Определение белка в питательных средах реферат

Обновлено: 02.07.2024

  • Для учеников 1-11 классов и дошкольников
  • Бесплатные сертификаты учителям и участникам

Питательная среда – это однокомпонентный или многокомпонентный субстрат, который применяют для культивирования микроорганизмов. Питательные среды являются не заменяемой составляющей для работы микробиологов.

Актуальность темы заключается в том, что не одно исследование в микробиологии не проходит без питательных сред. Все живые существа контактируют с микробами, являясь не только их распространителями, но и носителями. Самые первые среды были сконструированы и применены Пастером и Кохом. Особая роль в этом открытие принадлежит Роберту Коху. Постулировав необходимость выделения чистой культуры микроба, он определил необходимые условия решения этой задачи.

Важнейшим из них явился состав питательной среды, на которой можно было бы получить рост микроорганизмов. Внедрение в микробиологическую практику в 1881 г. плотных питательных сред позволило осуществить в контролируемых условиях рост колоний. Был предложен желатин как компонент твердой среды. Впоследствии стали использовать агар-агар[1].

В 19 – 20 веке разработки Роберта Коха по питательным средам интенсивное развитие. В 20 веке большое развитие получило конструирование питательных сред это развитие связано с развитий микробиологических технологий. Чтобы получить жизнеспособный посев микроорганизмов нужно правильно подобрать питательную среду.

Питательная среда нужна для жизнедеятельности и накопления, выделения и сохранения микроорганизмов и синтеза целевого продукта. Питательная среда должна состоять из макроэлементов и микроэлементов, которые должны входить в среду в легкоусвояемом для микроорганизмов виде.

Цель данной работы изучить питательные среды, их классификацию, и требования к ним.

Данная цель определила для изучения следующие задачи:

1. Изучить искусственные питательные среды;

2. Рассмотреть классификацию питательных сред, и способы их получения;

3. Изучить требования, предъявляемые к питательным средам.

Искусственные(синтетические)питательные среды - имеют определенный химический состав и точное количественное содержание питательных веществ. Они используются для изучения метаболизма, бактерий, исследования физиологии и биохимии микроорганизмов. К синтетическим среды могут служить среды Козера и Симмонса, используемые для изучения способности бактерий утилизировать цитраты. В состав этих сред, наряду с другими солями, входят цитрат натрия и индикатор.

Предназначена для приготовления жидких и плотных питательных сред, которые используются при проведении микробиологических исследований.

Среда Симмонса-питательная среда для распознавания энтеробактерий, сухая представляет собой некий мелкодисперсный гомогенный, гигроскопичный, светочувствительный порошок, который светло-бежевого цвета [5].

Состав (в пересчете на 1 л готовой среды):

•Аммоний фосфорнокислый - 2,0 г.

•Калия фосфат однозамещенный - 0,7 г.

•Магний сернокислый 7-водный - 0,8 г.

•Натрий лимоннокислый трехзамещенный 5,5-водный пищевой - 3,0 г.

•Агар микробиологический - 11,5 г.

•Бромтимоловый синий водорастворимый, индикатор - 0,04 г.


Рисунок 1. Среда Симмонса

Среда Козера(рис.2).

Предназначена для идентификации энтеробактерий по признаку утилизации цитрата натрия при санитарном обследовании пищевых продуктов и объектов внешней среды.

Представляет собой мелкодисперсный гигроскопичный порошок желтого цвета. Фасовка в пластиковые банки по 100 г.


И так, искусственные среды готовят по определенным рецептам из всевозможных настоев или отваров животного, а также растительного происхождения с добавлением неорганических солей, углеводов и азотистых веществ [4].

Например, в бактериологической практике в большинстве случаев применяют сухие питательные среды, которые чаще всего получают на основе достижений современной биотехнологии. Для их приготовления применяют экономически выгодное непищевое сырье: утратившие срок годности кровезаменители (гидролизин-кислотный гидролизат крови животных, аминопептид-ферментативный гидролизат крови; продукты биотехнологии (кормовые дрожжи, кормовой лизин, виноградная мука, белколизин). Сухие питательные среды имеют длительный срок годности, а так же удобны при транспортировке и могут иметь относительно стандартный состав.

Питательные среды имеют следующую классификацию:

1)по консистенции питательные среды бывают:

Плотные среды делают путем добавления к жидкой среде 1,5-2% агара, полужидкие - 0,3-0,7 % агара. Агар, как вам известно, представляет собой продукт переработки особого вида морских водорослей, он плавится при температуре 80-86 °С, затвердевает при температуре около 40 °С и в застывшем состоянии делает среду плотной. В тех или иных случаях для получения плотных питательных сред используют желатин (10-15%). Ряд естественных питательных сред (свернутая сыворотка крови, свернутый яичный белок) сами по себе являются плотными.

Следующим будет целевое назначение среды, и классифицируют их на:

К основным можно отнести среды, применяемые для выращивания многих бактерий. Это триптические гидролизаты мясных, рыбных продуктов, крови животных или казеина, из которых готовят жидкую среду - питательный бульон, а также плотную среду - питательный агар.

Такие среды являются основой для приготовления сложных питательных сред - сахарных, кровяных и др., удовлетворяющих пищевые потребности патогенных бактерий.

Элективные питательные среды нужны для выборочного выделения и накопления микроорганизмов определенного вида из материалов, которые содержат всевозможную постороннюю микрофлору. При создании элективных питательных сред исходят из биологических особенностей, которые отличают данные микроорганизмы от большинства других. К примеру, избирательный рост стафилококков может наблюдаться при повышенной концентрации хлорида натрия, холерного вибриона -- в щелочной среде.

Дифференциально-диагностические питательные среды обычно применяются для разграничения отдельных видов (или групп) микроорганизмов. Принцип построения этих сред основан на том, что разные виды бактерий имеют различие между собой по биохимической активности в результате разного набора ферментов.

Ну и наконец, особую группу составляют синтетические и полусинтетические питательные среды. В состав синтетических сред входят, как правило, химически чистые вещества, а именно: аминокислоты, минеральные соли, углеводы, витамины. В полусинтетические среды дополнительно включают пептон, дрожжевой экстракт и другие питательные вещества. Эти среды обычно применяют в научно-исследовательской работе и в микробиологической промышленности при получении антибиотиков, вакцин и других препаратов. В последние годы в целях экономии питательных сред и ускоренном распознавании некоторых микроорганизмов (энтеробактерии, стафилококки, стрептококки и др.) применяются так называемые микротест-системы (МТС). Они состоят из полистироловых пластин с лунками, в которых содержатся стерильные дифференциально-диагностические среды. Стерилизацию осуществляют обычно УФ-облучением.

К питательным средам предъявляют следующие основные требования:

1) питательными, они содержать в просто усвояемом виде все вещества, нужные для удовлетворения потребностей таких как пищевых и энергетических. Ими являются источники органогенов и минеральных (неорганических) веществ, в том числе микроэлементы. Минеральные вещества не только входят в структуру клетки и активизируют ферменты, но и определяют физико-химические свойства сред (осмотическое давление, рН и др.). При культивировании ряда микроорганизмов в среды вносят факторы роста - витамины, некоторые аминокислоты, которые клетка не может синтезировать;

Микроорганизмы, как все живые существа, нуждаются в большом количестве воды [3].

2) иметь лучшую сосредоточение водородных ионов - рН так, как при хорошей реакции среды, которая влияет на проницаемость оболочки, мельчайшие организмы могут усваивать питательные вещества. Для большинства патогенных бактерий оптимальна слабощелочная среда (рН 7,2-7,4). Исключение будет холерный вибрион - его оптимум находится в щелочной зоне (рН 8,5-9,0) и возбудитель туберкулеза, нуждающийся в слабокислой реакции (рН 6,2-6,8).

Чтобы во время роста микроорганизмов кислые или щелочные продукты их жизнедеятельности не изменили рН, среды должны обладать буферностью, т. е. содержать вещества, нейтрализующие продукты; обмена;

3) быть изотоничными для микробной клетки; т. е. осмотическое давление в среде должно быть аналогичным, как внутри клеточки. Для большей части микробов наилучшая среда, которая соответствует пол процента раствора натрия хлорида;

4) быть стерильными, в связи с тем, что посторонние бактерии препятствуют росту изучаемого микроорганизма, определению его параметров и изменяют характеристики среды (состав, рН и др.);

5) плотные среды должны быть влажными и иметь оптимальную для микроорганизмов консистенцию;

6) обладать определенным окислительно-восстановительным потенциалом, т. е. соотношением веществ, отдающих и принимающих электроны, выражаемым индексом RH2. Этот потенциал показывает насыщение среды кислородом. Для одних микроорганизмов нужен высокий потенциал, для других - низкий. Например, анаэробы размножаются при RH2 не выше 5, а аэробы - при RH2 не ниже 10. Окислительно-восстановительный потенциал большинства сред удовлетворяет требованиям к нему аэробов и факультативных анаэробов [4];

Лучше, чтоб среды были прозрачными - удобнее смотреть за ростом культур, легче чтобы не было загрязнение среды сторонними микробами.

Заключение

И так, в заключение хотелось бы отметить, для выделения и культивирования микроорганизмов могут применяться разные питательные среды, состоящие из различного сырья.

Подбор и оптимизация питательных сред является одной из важнейших задач при культивировании микроорганизмов. При подборе сред необходимо учитывать не только компоненты, необходимые для роста биомассы, но также включать соединения, необходимые для роста микроорганизмов.

Микробиологию представить без питательных сред представить невозможно. Так как современные требования к микробиологии диктуют свои правила, и без питательных сред существовать сама наука не может. Что существенно помогает определяет информативность, и точность микробиологического анализа.

Также существует классификация питательных сред по их назначению. Вследствие этого среды делятся на общего назначения (универсальные) и специального. Общего назначения питательные среды используются для культивирования многих видов бактерий. К ним можно отнести, мясопептонный бульон, мясопептонный агар.

Специальные питательные среды используют для некоторых видов микроорганизмов, с целью изучения их свойств, хранения и определения видовой принадлежности. Питательные среды имеют разнообразный состав. Широко известным является среда агар-агар. Она состоит из самого агара – агара, представляющего собой полисахарид, выделяемый из морских водорослей. Особенностью агар-агара является образование в воде геля, который расплавляется при температуре 80-100 0С.

И твердеющую при температуре 37-400С. Бактерии не расщепляют агар ввиду отсутствия у них фермента целлюлозы. Устойчивость его к разжижающемуся действию большинства микроорганизмов, и также способность образовывать студни что поспобствовала широкому её распространению в науке бактериологии. Наличие в составе крови и сыворотки, обеспечивает абсорбирование продуктов метаболизма. Присутствие соли, буферной смеси обеспечивает нормальное развитие микроорганизмов. Восстанавливающие вещества применяют чтобы снизить окислительное - восстановительный потенциал. Углеводы, многоатомные спирты, индикаторы, красители и ингибиторы применяют для питания микроорганизмов, для выявления патогенных форм и окрашивания [5].

Подводя итог всего вышеизложенного, можно прийти к следующим выводам, что питательная среда должна отвечать следующим требованиям: содержать в себе все необходимые для размножения бактерий вещества в легкоусвояемой форме; иметь оптимальные влажность, вязкость, рН, быть изотоничной и по возможности прозрачной. Каждая питательная среда проходит стерилизацию определенным способом в зависимости от ее состава.

1. Воробьев А. А. Медицинская и санитарная микробиология / А. А. Воробьев, Ю. С. Кривошеин, В.П. Широбоков. - М.: Академия, 2017. - 17 c

2. Емцев В.Т. Микробиология / В В.Т..Т. Емцев, Е.Н. Мишустин. - М.: Дрофа, 2016. - 176 c.

3. Меджидов, М.М. Справочник по микробиологическим питательным средам. - М.: Медицина, 2003.- С.15-19

4. Поляк, М.С. Питательные среды для медицинской и санитарной микробиологии//Поляк М.С. В.И. Сухаревич, М.Э. Сухаревич. СПБ.:элби – СПБ.- 2008. С.19-23

5. Шепелин А.П., Дятлов И.А. Питательные среды для энтеробактерий М.; Издательство "Династия", 2017, - 232 ст.

Белки представляют главнейшую составную часть пищи человека, и потому количественное определение белковой фракции пищи и изучение ее аминокислотного состава дает важный материал для суждения о питательной ценности пищевых продуктов и пищу в целом.

Белки в то же время, как наименее устойчивое пищевое вещество, легко подвергаются распаду в результате воздействия бактериальных ферментов (реже ферментов самой пищи-аутолиз), что ведет к порче продуктов.

Белки сначала распадаются на протеазы, пептоны, пептиды, которые, не накапливаясь, распадаются на аминокислоты. В дальнейшем происходит расщепление аминокислот ,которое может идти различными путями: декарбоксилированием, дезаминированием, обоими этими путями совместно в результате образуются азотистые основания(аммиак, амины) жирные кислоты, свободные углеводороды и пр. Конечными продуктами распада и превращения белков являются сероводород, аммиак, меркаптаны, фенол, индол, скатол и др.

Необходимо, однако, указать, что по отдельным химическим показателям нельзя судить о порче белковых продуктов питания. Так, накопление аминокислот не дает еще представления о порче, например, мяса. То же можно сказать о положительных качественных реакциях на аммиак и сероводород, которые обнаруживаются иногда и в совершенно свежем мясе. Методы, основанные на качественном обнаружении типичных продуктов гниения белка – индола, скатола, фенола, меркаптанов, не имеют практического значения, так как эти продукты обнаруживаются лишь тогда, когда развитие гнилостного распада не вызывает уже сомнения по одним органолептическим показателям.

Вот несмотря на большую давность вопроса о способах обнаружения порчи белковых продуктов питания, особенно на ранних стадиях протеолиза, этот вопрос не нашел еще своего разрешения, и в литературе появляются все новые и новые предложения по этому поводу.

Нет сомнения в том, что только в комплексах методов, слагающихся из органолептических, химических и микробиологических исследований, нужно искать разрешение вопроса.

2. ОПРЕДЕЛЕНИЕ БЕЛКОВОЙ ФРАКЦИИ ПИЩИ

2.1. Качественные реакции на белок

Для качественного обнаружения белка предложено много реакций( цветный и осадочные ).

2.1.1. Цветные реакции

Б и у р е т о в а я р е а к ц и я.К раствору белка добавляют равный объем 10% раствора едкого натра и затем по каплям 0,1% раствор сернокислой меди. Жидкость приобретает фиолетовое окрашивание, переходящее в красное, если, наряду с белками , имеются альбумозы и пептоны. Реакция обусловлена наличием в белковой молекуле группировок

—CO—NH, т.е. пептидных связей. Продукты гидролиза белка ( аминокислоты и амиды) после достаточного разбавления этого эффекта не дают эффекта и потому биуретовой реакцией можно пользоваться для установления конца гидролиза белка.

Появление сине-фиолетового окрашивания при описанной реакции обусловлено образованием Сu—Na – комплексной соли биурета.

Следует избегать прибавления избытка медного купароса, так как голубая получающегося гидрата окиси меди может маскировать реакцию.

Кроме белков, биуретовую реакцию дают: биурет (NH2—СО—HN—СО—NH2),

оксамид (H2N—СО—СО—NH2), глицинамид (H2N—СH2—СО—NH2),малонамид

(H2N—СО—СH2—СО—NH2), а также следующие аминокислоты а достаточно концентрированных растворах: гистидин, серин и треонин. Таким образом, биуретовая реакция не является строго специфичной для полипептидных цепей.

Присутствие в исследуемом растворе MgSO4 и (NH4) 2SO4 препятствует биуретовой реакции. При налички аммонийных солей следует употреблять большой избыток едкой щелочи.

Н и н г и д р и н о в а я р е а к ц и я.К 3мл нейтрального водного раствора белка добавляют 1 мл свежеприготовленного 0,1% раствора нингидрина(трикетогидринденгидрата);

Смесь нагревают до кипения и через минуту охлаждают. Появляется синее окрашивание. Объясняется это ем, что нингидрин дает окрашивание(обычно синее) с любой α- аминокислотой, а так как любой белок содержит α-аминокислоты, то нингидриновая реакция получается со всеми без исключения белками. Химизм реакции можно представить в следующем виде:


Восстановленный нингидрин с аммиаком и второй молекулой нингидрина образует окрашенный в синий цвет продукт конденсации.

Нужно иметь в виду, что аммонийные соли и β-аланин также дают положительную нингидриновую реакцию. Добавление аскорбиновой кислоты повышает чувствительность реакции.

К с а н т о п р о т е и н о в а я р е а к ц и я.К раствору белка приливают концентрированной азотной кислоты(уд. вес. 1,4); при этом белок выпадает в осадок. При нагревании осадок частью растворяется и жидкость окрашивается в желтый цвет. При этом происходит образование нитросоединений циклических аминокислот: тирозина и триптофана, которые содержатся в подавляющем большинстве белков.

Если полученный желтый раствор охладить, а затем осторожно добавить немного раствора едкой щелочи или аммиака, то появляется красновато-оранжевое окрашивание, обусловленное образованием солей нитроновых кислот.

Р е а к ц и я А д а м к е в и ч а. Аминокислота триптофан в кислой среде, взаимодействуя с альдегидами кислот, образует продукты конденсации красно-фиолетового цвета.

К одной капле белка прибавляют 10 капель уксусной кислоты. Наклонив пробирку, осторожно по стенке добавляют по каплям 0,5 мл серной кислоты так, чтобы жидкости не смешивались. При стоянии пробирки на границе жидкостей появляется красно-фиолетовое кольцо.

Р е а к ц и я Ф о л я. Аминокислоты, содержащие сульфгидрильные группы - SH, подвергаются щелочному гидролизу с образованием сульфида натрия Na2S. Последний, взаимодействуя с плюмбитом натрия (образуется в ходе реакции между ацетатом свинца и NaOH), образует осадок сульфида свинца PbS черного или бурого цвета.

К 5 каплям раствора белка прибавляют 5 капель реактива Фоля и кипятят 2-3 мин. После отстаивания 1-2 мин. появляется черный или бурый осадок.

2.1.2. Реакции осаждения

Для белков характерны реакции осаждения солями и гидратами окисей тяжелых металлов и некоторыми кислотами. Приведем важнейшие из этих реакций.

Осаждение белков тяжелыми металлами

Осаждение белков солями тяжелых металлов производится обычно в нейтральном млм слабокислом растворе. Полноте осаждения часто способствует присутствие солей щелочных металлов—К SO4, MgSO4 и др.

Следует иметь ввиду, что во многих случаях образующиеся осадки могут растворяться в избытке реактива.

Х л о р н о е ж е л е з о и у к с у с н о е ж е л е з о осаждают белки из их растворов; осадок легко растворяется в избытке хлорного железа.

Х л о р н а я р т у т ь (сулема) осаждает белки и продукты частичного гидролиза их- пептоны.

У к с у с н р к и с л ы й с в и н е ц - нейтральный и основной (свинцовый уксус) является хорошим осадителем белков.

Г и д р а т о к и с и м е д и и г и д р а т о к и с и ц и н к а осаждают белки.

Гидрат окиси цинка, кроме белков, осаждает еще глутатион, мочевую кислоту и креатинин.

Осаждение белков кислотами

При осаждении белков кислотами происходит образование солей, устойчивых в кислой среде. В избытке реактива осадки могут раствориться.

Т р и х л о р у к с у с н а я и м е т а ф о с ф о р н а я к и с л о т ы осаждают только белки.

Сульфосалициловая кислота в форме кислого суфосалициловокислого натра и

В о л ь ф р а м о в а я к и с л о т а являются также осадителями белков.

2.2. Количественное определение белка

Среди азотистых веществ, входящих в состав пищевых продуктов, растительного и животного происхождения главное место принадлежит белкам. В связи с этим содержание белков в пищевых продуктах часто определяют на основании найденного в продукте количества общего азота; при этом при пересчете азота на белок исследуемого продукта учитывают процентное содержание азота в белке данного продукта; так, например, если азот составляет 16% белка продукта, то, очевидно, для пересчета найденного количества азота на белок нужно весовое количество азота умножить на 6,25. Таким образом, для данного случая пересчетным коэффициентом является число 6,25.

кислота), алкалоиды(кофеин, теин, теобромин), некоторые глюкозиды( соланин, вицин, синигрин), некоторые азотосодержащие неорганические соединения( аммонийные и азотнокислые соли, свободный аммиак) и др. В отдельных случаях содержание некоторых из перечисленных веществ может достигать заметных размеров: так, содержание в мясе азотосодержащих экстрактивных веществ доходит до 10%.

М е т о д К ь е л ь д а л я состоит в том, что органические азотосодержащие вещества подвергаются разрушению с помощью крепкой серной кислоты с применением катализатора и при нагревании. При этом углерод и водород органических соединений полностью окисляются до СО2 и Н2О за счет кислорода, освобождающегося при восстановлении серной кислоты. Азот органических веществ отщепляется в виде аммиака, который с серной кислотой образует сульфат аммония.

При помощи крепкой щелочи разлагают затем сульфат аммония и освободившийся при этом аммиак отгоняют и улавливают в титрованный раствор серной кислоты, который берется с избытком. Обратным титрованием определяют этот избыток, а отсюда делают вывод о количестве кислоты, связавшейся с аммиаком и о количестве азота сожженного вещества.

Д л я о п р е д е л е н и я к о л и ч е с т в а б е л к а в о б р а з ц е и с п о л ь з у е т с я р я д м е т о д и к :

Б и у р е т о в ы й м е т о д.Основан на образовании биуретового комплекса (имеет фиолетовый цвет) пептидных связей белков с двухвалентными ионами меди. В методе используют т. н. биуретовый реактив, состоящий из KOH, CuSO4 и цитрата натрия (или тартрата натрия). В образовавшемся комплексе медь связана с 4 азотами координационными связями, а с 2 кислородами — электростатическими. Полноценный комплекс образуется лишь с пептидами, состоящими более чем из 4 остатков.

Интенсивность окраски раствора прямо пропорциональна концентрации белка в сыворотке и определяется фотометрически.

К достоинствам метода стоит отнести его низкую чувствительность к посторонним веществам, невысокую погрешность.

М и к р о б и у р е т о в ы й м е т о д основан на образовании окрашенного в фиолетовый цвет комплекса, образующегося в результате взаимодействия пептидных связей с Cu2+ в щелочной среде. К 0,2 мл ПМ лимфоцитов, сыворотки или плазмы добавляли 3,5 мл раствора NаОН и 0,2 мл реактива Бенедикта. Выдерживали 15 мин при комнатной температуре и спектрофотометрировали на СФ — 46 при 330 нм. Построение калибровочного графика проводили по стандартному раствору белка.

М е т о д Б р э д ф о р д а один из наиболее популярных методов, используемый для определения концентрации белка в растворе. Метод определения концентрации белка по Брэдфорд успешно используется в случае измерения растворов с низкой концентрацией белка и растворов, содержащих компоненты, также обладающие значительным поглощением при 280 нм. Метод определения концентрации белка по Брэдфорд, так же, как и метод Лоури и BSA, требует построения стандартной калибровочной кривой перед измерением концентрации неизвестного белка.

Универсальность метода и его гибкость позволяют создавать модификации процедуры измерений для различных целей и типов измерений.

Метод Брэдфорд основан на сдвиге спектра поглощения кумасси (Coomassie Blue) в сторону значений 595 нм прямо пропорционально концентрации содержащегося в растворе белка. Кумасси образует комплекс с белком; этот комплекс измеряют при длине волны 595 нм. абсорбционная фотометрия комплекса кумасси / белок имеет очень высокую чувствительность и эффективна даже в случае следовых концентраций белков.

М е т о д Л о у р и. Метод количественного определения белка, основанный на измерении концентрации окрашенных продуктов, образующихся в результате сочетания двух химических реакций: биуретовой реакции на пептидную связь и взаимодействия реактива Фолина-Чокалтеу с ароматическими аминокислотами.

С п е к т р о ф о т о м е т р и ч е с к и й м е т о д. Спектрофотометрия (абсорбционная) — физико-химический метод исследования растворов и твёрдых веществ, основанный на изучении спектров поглощения в ультрафиолетовой (200—400 нм), видимой (400—760 нм) и инфракрасной (>760 нм) областях спектра. Основная зависимость, изучаемая в спектрофотометрии зависимость интенсивности поглощения падающего света от длины волны. Спектрофотометрия широко применяется при изучении строения и состава различных соединений (комплексов, красителей, аналитических реагентов и др.), для качественного и количественного определения веществ (определения следов элементов в металлах, сплавах, технических объектах).

2.3. Ускоренный метод определения белков в готовых блюдах и рационах

Для ускоренного определения белков в готовых блюдах и рационах В. А. Бабин и Н.Н. Мусерский разработали метод, представляющий модификацию метода, предложенного Джеремилло.

Сущность метода сводится к тому, что вещество, содержащее белки, минерализуется в металлической гильзе (медь, нержавеющая сталь, никель), которая герметически закрывается ввинчивающейся металлической пробкой с газоотводной трубкой, через которую газообразный аммиак и другие газы, образующиеся при минерализации, поступают в приемную колбу с серной кислотой.

Минерализация белков производится едким натром, растворенным в расплавленном уксусном натре при нагревании гильзы. Процесс минерализации белка происходит быстро ( в течении 2-3 минут) при температуре нагрева не выше 325ºС, что является преимуществом данного метода перед другими методами количественного определения белка.

3. КИСЛОТНЫЙ МЕТОД ИЗМЕРЕНИЯ ЖИРНОСТИ ПРОДУКТОВ

Рассмотрим данный метод на примере измерения жирности молока и молочных продуктов.

Метод основан на выделении жира из молока и молочных продуктов под действием концентрированной серной кислоты и изоамилового спирта с последующим центрифугированием и измерении объема выделившегося жира в градуированной части жиромера.

Чтобы определить содержание жира в молоке, освобождают жировые шарики от белковых оболочек. В качестве растворителя применяют концентрированную серную кислоту. Для более полного выделения освободившегося от оболочек жира употребляют изоамиловый спирт. При последующем центрифугировании смеси жир, как наиболее легкая составная часть, концентрируется в градуированной шкале стеклянного прибора — жиромера.

Если молоко исследуется вскоре после отбора, то его хорошо перемешивают, переворачивая до 6 раз закрытые бутылочки с пробами. При этом не допускают образования пены, которая приводит к неправильному отмериванию. Особенно тщательно подливают пробы долго стоявшего молока. Иногда их прогревают в воде, чтобы смыть жировой слой, приставший к стенкам бутылочки, а затем перемешивают.

В штатив устанавливают нужное количество пронумерованных жиромеров. Нумеруют жиромеры путем загибания вокруг шкалы жестяных пластинок с высеченными номерами.

В каждый жиромер отмеривают дозатором 10 мл серной кислоты. Потом отбирают пипеткой 10,78 мл (11 г) хорошо перемешанного молока. Осторожно, по стенке вливают молоко в жиромер. Во избежание преждевременного разогревания слой молока должен расположиться над слоем кислоты. При этом конец пипетки не должен касаться серной кислоты.

Отмеривают дозатором 1 мл изоамилового спирта, стараясь не смочить горлышко жиромера, что в последующем может привести к выскакиванию пробки.

Заполненные жиромеры закрывают резиновыми пробками и вставляют в центрифугу, привинчивают крышку центрифуги и центрифугируют 5 мин со скоростью около 1000 об/мин. По окончании центрифугирования жиромеры на 5 мин устанавливают пробками вниз в водяную баню при 65 °С.

Микробы, как любые другие живые организмы свое развитие и рост, обновление строительного материала, обеспечение энергетических процессов осуществляют за счёт постоянного обмена веществ с окружающей его внешней средой, т.е. путём питания и дыхания. В зависимости от типа питания микробы подразделяют на аутотрофы (способные усваивать углерод из СО2 , а также молекулярный азот из воздуха, а минеральные вещества путём хемо- или фотосинтеза) и гетеротрофы (способны усваивать углерод и другие вещества только из готовых органических соединений). К аутотрофам относятся в основном многие почвенные бактерии, к гетеротрофам (параторофам) – микробы инфекционных болезней животных и растений.

Типы питания, дыхания (аэробы и анаэробы), индукцию и активность ферментов, токсинов, пигментов, рост и размножение являются основными физиологическими параметрами, которые учитывают при разработке составов питательных сред и условий культивирования микробов invitro.

2. Культивирование микроорганизмов .

Культивировать микроорганизмы – это значит искусственно создавать условия для их роста и размножения invitro, взаимосвязанных, но не обязательно сопряжённых процесса. Рост и размножение –циклический 4-х фазный процесс (латентная, логарифмического роста, стационарная, гибель). Период между образованием новых клеток и их делением называется периодом генерации, на длительность которого, кроме особенностей микроба, влияет состав питательной среды. Формы колоний разных микробов на питательной среде одного и того же состава отличаются, что учитывают при их дифференциации.

Для культивирования invitro необходимы субстраты, которые микроорганизмы могут использовать в качестве питательных веществ для своего роста и размножения. Такие питательные субстраты – плотные или жидкие – называют культуральными или питательным средами. В большинстве случаев в микробиологических лабораториях микроорганизмы культивируют invitro, т.е. в стеклянных колбах, пробирках и других сосудах.

К любой питательной среде предъявляют ряд основных требований:

1). Стерильность и по возможности прозрачность.

2). При составлении питательных сред учитывают потребность микроорганизмов в элементах питания (необходимые для жизнедеятельности клеток биохимические факторы – источники энергии, С, N, S, а также неорганические ионы – доступные для усвоения микроорганизмами).

3). Оптимальные значения ряда биофизических показателей: концентрации водородных ионов (pH), окислительно-восстановительного потенциала (Eh), активности воды (aw ), осмотического давления.

3. Классификация питательных сред и способы их получения.

В зависимости от видовой принадлежности микробов и целей культивирования консистенция и составы культуральных сред бывают разными и варьируют в широких пределах. Среда, отвечающая биологическим особенностям микроба и обеспечивающая его рост и размножение, называется полноценной, не имеющая какого- либо компонента, необходимого для его жизнедеятельности – дефицитной .

Питательные среды классифицируют в зависимости от:

- химического состава и исходных компонентов;

В зависимости от химического состава и исходных компонентов различают следующие типы питательных сред:

- среды неопределенного химического состава (естественные или натуральные среды) – это среды, которые состоят из продуктов животного или растительного происхождения, имеющие сложный неопределенный химических состав:

1) среды животного происхождения (исходные продукты – мясо, рыба, яйца, молоко и т.д.)

2) среды растительного происхождения (исходные продукты – соя, горох, картофель, морковь и т.д.)

Тема: Питательные среды для культивирования микроорганизмов. Методы выделения чистой культуры аэробов и анаэробов. Проблемы антибиотикотерапии в современном обществе. Особенности химиотерапии вирусных инфекций.

2)Питательные среды для культивирования микроорганизмов.

3) Методы выделения чистой культуры аэробов и анаэробов.

4) Проблемы антибиотикотерапии в современном обществе.

5) Особенности химиотерапии вирусных инфекций.

Микробы, как любые другие живые организмы свое развитие и рост, обновление строительного материала, обеспечение энергетических процессов осуществляют за счёт постоянного обмена веществ с окружающей его внешней средой, т.е. путём питания и дыхания. В зависимости от типа питания микробы подразделяют на аутотрофы (способные усваивать углерод из СО2 , а также молекулярный азот из воздуха, а минеральные вещества путём хемо- или фотосинтеза) и гетеротрофы (способны усваивать углерод и другие вещества только из готовых органических соединений). К аутотрофам относятся в основном многие почвенные бактерии, к гетеротрофам (параторофам) – микробы инфекционных болезней животных и растений.

Типы питания, дыхания (аэробы и анаэробы), индукцию и активность ферментов, токсинов, пигментов, рост и размножение являются основными физиологическими параметрами, которые учитывают при разработке составов питательных сред и условий культивирования микробов invitro.

2)Питательные среды для культивирования микроорганизмов.

Питательные среды — биологические препараты, используемые для выращивания микроорганизмов и изучения культуральных, биохимических, антигенных свойств, фаголизабельности и чувствительности к антибиотикам.

Питательные среды широко используют в лабораторной практике при диагностике инфекционных заболеваний, а также для контроля за стерильностью лекарственных средств.

Для того чтобы микроорганизмы росли и развивались, питательные среды должны отвечать следующим требованиям.

1. Оптимальный состав.

В их состав должны входить все необходимые компоненты, которые нужны для развития микробов: белки, витамины, углеводы, минеральные вещества.

2. Оптимальное значение pH. Большинство микроорганизмов развивается при pH 7,2…7,4.

3. Стерильность. Она необходима для того, чтобы избегать конкурентной борьбы между микробами.

Для лучшего изучения характера микробных колоний.

5. Влажность. Питание и дыхание осуществляются путем осмоса и диффузии, поэтому питательные среды должны быть слегка влажными.

Питательные среды подразделяют по следующим признакам.

По консистенции: а) плотные (твердые) — агара 1,2…2 % (мясопептонный агар); б) полужидкие — агара 0,2…0,3 % (полужидкий агар); в) жидкие — мясопептонный бульон.

Для придания средам плотной или полужидкой консистенции чаще всего используют агар-агар — полисахарид, выделяемый из морских водорослей.

Агар способен образовывать в воде гель, плавящийся при 80…100 °С и затвердевающий при 37…40 °С. Устойчивость агара к разжижающему действию большинства микроорганизмов, а также способность образовывать прочные студни обусловили его широкое применение в бактериологии.

По происхождению: а) искусственные: животного (МПА, МПБ) и растительного происхождения (пивное сусло); б) естественные: животного (кровь, молоко) и растительного происхождения (кусочки картофеля).

3. По составу: а) белковые; б) безбелковые; в) минеральные.

4. По назначению: а) среды для культивирования (простые, специальные); б) среды для обогащения (для накопления микроорганизмов при их низкой концентрации в исходном материале); в) среды консервирующие для первичного посева и транспортировки патогенов; г) среды для идентификации (дифференциально-диагностические) — микробы одного вида образуют колонии, отличающиеся по внешнему виду от колоний других микроорганизмов.

Если материал слабо загрязнен посторонней микрофлорой, то для выделения культур применяют простые среды общего назначения (МПА), при обильной контаминации сапрофитами используют специальные среды: элективные (для отдельных видов) и дифференциально-диагностические (для облегчения идентификации).

3) Методы выделения чистой культуры аэробов и анаэробов.

Выделение чистых культур аэробов занимает, как правило, три дня и производится по следующей схеме:

1-й день - микроскопия мазка из исследуемого материала, окрашенного (обычно по Граму) - для предварительного ознакомления с микрофлорой, что может быть полезным в выборе питательной среды для посева. Затем посев материала на поверхность застывшего питательного агара для получения изолированных колоний. Рассев можно произвести по методу Дригальского на три чашки Петри с питательной средой. Каплю материала наносят на первую чашку и распределяют шпателем по всей чашке. Затем этим же шпателем распределяют остав­шуюся на нем культуру на второй чашке и таким же образом - на третьей. Наибольшее количество колоний вырастет на первой чашке, наименьшее - на третьей. В зависимости от того, сколько было микробных клеток в исследуемом материале, на одной из чашек вырастут изолированные колонии.

Такого же результата можно достигнуть, произведя рассев на одной чашке. Для этого делят чашку на четыре сектора. Исследуемый материал засевают бактериологической петлей штрихами на первом секторе, затем, прокалив и остудив петлю, распределяют посев из первого сектора во второй и таким же образом последовательно в третий и четвертый сектор. Из отдельных микробных клеток после суточного инкубирования в термостате образуются изолированные колонии.

2-й день - изучение колоний, выросших на чашках, описание их. Колонии могут быть прозрачными, полупрозрачными или непрозрачными, они имеют различные размеры, округлые правильные или неправильные очертания, выпуклую или плоскую форму, гладкую или шероховатую поверхность, ровные или волнистые, изрезанные края. Они могут быть бесцветными или иметь белый, золотистый, красный, желтый цвет. На основании изучения этих характеристик выросшие колонии разделяются на группы. Затем из исследуемой группы отбирают изолированную колонию, готовят мазок для микроскопического исследования с целью проверки однородности микробов в колонии. Из этой же колонии производят посев в пробирку со скошенным питательным агаром.

3-й день - проверка чистоты культуры, выросшей на скошенном агаре путем микроскопии мазка. При однородности исследуемых бактерий выделение чистой культуры можно считать законченным.

Выделение чистых культур анаэробных бактерий:

Химические методы заключаются в том, что чашки с посевами анаэробов ставят в герметически закрытый эксикатор, куда помещают химические вещества, например, пирогаллол и щелочь, реакция между которыми идет с поглощением кислорода.

Биологический метод основан на одновременном выращивании анаэробов и аэробов на плотных питательных средах в чашках Петри, герметически закрытых после посева. Вначале кислород поглощается растущими аэробами, а затем начинается рост анаэробов.

Выделение чистой культуры анаэробов начинают с накопления анаэробных бактерий путем посева на среду Китта-Тароцци. В дальнейшем получают изолированные колонии одним из двух способов:

1) посев материала производят путем смешивания с расплавленным теплым сахарным агаром в стеклянных трубках. После застывания агара в глубине его вырастают изолированные колонии, которые извлекают путем распила трубки и пересевают на среду Китта-Тароцци (способ Вейнберга);

2) посев материала производят на чашки с питательной средой и инкубируют в анаэростате. Выросшие на чашке изолированные колонии пересевают на среду Китта-Тароцци.

4) Проблемы антибиотикотерапии в современном обществе.

Проблемы и перспективы антибактериальной терапии

К числу наиболее актуальных задач в разработке проблемы антибиотиков сегодня относятся:

•создание и разработка способов преодоления антибиотикорезистентности микробов;

•изыскание природных и создание полусинтетических антибиотиков, эффективных в борьбе со стафилококковой, синегнойной и другими инфекциями, злокачественными опухолями;

•поиски новых продуцентов среди малоизученных групп организмов; •изучение генетических рекомбинаций у микроорганизмов с продукцией новых антибиотиков;

•получение новых антибиотиков путем направленного биосинтеза и подбора соответствующих мутантов и рекомбинантов.

5) Особенности химиотерапии вирусных инфекций.

Химиотерапия вирусных инфекций — это особая проблема.

Успехи в поиске эффективных противовирусных терапевтических препаратов пока не столь значительны как в области противомикробных средств. Трудность заключается в создании препаратов, избирательно подавляющих репродукцию вируса и не затрагивающих процессы жизнедеятельности клеток и всего организма в целом.

Результаты многолетних трудоемких поисков антивирусных веществ путем такого отбора оказались весьма скромными и увенчались открытием единичных химиопрепаратов, обладающих узким спектром действия.

Благодаря достижениям фундаментальных исследований в области вирусологии и выяснению молекулярных механизмов репродукции вирусов первое направление в химиотерапии вирусных инфекций более перспективно. Но оно основано на направленном получении или синтезе химиопрепаратов, действующих на заведомо известные уязвимые стадии репродукции вирусов либо на функции клеток, необходимые на каком-то общем для различных групп вирусов этапе их репродукции.

Можно выделить три основные группы препаратов, подавляющих начальные (адсорбция, проникновение и депротеинизация), средние (синтез компонентов) и заключительные [композиция (сборка) и высвобождение] стадии взаимодействия вирусов с клетками.

Ремантадин и амантадин специфически блокируют стадию раздевания вируса и вызывают накопление промежуточных продуктов раздевания. Они блокируют слияние вирусной оболочки с лизосомальной мембраной, блокируется удаление белка М, и вирусный геном не выходит из лизосомы. Оба препарата ингибируют репродукцию ряда вирусов — гриппа, болезни Ньюкасла, кори, краснухи, везикулярного стоматита, альфа-вирусов и других липидсодержащих вирусов. Амантадин и ремантадин — эффективные средства химиотерапии и химиопрофилактики гриппа.

Ингибиторы синтеза вирусных компонентов. Это главным образом аномальные нуклеозиды, которые ингибируют функции вирусных полимераз, а при включении во вновь синтезируемые нуклеиновые кислоты делают их нефункциональными. Наиболее известные препараты этой группы — азидотимидин, ацикловир, рибавирин.

Азидотимидин (зидовудин) ингибирует обратную транскриптазу, избирательно взаимодействует с ферментом ретровирусов, включая ВИЧ.

Ацикловир — нуклеозидный аналог гуанозина с высокой избирательностью к инфицированным вирусами клеткам. В клетках после последовательных превращений ацикловира образуется ациклогуанозинтрифосфат, который ингибирует ДНК-полимеразу вирусов, тормозя образование полноценной молекулы нуклеиновой кислоты, так как из-за отсутствия гидроксильной группы к ациклогуанозинтрифосфату не могут присоединиться последующие нуклеотиды. Препарат не влияет на синтез ДНК в незаряженной клетке, так как в них он не превращается в активную форму. Он эффективен при лечении инфекций, вызванных вирусом простого герпеса.

Рибавирин — имеет широкий спектр действия, обладая эффективностью против ДНК — и PHK-содержащих вирусов — вирусов гриппа, парагриппа, полиомиелита, риновируса, везикулярного стоматита, герпеса, осповакцины и др.

Ингибиторы сборки и освобождения потомства вирионов. Такими ингибиторами являются производные тиосемикарбазонов. Практическое применение нашел метисазон. Антивирусное действие его обусловлено подавлением трансляции поздних вирусных иРНК и сборки вирусных частиц. Препарат активен против вирусов оспы.

Ингибиторы протеаз. Известно, что для возникновения инфекционного процесса необходима протеолитическая активность вируса, т. е. нарезание одного или нескольких его белков. Сущность этого феномена заключается в том, что многие вирусные белки приобретают функциональную активность лишь после протеолитического нарезания. У пикорна-, тога-, ретро — и других вирусов этот процесс лежит в основе формирования всех структурных вирусных белков, которые образуются в результате нарезания белка — предшественника. У ортомиксо-, парамиксо-, рео-, бунья-, арена — вирусов и других протеолитическому нарезанию подвергаются в первую очередь гликопротеиды. Так, например, у парамиксовирусов на суперкапсидной оболочке вириона два гликопротеида: HN (гемагглютинин/нейраминидаза) и F (белок слияния); у вирусов гриппа НА (гемагглютинин) и NA (нейраминидаза). В процессе инфекции вирусные гликопротеиды у вирусов обоих семейств претерпевают протеолитическое нарезание. У парамиксовируеов белок F0 нарезается на два гликопротеида — F1 и F2; у ортомиксовирусов протеолизу подвергается гемагглютинин, который нарезается на два фрагмента — НА1 и НА2.

Вирионы приобретают способность заражать клетки (т. е. становятся инфекционными) лишь после нарезания (НА → НА1 + НА2, F0 → F1 + F2). Чем выше уровень протеолитического нарезания вируса в организме, тем интенсивнее развитие инфекционного процесса и выше вирулентность вируса.

Нарезание белков у различных вирусов осуществляется либо только клеточными, либо клеточными и вирусспецифическими протеазами. Для правильного нарезания белка, обеспечивающего его активность, необходимы протеазы определенной специфичности. Отсюда следует, что подавление активности протеаз, участвующих в нарезании вирусных белков, должно блокировать способность вирионов заражать чувствительные клетки.

В последние годы проводятся многочисленные эксперименты на модели ВИЧ. Отмечают усиление противовирусной эффективности при совместном использовании ингибиторов протеаз ВИЧ и аномальных нуклеозидов.

Ингибиторами протеаз являются препараты: гордокс, контрикал, апротинин и др.

Микроорганизмы культивируют на питательных средах. К универсальным средствам относят мясо-пептонный агар и мясо-пептонный бульон. Первая характеристика изучаемого микроорганизма определяется способностью его роста на универсальных средах. На плотных питательных средах многие микроорганизмы образуют колонии. Для микроорганизмов, не растущих на обычных средах, используют специальные среды. Для выделения каких-либо определенных видов, отличающихся особенностями роста, применяют элективные среды.

Правильный подбор и использование питательных сред обеспечивает успешное культивирование микробов для накопления биомассы и её биотехнологическое использование для производства диагностических и вакцинных препаратов, определения и идентификации микробов в диагностической лаборатории и научных исследованиях.

Дальнейшие успехи бактериологии и микробиологии зависят главным образом от усовершенствования питательных сред в смысле приближения их к условиям естественного питания микроорганизмов.

1. К. Френкель, "Основы учения о бактериях"

2. Актуальные вопросы эпидемиологии и инфекционных болезней. / Н.А. Семина. - М.: Медицина, 1999

3. Медицинская микробиология / Под ред. акад. РАМН В.И. Покровского. - М.: ГЭОТАР-МЕД, 2001.

4. Санитарная микробиология и вирусология. / З.Н. Качемасова, С.А. Ефремова, А.М. Рыбакова - М.: Медицина, 1987. 5. Егоров Н.С. Практикум по микробиологии. М 1976

* Данная работа не является научным трудом, не является выпускной квалификационной работой и представляет собой результат обработки, структурирования и форматирования собранной информации, предназначенной для использования в качестве источника материала при самостоятельной подготовки учебных работ.

Классификация питательных сред.

Состав питательных сред.

Агар-агар — растительный коллоид, получаемый из некоторых морских водорослей. В его состав входят главным образом полисахариды с ничтожным содержанием азотистых веществ. Желатина — кислый азотсодержащий продукт, добываемый путем выварки костей и хрящей. В качестве плотных питательных сред широко применяют также гелевые пластины, введенные в микробиологическую практику С. Н. Виноградским. Для выращивания микроорганизмов, использующих органические формы азота, часто употребляют мясопептонные среды: мясопептонный бульон, мясопептонный агар и мясопептонную желатину. Мясопептонный бульон (МПБ). Для приготовления мясо-пептонных сред используют мясной бульон, который получают так: 500 г мелко изрубленного свежего мяса без костей, жира и сухожилии заливают в эмалированной кастрюле 1 л водопроводной воды, нагретой до 50°С, и оставляют настаиваться 12 ч при комнатной температуре или 1 ч при 50—55°С. Мясо отжимают, экстракт процеживают через марлю со слоем ваты, кипятят в течение 30 мин для свертывания коллоидных белков и фильтруют дважды (первый раз через марлю с ватой, второй — через бумажный фильтр). Фильтр доливают водой до 1 л, разливают в колбы, закрываю! ватными пробками и стерилизуют при 120°С 20 мин (пробки колб закрывают сверху колпачками из бума ги). Ватные пробки должны быть плотными, так как они являются фильтром, препятствующим проникновению бактерий из воздуха после стерилизации. Мясной бульон может быть использован в любое время для приготовления соответствующих сред. Если их готовят сразу, то предварительная стерилизация излишня. Нередко в лабораторных условиях мясной настой кипятят вместе с мясом, а затем мясо отжимают. Бульон получается хорошего качества. Если желательно иметь мясной бульон особо высокой питательности, во время настаивания мяса с водой добавляют немного пепсина и подкисляют бульон соляной кислотой. Пепсин дополнительно гидролизует белковые соединения мяса, и количество усвояемых бактериями питательных веществ возрастает. Мясо можно заменить мясным экстрактом, беря его по 5 г на 1 л среды. Для приготовления мясопептонного бульона к 1 л мясного бульона добавляют 5—10 г пептона (пептон — первый продукт гидролиза белка с высокой молекулярной массой) для повышения калорийности среды и 5 г поваренной соли с целью создания осмотической активности. Среду нагревают до растворения пептона, постоянно помешивая. Затем устанавливают нейтральную или слабощелочную реакцию среды, приливая 20%-ный раствор NagCOa (до посинения влажной красной лакмусовой бумажки; при этом фенолфталеин еще не показывает щелочную реакцию — при добавлении его к среде в фарфоровой чашке розовая окраска не выявляется). Удобно использовать индикатор бромтимолблау. 1—2 капли его вносят стеклянной палочкой в фарфоровую чашку и добавляют каплю бульона. В нейтральной среде бромтимолблау бутылочно-зеленый, в кислой — желтый, в щелочной — синий. После установления реакции среду снова кипятят 5—10 мин и белки, свернувшиеся от изменения реакции, отфильтровывают через бумажный фильтр без осветления бульона или осветлив его белком. Прозрачный Мясо-пептонный бульон разливают в пробирки, закрывают ватными пробками и стерилизуют при 120°С в течение 20 мин. Мясо-пептонный агар (МПА). К 1 л мясо-пептонного бульона добавляют 15—20 г мелко нарезанного агар-агара. Среду нагревают до растворения агара (температура плавления его 100°С, застывания —40°С),устанавливают слабощелочную реакцию среды 20%-ным раствором Na2COa и через воронки разливают в пробирки (но 10 мл для разливок в чашки — агар столбиком и по 5 мл для получения скошенного, наклонного агара). При разливе агара необходимо следить затем, чтобы края пробирки были сухими, иначе пробки прилипают к стеклу. Пробирки со средой стерилизуют в автоклаве при 120°С в течение 20 мин. Мясо-пептонная желатина (МПЖ). В 1 л мясопептонного бульона помешают 100—150 г желатины. Температура плавления зависит от процентного содержания в среде. 10%-ная желатина плавится при 24°С, 15%-пая — при 25°. В летнее время среды готовят, добавляя 15% желатины. После растворения желатины при осторожном нагревании в среде устанавливают слабощелочную реакцию (как и для МПБ и МПА), кипятят в течение 5мин, затем охлаждают -до 40—50°С. Одновременно яичный белок взбивают с небольшим количеством воды, вливают его в охлажденную желатиновую среду, хорошо взбалтывают и снова нагревают. Среда после выпадения белков становится прозрачной. Ее фильтруют через горячую воронку, разливают в пробирки и стерилизуют в кипятильнике Коха текучим паром, прогревая среду по 30 мин через 24 ч 3 раза.

Картофельный агар. 200 г очищенного и промытого водой картофеля нарезают ломтиками, заливают 1 л водопроводной воды, варят 30 мин. Отвар фильтруют через вату и доводят до первоначального объема. К полученной жидкости прибавляют 2% агара, кипятят до его растворения и устанавливают нейтральную реакцию среды (рп 7,0). Среду стерилизуют при 1 атм в течение 20 мин. Пивное сусло. Зерна ячменя замачивают в холодной воде и проращивают при 35°С. После того как ростки будут вдвое больше длины зерна, последнее высушивают до воздушно-сухого состояния (можно при слабом подогревании) и получают солод. Для приготовления сусла солод крупно размалывают и 250 г его берут на 1 л воды. Смесь подогревают при 57°С (для лучшего выделения фермента амилазы) до исчезновения реакции на крахмал (синее окрашивание с йодом). Пробы на осахаривание крахмала проводят в фарфоровой чашке в капле жидкости. Сусло процеживают через вату, затем фильтруют через бумажный фильтр. Такое сусло содержит 10— 20% сахара. Определив его содержание по плотности раствора с помощью сахариметра, сусло разбавляют водой до концентрации сахара 6—8%, стерилизуют при 115°С (давление 0,5 атм) в течение 30 мин. Готовое сусло можно получить на пивоваренном заводе. Сусло-агар. К приготовленному суслу добавляют 2,5—3% агара, кипятят до его расплавления, фильтруют через вату и стерилизуют таким же способом, как пивное. Обезжиренное молоко. Для приготовления питательных сред употребляют снятое молоко, так называемый обрат (жир в молоке неблагоприятно влияет на рост некоторых микроорганизмов). Обрат получают сепарированием молока, нагретого до 34°С. Жир можно удалять и при отстаивании молока. При стерилизации молока следует учитывать, что его нельзя длительное время выдерживать в автоклаве, так как лактоза (молочный сахар), содержащаяся в молоке, может карамелизоваться. Обезжиренное молоко разливают в стерильные пробирки и выдерживают при 115°С (давление 0,5 атм) 15 мин. Перед стерилизацией кислотность обрата не должна превышать 22° Тернера, иначе молоко свернется. После стерилизации его выдерживают трое суток в термостате при 30°С, чтобы спровоцировать развитие спорообразующих и других стойких к нагреванию форм. Через 3 дня каждую пробирку с молоком просматривают и пробирки, в которых развились микроорганизмы, выбраковывают. При стерилизации в автоклаве иногда наблюдается побурение молока вследствие карамелизации молочного сахара и пептонизации казеина. При длительной стерилизации на дно пробирки выпадает осадок казеина, который может частично пептонизироваться. Перегретое побуревшее молоко в качестве среды использовать нельзя. Дрожжевые среды. Дрожжевая вода. 50—100 г сухих дрожжей размешивают в 1 л воды, кипятят 10 мин, фильтруют через бумажный фильтр и стерилизуют текучим паром по полчаса в течение трех дней ежедневно. Дрожжевой автолизат. 200 г прессованных дрожжей разводят в 1 л воды, добавляют 2 г Na2HPO4, 1 н. раствор NaOH (до рН 6,1) и 5 мл хлороформа, выдерживают при 37°С двое суток, доводят до рН 7,4, кипятят 30 мин, фильтруют через бумажный фильтр, разливают в посуду и стерилизуют при 115°С полчаса. Дрожжевой экстракт. 1 кг прессованных дрожжей разводят в 1 л воды, смесь кипятят 1 ч, трижды отфильтровывают через бумажный фильтр и стерилизуют при 115°С 30 мин. Бобовый отвар. 50 г фасоли (лучше белой) заливают 1 л водопроводной воды и варят до готовности так, чтобы бобы не разварились. Полученный отвар фильтруют через вату, добавляют к нему 10 г сахара и доводят до первоначального объема. Устанавливают слабощелочную реакцию среды, разливают в колбы и стерилизуют в автоклаве при давлении пара 1,5 атм в течение 30 мин.

Элективное культивирование.

Читайте также: