранении и не оказывать вредного воздействия на детали топливной системы, резервуары, резинотехнические изделия, иметь хорошие антидетонационные характеристики.

Автомобильные бензины должны быть химически нейтральными и не вызывать коррозию металлов и емкостей, а продукты их сгорания - коррозию деталей двигателя. Коррозионная активность бензинов и продуктов их сгорания зависит от содержания серы, кислотности, содержания водорастворимых кислот и щелочей, присутствия воды. Эти показатели нормируются в нормативно-технической документации на бензины. Эффективным средством защиты от коррозии топливной аппаратуры является добавление в бензины специальных антикоррозионных или многофункциональных присадок.

СПИСОК ЛИТЕРАТУРЫ

Алексеев, С.В. Практикум по технологии производства бензина и дизельного топлива. - Санкт-Петербург : АО КРИСМАС +, 2005.

Баранник, В.П. Жидкости, которые заливают в автомобили. - М.: Издательство стандартов, 2002.

Вандяк, И.Ф. Химия. Учебник для ВУЗов. - М. : Стройиздат, 2001.

Гоголев, В. Экологические проблемы при использовании различных марок бензина. - М.: Издательство стандартов, 2000.

Гуряев, А.А., Фукс И.Г.. Лашхи В.Л. Химмотология. - М.: Химия, 1986.

Егоров, Е. Бензины.- М.: Издательский центр Техинформ. – 2003.

Куров, Б. В XXI век на экологически чистом автомобиле. Авторевю, 2002.

Овчинников, А.В. Сравнительная характеристика бензинов, производимых в России и других странах. - М.: Издательский центр Техинформ. – 2005.

Покровский, Г.П. Топливо, смазочные материалы и охлаждающие жидкости. - М.: Машиностроение, 1985.

Романов, И.А. Производство бензина. - М.: Стройиздат, 2006.

Сафонов, А. С. Автомобильные топлива / А. С. Сафонов, А. И.

Ушаков, И. В. Чечкенев. - СПб., 2002.

Итинская, Н. И. Топливо, масла и технические жидкости /

Н. И. Итинская, Н. А. Кузнецов - М.: Машиностроение, 1989.

Покровский Г. П. Топливо, смазочные материалы и охлаждающие

жидкости/ Г. П. Покровский. - М.: Машиностроение, 1985.

Химмотология. Словарь. Понятия, термины, определения. - М.: Знание, 2005.


В России бензин впервые появился в 1823 году. Торговля бензином это один из прибыльных сегодня бизнесов, при большом спросе, возможно появление бензина низкого качества.

Это серьёзнейшая проблема и стала предметом моего исследования.

Данная тема актуальна, интересна и имеет большое практическое значение.

Целью моего проекта является анализ качества бензинов трёх марок: А -80, А -92, АИ- 95.

Объектом исследования будет бензин трёх марок на АЗС, которыми пользуются автомобилисты нашего села.

Предмет исследования – качество бензина.

Содержимое разработки

Из истории Нефть известна человеку с глубокой древности: добавка к строительным материалам, нефтяной цемент для скрепления конструкций, грозное оружие, изготовления лечебных мазей

Нефть известна человеку с глубокой древности:

Цель : анализ качества бензинов трёх марок А -80, АИ -92, АИ- 95. Объект исследования : бензин разных марок на АЗС, которыми пользуются автомобилисты нашего села. Предмет исследования : качества бензинов. Гипотеза: Бензин, которым пользуются автомобилисты нашего села, не всегда хорошего качества.

 Задачи: 1. Узнать, каковы же способы получения бензинов в промышленности. 2. Изучить методики определения качества автомобильного бензина разных марок. 3. Экспериментальным путём определить качество бензинов на АЗС, которыми пользуются автомобилисты нашего села. 4. Сделать выводы по эксперименту. 5. Составить практические рекомендации автолюбителям по определению качества бензина.

1. Узнать, каковы же способы получения бензинов в промышленности.

2. Изучить методики определения качества автомобильного бензина разных марок.

Читайте также: