Образовательные лаборатории удаленного доступа реферат

Обновлено: 02.07.2024

Выполнила: студентка группы МДМ-116
физико-математического факультета
Купряшкина Т.В.
Проверила: Кормилицына Татьяна Владимировна.

Саранск 2019
Введение
Сегодня в России уделяется огромное внимание разработке и ис-пользованию в учебном процессе электронных образовательных ресурсов (ЭОР). Учителю предоставляется широкий выбор обучающих программ, электронных энциклопедий и справочников и т.п. Все большее внимание при разработке ЭОРов уделяется мультимедиа, которое в значительной степени способствует повышению наглядности ресурсов и эффективности их использования в учебном процессе. ЭОРы с высокой степенью интерактивности, реализующие полноценный режим общения обучающегося с компьютером, способствуют развитию интереса ребенка к освоению нового материала и формированию познавательной и творческой активности.
Примером использования таких ресурсов в учебном процессе могут служить виртуальные лаборатории, позволяющие моделировать объекты и процессы окружающего мира, а также организовывать компьютерный доступ к реальному лабораторному оборудованию. Их использование особенно актуально при преподавании таких дисциплин как физика, химия, биология, экология и др.
Использование виртуальных лабораторий в учебном процессе позволяет с одной стороны предоставить возможность обучающемуся провести эксперименты с оборудованием и материалом, отсутствующим в реальной школьной лаборатории, получить практические навыки проведения экспериментов, ознакомиться детально с компьютерной моделью уникального дорогостоящего объекта, исследовать пожаро- и взрывоопасные процессы и явления, не опасаясь за возможные последствия. С другой стороны, подключение имеющегося лабораторного оборудования и приборов к компьютеру в рамках виртуальной лаборатории позволяет перевести традиционную школьную физическую или химическую лабораторию на новый уровень технологий, соответствующий сегодяшнему уровню развития науки и техники.
Виртуальные лаборатории нового поколения

Виртуальная лаборатория представляет собой программно-аппаратный комплекс, позволяющий проводить опыты без непосредственного контакта с реальной установкой или при полном отсутствии таковой. Существует два типа программно-аппаратных комплексов:
 лабораторная установка с удаленным доступом – дистанционные лаборатории;
 программное обеспечение, позволяющее моделировать лабораторные опыты – виртуальные лаборатории.
Основными преимуществами виртуальных лабораторий являются:
 отсутствие необходимости приобретения дорогостоящего оборудования и реактивов;
 возможность моделирования процессов, протекание которых принципиально невозможно в лабораторных условиях;
 безопасность проведения экспери

Оценить 717 0

Кафедра информатики и методики обучения информатике

Виртуальные имитационные лаборатории

Выполнила: студентка группы МДМ-116

Проверила: Кормилицына Татьяна Владимировна.

Сегодня в России уделяется огромное внимание разработке и использованию в учебном процессе электронных образовательных ресурсов (ЭОР). Учителю предоставляется широкий выбор обучающих программ, электронных энциклопедий и справочников и т.п. Все большее внимание при разработке ЭОРов уделяется мультимедиа, которое в значительной степени способствует повышению наглядности ресурсов и эффективности их использования в учебном процессе. ЭОРы с высокой степенью интерактивности, реализующие полноценный режим общения обучающегося с компьютером, способствуют развитию интереса ребенка к освоению нового материала и формированию познавательной и творческой активности.

Примером использования таких ресурсов в учебном процессе могут служить виртуальные лаборатории, позволяющие моделировать объекты и процессы окружающего мира, а также организовывать компьютерный доступ к реальному лабораторному оборудованию. Их использование особенно актуально при преподавании таких дисциплин как физика, химия, биология, экология и др.

Использование виртуальных лабораторий в учебном процессе позволяет с одной стороны предоставить возможность обучающемуся провести эксперименты с оборудованием и материалом, отсутствующим в реальной школьной лаборатории, получить практические навыки проведения экспериментов, ознакомиться детально с компьютерной моделью уникального дорогостоящего объекта, исследовать пожаро- и взрывоопасные процессы и явления, не опасаясь за возможные последствия. С другой стороны, подключение имеющегося лабораторного оборудования и приборов к компьютеру в рамках виртуальной лаборатории позволяет перевести традиционную школьную физическую или химическую лабораторию на новый уровень технологий, соответствующий сегодяшнему уровню развития науки и техники.

Виртуальные лаборатории нового поколения

Виртуальная лаборатория представляет собой программно-аппаратный комплекс, позволяющий проводить опыты без непосредственного контакта с реальной установкой или при полном отсутствии таковой. Существует два типа программно-аппаратных комплексов:

лабораторная установка с удаленным доступом –дистанционные лаборатории;

программное обеспечение, позволяющее моделировать лабораторные опыты – виртуальные лаборатории.

Основными преимуществами виртуальных лабораторий являются:

отсутствие необходимости приобретения дорогостоящего оборудования и реактивов;

возможность моделирования процессов, протекание которых принципиально невозможно в лабораторных условиях;

безопасность проведения экспериментов;

оперативность проведения исследований и обработки результатов;

возможности использования виртуальной лаборатории в дистанционном обучении.

Виды виртуальных имитационных лабораторий

Виртуальные лаборатории можно условно разделить по следующим признакам:

1.По способу доставки образовательного контента:

размещаемые в Интернет.

2. По используемому лабораторному оборудованию:

на базе имитационных математических моделей;

на базе реального лабораторного оборудования;

на базе промышленных объектов.

3. По способам визуализации:

4. По степени ограниченности проводимых экспериментов:

предметная область представлена ограниченным набором заранее запрограммированных опытов;

применение математических моделей без ограничения заранее возможных подготовленных результатов опытов.

Примеры виртуальных лабораторий

Среда создания виртуальных лабораторий LabVIEW

1. Теоретический материал.

2. Описание работы.

3. Порядок выполнения работы.

4. Лабораторная установка.

С помощью клавиатуры или мыши ученик имеет возможность перемещать любые слагаемые установки, осуществлять реальный процесс в виртуальном мире. Каждое неверное действие комментируется компьютером. Невыполнение определенных условий не позволяет продолжить проведение работы.

Как и в реальной лабораторной работе, в виртуальной необходимо учить навыкам исследования: выдвижению гипотез и их проверке, стандартизации условий, четкому фиксированию условий и результатов экспериментов (сначала в заготовленных учителем таблицах, печатных или электронных), выбирать критерии, формат представления результатов, а затем и планировать, наконец, самостоятельную исследовательскую работу.

Виртуальная образовательная лаборатория VirtuLab

Примеры лабораторных работ:

1)Изучение взаимодействия частиц и ядерных реакций

2)Сравнение молярных теплоемкостей металлов

3)Изучение закона Ома для полной цепи - Изучение закона Ома для полной цепи - Этап 2

4)Знакомство с образцами металлов и сплавов

5)Идентификация неорганических соединений и т.д.

Виртуальные лаборатории STAR

PhET – проект. разработанный Университетом Колорадо. Проект включает большое множество виртуальных лабораторий, демонстрирующих различные явлений в области физики, биологии, химии, математики, наук о Земле.

Опыты имеют высокую познавательную ценность и при этом очень увлекательны.

Таким образом, можно сделать вывод, что в задачи виртуальных имитационных лабораторий входит развитие творческого мышления и профессиональных способностей обучаемых, умения решать вопросы прикладного характера, делать самостоятельные выводы, в виду чего виртуальные лабораторные комплексы и симуляторы должны полностью соответствовать реальному учебному процессу.

Приступая к выполнению лабораторного эксперимента, обучаемый должен знать методику исследования и хорошо представлять ход работы, последовательность действий и расчетов. В реальном учебном процессе данную информативную функцию выполняют учебные пособия и брошюры с методическими указаниями. Программные продукты полностью имитируют реальную лабораторию, а методика экспериментов здесь интегрирована в сами программные продукты в форме комплекса сопровождающих инструментов и надстроек.

Список использованных источников

Князева Е.М. Лабораторные работы нового поколения // Фундаментальные исследования. – 2012. – № 6–3. – С. 587-590.

Трухин А.В. Об использовании виртуальных лабораторий в образовании // Открытое и дистанционное образование. – 2002. – № 4 (8) .

Нажмите, чтобы узнать подробности

Электронное обучение, реализуемое образовательными организациями, должно включать в себя не только учебно-методические комплексы по дисциплинам (модулям), но и программное обеспечение, направленное на освоение профессиональных компетенций.

ФГБОУ ВО «МОРДОВСКИЙ ГОСУДАРСТВЕННЫЙ ПЕДАГОГИЧЕСКИЙ

Кафедра информатики и вычислительной техники

Автор работы: студентка 4 курса

группы МДМ-217Пышкина Полина группа МДМ-217.

Проверила: Кормилицина Т. В., канд. физ-мат. наук, доцент

1. Онлайн лаборатории и их ресурсы 4

1.2. В чём состоят преимущества онлайн лабораторий перед реальными? 5

2. Примеры онлайн лабораторий. 6

Список использованных источников 12

Электронное обучение, реализуемое образовательными организациями, должно включать в себя не только учебно-методические комплексы по дисциплинам (модулям), но и программное обеспечение, направленное на освоение профессиональных компетенций. Оптимальным способом формирования компетенций являются виртуальные лаборатории, смоделированные в электронной образовательной среде на объектах реального мира. Создание виртуальных лабораторий позволяет, с одной стороны, проводить эксперименты с оборудованием и материалами, соответствующими реальной лаборатории, с другой ознакомиться с компьютерной моделью по освоению практических навыков и умений в профессиональной деятельности. Отметим, что не каждое образовательное учреждение может позволить себе закупить дорогостоящее оборудование, которое требует затрат при техническом обслуживании, приобретения расходных материалов, а главное, замены при его усовершенствовании.

Онлайн лаборатории и их ресурсы

Онлайн лаборатории– это среда, имитирующая на экране планшета, смартфона, компьютера или интерактивной панели инструменты учебной лаборатории. Они позволяют собрать электрические цепи, построить чертежи или графики, провести измерения.

Такими лабораториями могут пользоваться как учителя, так и школьники. Педагоги применяют их на уроках и создают с их помощью собственные интерактивные задания. А дети могут ставить онлайн-эксперименты не только в школе, но и дома. Таким образом, школьникам проще усваивать материал, а также повторять его.

Итак, под онлайн лабораториями понимается два типа программно-аппаратных комплексов:

- лабораторная установка с удаленным доступом – назовем такие комплексы дистанционные лаборатории;

- программное обеспечение, позволяющее моделировать лабораторные опыты – виртуальные лаборатории (в узком смысле).

В чём состоят преимущества онлайн лабораторий перед реальными?

Основными преимуществами онлайн лабораторий являются:

Возможность моделирования процессов, протекание которых принципиально невозможно в лабораторных условиях. Наглядная визуализация на экране компьютера. Современные компьютерные технологии позволят пронаблюдать процессы, трудноразличимые в реальных условиях без применения дополнительной техники, например, из-за малых размеров наблюдаемых частиц.

Возможность проникновения в тонкости процессов и наблюдения происходящего в другом масштабе времени, что актуально для процессов, протекающих за доли секунды или, напротив, длящихся в течение нескольких лет.

Безопасность является немаловажным плюсом использования виртуальных лабораторий в случаях, где идет работа, например, с высокими напряжениями или химическими веществами.

В связи с тем, что управлением виртуального процесса занимается компьютер, появляется возможность быстрого проведения серии опытов с различными значениями входных параметров, что часто необходимо для определения зависимостей выходных параметров от входных.

Экономия времени и ресурсов для ввода результатов в электронный формат. Некоторые работы требуют последующей обработки достаточно больших массивов полученных цифровых данных, которые выполняются на компьютере после проведения серии экспериментов. Слабым местом в этой последовательности действий при использовании реальной лаборатории является ввод полученной информации в компьютер. В виртуальной лаборатории этот шаг отсутствует, так как данные могут заноситься в электронную таблицу результатов непосредственно при выполнении опытов экспериментатором или автоматически. Таким образом, экономится время и значительно уменьшается процент возможных ошибок.

И, наконец, отдельное и важное преимущество заключается в возможности использования виртуальной лаборатории в дистанционном обучении.

Примеры онлайн лабораторий.

Рассмотрим несколько наиболее интересных онлайновых проектов как многоотраслевого, так и тематического плана. Все веб-ресурсы – это сайты с открытым, бесплатным доступом.


Рисунок 1 VirtuLab.


Ресурс VirtuLab – крупнейшее собрание виртуальных онлайновых
лабораторий на русском языке.

По своему содержанию данный ресурс, разработанный Университетом Колорадо, также является многоотраслевым. На его страницах представлены виртуальные лаборатории, демонстрирующие различные явления в области физики, химии, биологии, геологии, а также интерактивные математические инструменты. Всего в каталоге PhET находятся несколько сотен демонстраций (Рисунок 2).


Рисунок 2 – PhET

Сайт PhET является многоотраслевой коллекцией Java-аплетов,
с которыми можно работать как в онлайне, так и на локальном компьютере.

Отдельно, в разделе Cutting Edge Research, выделены демонстрации, посвященные самым современным исследованиям. Новинки в архиве появляются регулярно, для них предназначен раздел New Sims.

Обратите внимание на подраздел Translated Sims. Эта страница содержит перечень всех языков, на которые были переведены предлагаемые виртуальные лаборатории. Есть среди них и русский. Что же представляют собой демонстрации PhET и кому они могут быть полезны? Построены они на технологии Java. Это позволяет запускать эксперименты в онлайне, скачивать аплеты на локальный компьютер, а также внедрять их на другие веб-страницы в качестве виджетов. Все эти опции предусмотрены на странице каждой демонстрации PhET.

Все эксперименты PhET интерактивны (рисунок 3). Они содержат одно или несколько заданий, а также набор всех элементов, необходимых для их решения. Поскольку ход решения, как правило, достаточно подробно раскрывается в текстовых примечаниях, основная цель демонстраций – визуализация и разъяснение эффектов, а не тестирование знаний и навыков пользователя.


Рисунок 3 – дроби

Виртуальная лаборатория предоставляет учащимся комплекс задач различных предметных областей, виртуальные инструменты для формализации условий процесса, средства для решения проблемы; учителям постоянный контроль, диагностику освоения материала. Таким образом, учащиеся самостоятельно могут формировать практические умения и навыки в удобное для них время, не ограничивая себя временем и территориальной отдаленностью от образовательной организации.

Визуализация – один из наиболее эффективных приемов обучения, помогающий гораздо проще и глубже разобраться в сущности различных явлений, недаром наглядные пособия использовались еще в глубокой древности. Особенно полезны визуализация и моделирование при изучении динамичных, изменяющихся во времени объектов и явлений, которые бывает сложно понять, глядя на простую статичную картинку в обычном учебнике. Лабораторные работы и учебные эксперименты не только полезны, но и весьма интересны – при соответствующей организации, конечно.

В развитии современных сетевых проектов такого плана сейчас наблюдается несколько тенденций. Первая – рассеяние по значительному количеству ресурсов. Наряду с крупными проектами, аккумулирующими значительное количество контента, существует множество сайтов, на которых собрано понемногу лабораторий. Вторая тенденция – наличие как многоотраслевых проектов, предлагающих лаборатории для различных отраслей знаний, так и тематических специализированных проектов. Наконец, нельзя не отметить, что в онлайне лучше всего представлены лаборатории, посвященные естественным наукам. Действительно: физические эксперименты вообще могут быть весьма затратным мероприятием, а компьютерная лаборатория позволяет заглянуть за кулисы сложных процессов. Выигрывает и химия: нет нужды в приобретении настоящих реактивов, оборудовании лаборатории, нет опасения что-нибудь испортить в случае ошибки. Не менее благодатное поле для виртуальных лабораторных практикумов – биология и экология. Не секрет, что детальное изучение биологического объекта зачастую заканчивается его гибелью. Экологические же системы велики и сложны, так что применение виртуальных моделей позволяет упростить их восприятие.

Список использованных источников


Для того чтобы в полной мере понять значимость и необходимость виртуальных лабораторий в современном образовании необходимо начать рассмотрение данного вопроса с материально технической оснащенности учебных заведений различного уровня.

В данный момент очень актуален вопрос отсутствия пригодного лабораторного оборудования, в связи с постоянно и неуклонно развивающимся техническим прогрессом, также существуют важные недостатки финансового обеспечения. Эксплуатация морально устаревших и отсутствие современных учебных лабораторных комплексов не позволяет в полном объеме получить практические навыки для закрепления изученного теоретического материала, что негативно сказывается на качестве образовательного процесса в целом.

Наряду с этим обучение и наука все больше и чаще реализуются программно и виртуальные лаборатории становятся естественным инструментом университетского и послевузовского образования.

Использование виртуальных лабораторий в учебном процессе позволяет с одной стороны предоставить возможность обучающемуся провести эксперименты с оборудованием и материалом, которыми он не имеет возможности воспользоваться из-за отсутствия реальной лаборатории, получить практические навыки проведения экспериментов, ознакомиться детально с компьютерной моделью и процессом работы уникальной аппаратуры, исследовать опасные в реальной ситуации процессы и явления, не опасаясь за возможные последствия [1].

С другой стороны, подключение имеющегося лабораторного оборудования и приборов к компьютеру в рамках виртуальной лаборатории позволяет перевести традиционную лабораторию на новый уровень технологий, соответствующий сегодняшнему уровню развития науки и техники.

Таким образом, виртуальные лаборатории возможно использовать для:

 подготовки учащихся к реальным процессам посредством выполнения лабораторных работ;

 занятий, если нет в наличии соответствующих материалов, реактивов и оборудования;

 проведения экспериментальных исследований и научной работы.

Таким образом, виртуальные лаборатории определяются двумя различными типами программно-аппаратных комплексов:

 лабораторная аудиторная установка с удаленным доступом — дистанционные лаборатории;

 программное обеспечение, позволяющее моделировать лабораторные опыты — виртуальные лаборатории.

Как уже говорилось, существуют виртуальные лаборатории с удаленным доступом (реально существующие) и моделируемые виртуальные лаборатории (существуют только в пределах программы).

Наиболее распространенным видом исследования в виртуальных лабораторных комплексах считается второй вид. Так как значимость создания виртуальной лаборатории в образовании возникла в связи с трудностями применения в большинстве случаев реальных лабораторий. Если сравнивать виртуальные и реальные лаборатории, можно выделить следующие преимущества виртуальных лабораторий:

 для проведения разного рода лабораторных работ нет необходимости приобретать дорогое оборудование. В результате недостаточного финансирования в большинство лабораторий установлено старое оборудование, которое может давать не точные результаты опытов или искажать их и служить потенциальным источником опасности для обучающихся. Помимо этого существуют области, где помимо оборудования необходимо закупать расходные материалы, цены на которых достаточно высоки. Несмотря на то, что программное обеспечение и компьютерное оборудование также стоит недешево, их широкая распространенность и универсальность компьютерной техники компенсирует этот недостаток;

 возможность моделирования большого набора процессов, протекание которых тяжело в реальных лабораторных условиях;

 безопасность — это еще одна немаловажная причина и преимущество использования виртуальных лабораторий, особенно в тех случаях, когда идет работа с опасными материалами и высоковольтными устройствами;

 подробная и многостороннее представление (визуализация) на компьютере. В настоящее время современные компьютерные технологии позволяют увидеть и пронаблюдать в динамике процессы, которые трудно различить в реальных условиях без использования специализированной техники;

 благодаря тому, что при моделировании виртуального процесса управление осуществляется через компьютер, появляется возможность проведения множества опытов с разными значениями входных параметров, необходимых для определения необходимого результата;

 существуют работы, требующие в дальнейшем обработки больших массивов полученных цифровых данных, выполняемые на компьютере после проведения серии экспериментов. И здесь проблема заключается в том, что уязвимым местом в текущей последовательности действии при использовании реальной лаборатории является введение полученных результатов в компьютер. Эта процедура естественно исключается при проведении опыта в виртуальной лаборатории, так как полученные данные заносятся непосредственно при выполнении опытов или автоматически. Соответственно экономится время исследования и уменьшается количество возможностей для совершения ошибок;

 важным и отдельным преимуществом является возможность использования виртуального лабораторного комплекса в дистанционном обучении, когда отсутствует возможность работы в лабораториях университета, потому что в рамках своей программы дистанционного обучения университет может охватывать не только другие города своей страны, а также города других стран.

Как уже говорилось ранее, снижение конкурентоспособности образовательных институтов сугубо традиционного типа, а также недостаточно высокий уровень внедрения новых технологий и разработок в образование и производство из-за отсутствия достаточно квалифицированных и компетентных специалистов, свидетельствуют о необходимости создавать учреждения высшего образования нового типа.

Для решения описанных выше проблем, в образовательный процесс ВУЗов может быть внедрена программно-аппаратная платформа Виртуальной Компьютерной Лаборатории на Основе Технологии Облачных Вычислений (ВКЛОТОВ). Это комплекс программных и аппаратных средств, основанный на технологиях виртуализации (представление самого опыта и результатов его вычисления посредством возможностей компьютера), которые позволяют гибко, по запросу, предоставлять вычислительные ресурсы учебного заведения, и университета в частности, для создания виртуального сервера, выполнения научных и исследовательских работ различных направлений, ресурсоемких расчетов и заданий, выполнение которых трудно представляется или почти невозможно без освоения сложных корпоративных, коммуникационных, вычислительных, информационных и иных систем [2].

Виртуальная компьютерная лаборатория такого или подобного типа также может эффективно использоваться для решения большого количества всевозможных и очень объемных учебных, научно-исследовательских и вычислительных задач: проведение расчетов при написание курсовой работы и дипломных проектов, выполнение вычислений в лабораторных работах студентами, работа по созданию и ведению баз данных, веб-серверов, разнообразных клиентских и серверных приложений, реализация системы дистанционного обучения и т. п.

ВКЛОТОВ обеспечивает доступ ко всем установленным в лабораторный комплекс приложениям, находящимся в пользовании университета, без их установки и настройки на необходимом конечном устройстве, независимо от местоположения учащегося и характеристик устройства. Такая деятельность по проведению опытов в виртуальной среде позволяет студентам, предпочитающим индивидуальные траектории обучения или не имеющим возможности осуществлять практическую реализацию полученных теоретических навыков в самом учебном заведении, иначе воспринимать изученное, или же с другой стороны взглянуть на систему дистанционного образования, а также дает возможность оценить параметры и способности нынешних информационных технологий, технологий коммуникаций, интерактивных учебно-теоретических и -практических материалов и работать через удаленный доступ с любым программным обеспечением, которое может быть использована в течение учебного процесса.

Технологии перехода в виртуальный режим, динамически изменяемый в размере способ удаленного доступа к вычислительным ресурсам и ресурсам программных компонентов в виде сервиса, который в реальном времени предоставляется через сеть Интернет. Пользование данным сервисом не требует знаний о комплексе взаимодействия программной и аппаратной составляющих ВКЛОТОВ и особого умения управления данной технологией.

Модель на основе ВКЛОТОВ обладает такими особенными характеристиками:

 доступ к ресурсному обеспечению лаборатории на основе интернет-ориентированного подхода, система управления всеми компонентами и подсистемами лаборатории является интегрированной и централизованной;

 пропускная и вычислительная способность компонентов аппаратной части платформы виртуальной лаборатории очень высока, что обеспечивается благодаря использованию серверов с архитектурой Blade, а также использованию определенной специализированной системы хранения данных;

 достаточно небольшой размер (компактность) системы на которой основана виртуальная лаборатория и, сравнительно с другими аппаратно-программными комплексами, относительная неприхотливость к условиям, в которых системе предназначено функционировать;

 создание резервных копий имеющихся и выходных данных и всех компонентов, жизненно важных для системы;

 наличие открытого программное обеспечение, на платформе которого и образуется требуемая лаборатория;

 регулирование уровня нагрузки, так называемая балансировка.

Основными причинами, которыми могут обуславливаться предъявляемые высокие требования к обеспечению аппаратных средств ВКЛОТОВ и сетевым ресурсам, являются и возможное большое количество работающих в один момент времени в среде виртуального лабораторного комплекса клиентов, и необходимость иметь в наличии дополнительные свободные системные ресурсы, которые могут понадобиться клиенту во время работы и быть задействованы в горячем режиме (по требованию).

Каждый компонент ВКЛнОТОВ связан с любым другим, и они вместе образуют в совокупности цельную взаимосвязанную программную структуру из различных компонентов виртуальной компьютерной лаборатории.

В заключение следует отметить, что, в сущности, современное образование имеет две стороны. При рассмотрении его с одной стороны (официальной), есть учебная программа, экзамены, жесткие правила, четко определенный список предметов в курсе обучения, обозначенная официальная позиция и качество обучения. Если же рассматривать другую сторону образования, т. е. реальную, то здесь как раз и сконцентрировано все то, что и представляет собой аспекты современного образования и самообразования: дигитализация, UoPeople, eLearning, обучение посредством Coursera, Mobile Learning и другие обучающие онлайн комплексы, вебинары, виртуальные лаборатории и т. п. К сожалению, это на сегодняшний день еще не стало частью общепринятой парадигмы образования глобального уровня, и все же пока ограниченно, но дигитализация образования и исследовательской работы начала происходить.

MOOC-обучение (Massive Open Online Courses, массовые лекции из открытых источников) — это действенный способ, применяемый в образовательном процессе для передачи на теоретических занятиях описаний опытов, аксиом, различных формул и других разнообразных теоретических знаний. И в это же время для закрепления материала и достаточной полноты освоения практически всех технических и многих гуманитарных дисциплин необходимо детальное рассмотрение множества процессов и, как следствие, крайне важным становится получение самих практических навыков — обучение, осуществляемое в цифровом формате откликнулось на эту эволюционную необходимость и создало другой способ проведения практических и лабораторных работ — виртуальные лаборатории, для школьного и особенно университетского обучения.

Также существует известная проблема eLearning: как и в других обучающих комплексах, по большей части преподаются теоретические дисциплины, и однозначно, следующей ступенью развития онлайн образования должен стать охват практических областей посредством виртуальных лабораторных комплексов.

Виртуальные лаборатории создаются в целях имитации реальной лабораторной среды и производимых в ней процессов, и вместе с тем моделирования учебной среды, в которой студенты трансформируют свои теоретические знания в практические знания и навыки экспериментальным путем. Также виртуальные лаборатории могут давать обучающимся значимые виртуальные ощущения, с помощью которых появляется способ повторить любой неудавшийся эксперимент или расширить познания в практической части. Кроме достоинств в получении результатов, интерактивный характер таких методов обучения обеспечивает интуитивно понятную и приятную среду обучения и взаимодействия с виртуальной лабораторией. Применение виртуальных программно-аппаратных комплексов будет содействовать в повышении эффективности при реализации учебных и практических занятий, усвоению учебно-методических материалов, а также результативности обучения в общем.

  1. Черемисина Е. Н., Антипов О. Е., Белов М. А. Роль виртуальной компьютерной лаборатории на основе технологии облачных вычислений в современном компьютерном образовании // Дистанционное и виртуальное обучение. — 2012.– № 1. — С. 53–60.
  2. Антипов О. Е., Белов М. А. Опыт использования открытого программного обеспечения в виртуальной компьютерной лаборатории на основе технологии облачных вычислений // Проблемы и перспективы развития образования в России: сборник материалов VI Международной научно-практической конференции / Под общ. ред. С. С. Чернова. Новосибирск: Изд-во НГТУ, 2010.

Основные термины (генерируются автоматически): виртуальная лаборатория, лаборатория, дистанционное обучение, программное обеспечение, виртуальная компьютерная лаборатория, виртуальный лабораторный комплекс, комплекс, реальная лаборатория, современное образование, учебный процесс.


1. Глотова М.И. Проблемы университетского образования в условиях цифровизации // Университетский комплекс как региональный центр образования, науки и культуры: материалы Всероссийской научно-методической конференции. Оренбург: Издательство Оренбургского государственного университета, 2020. С. 3205-3209.

2. Никулина Т.В., Стaриченко Е.Б. Информатизация и цифровизaция образования: понятия, технологии, управление // Педагогическое образование в России. 2018. № 8. С. 107-113.

3. Никулина Т.В., Стариченко Е.Б. Виртуальные образовательные лаборатории: принципы и возможности // Педагогическое образование в России. 2016. № 7. С. 62-66.

4. Лапшина И.В. Виртуальная информационно-образовательная лаборатория в профессиональной подготовке студентов: дис … канд. пед. наук. Ставрополь, 2002. 188 с.

6. Князева Е.М. Лабораторные работы нового поколения // Фундаментальные исследования. 2012. № 6-3. С. 587-590.

7. Гурина И.А., Медведева О.А. Виртуальная информационно-образовательная лаборатория как средство развития самостоятельности школьников // Информатика и образование. 2007. № 3. С. 107-109.

9. Алиев И.И., Гейдаров С.Т. Схемотехническое моделирование в электротехнике // Естественные и технические науки. 2007. № 2. С. 186-187.

12. Рахматов В.З. Виртуальные лаборатории в системе обучения студентов // Сборник научных трудов Донецкого института железнодорожного транспорта. 2018. № 51. С. 29-33.

13. Савкина А.В., Савкина А.В., Федосин С.А. Виртуальные лаборатории в дистанционном обучении // Образовательные технологии и общество. 2014. № 4. С. 507–517.

Рассмотрим возможности организации практической подготовки современного инженера (на примере направления 13.03.02 Электроэнергетика и электротехника) при условии реализации образовательного процесса посредством использования удаленных виртуальных лабораторий.

Материал и методы исследования

Ключевым в развитии процессов цифровизации современного образования является его наиболее динамично развивающийся ресурс – дистанционное обучение, которое сегодня используется в ходе реализации образовательных программ практически всех ступеней образования и направлено на увеличение доступности и индивидуализации образовательного процесса за счет телекоммуникационных и виртуально-сетевых технологий. В связи с этим при отсутствии возможности работать в лабораториях учебного заведения в практической подготовке обучающихся используются удаленные виртуальные лаборатории, позволяющие без прямого взаимодействия с преподавателем моделировать поведение реальных объектов в компьютерной среде.

Данный программный продукт представляет собой виртуальную лабораторию, в библиотеках которой в виде условных графических символов размещены практически все элементы, необходимые для вычерчивания и сборки современных электрических схем: источники напряжения и тока, резисторы, катушки индуктивности, полупроводниковые приборы и т.д. Для изучения простейших цепей, а также выполнения лабораторных и контрольных заданий понадобится набор виртуальной измерительной техники: амперметр, вольтметр, мультиметр, осциллограф и т.д. При этом обучающийся, проводящий самомоделирование электрической цепи на уровне, близком к профессиональному, может по своему желанию редактировать параметры всех без исключения элементов и приборов в максимально широком диапазоне.

Следует подчеркнуть, что при качественном проведении виртуального эксперимента его результаты будут идентичны результатам исследования в настоящей схеме, а по точности даже превзойдут их, что является несомненным преимуществом моделирования электрических схем в рамках виртуальной лаборатории.

Еще одно важное преимущество программы Multisim заключается в том, что время, необходимое для сборки и проверки схем, неизмеримо меньше, чем для сборки и исследования реальных электрических цепей, и существует гораздо больше вариантов и возможностей для исследований, чем на физическом стенде в вузовской лаборатории.

Таким образом, пакет Multisim, по сути, представляет собой современную виртуальную электротехническую лабораторию, размещенную в персональном компьютере, и сегодня она становится незаменимым помощником в рамках дистанционного осуществления учебного процесса. Это означает, что после прохождения определенной теоретической подготовки и получения минимальных навыков работы с программным продуктом обучающийся имеет возможность провести виртуальное моделирование и изучить широкий спектр электрических схем, соответствующих конкретной реальной установке. При этом методологически важно, чтобы обучающийся был знаком с основами работы на персональном компьютере; знал, по крайней мере, основы электротехники и электроники в рамках осваиваемой образовательной программы; четко представлял себе задачу исследования, моделируемую схему и возможные результаты, которые будут получены. Для этого он должен предварительно составить принципиальную схему исследования и рассчитать основные параметры его элементов с учетом границ изменения основных физических величин (напряжения, тока, мощности и т.д.).

С точки зрения практической значимости использование рассматриваемой системы схемотехнического моделирования состоит в том, что, рассчитав и спроектировав электротехническое устройство, обучающийся может собрать его виртуальную схему, тщательно исследовать ее, провести необходимые измерения и только после этого доработать схему, убедившись, что она соответствует всем заданным параметрам. Это первоначальное назначение и главное преимущество программы Multisim, которое предопределило ее постоянное совершенствование и все более широкое распространение в исследовательских и образовательных целях.

Участие в учебном процессе, реализуемом с использованием дистанционных технологий и электронного обучения, более наглядно и понятно обучающимся, чем практическая подготовка на современных многоцелевых установках, представленных в виде функциональных блоков или мнемонических схем в раме лабораторного стола с элементами и приборами, помещенными внутрь стенда, что, как правило, затрудняет понимание внешнего вида схемы, ее структуры и поведения. В процессе же выполнения виртуального лабораторного эксперимента можно последовательно и осмысленно извлекать необходимые элементы из электронной библиотеки компонентов и измерительных приборов, самостоятельно собирать и изучать электрическую или электронную схему на мониторе компьютера. При этом исследовательские возможности любого современного стенда несоизмеримо меньше, чем у программного обеспечения удаленной лаборатории.

В целом, использование программных продуктов Electronics Workbench, Multisim и целого ряда других альтернативных симуляторов электрических и электронных схем с похожим функционалом позволяет будущим бакалаврам всех форм обучения рассматриваемого направления подготовки значительно расширить возможности и улучшить понимание в процессе выполнения лабораторного практикума и контрольных заданий, в ходе курсового и дипломного проектирования, а также стимулирует к более глубокому изучению данного виртуального инструмента с целью создания, расчета и тестирования электрических схем объектов на этапах проектирования, производства и эксплуатации производственного цикла.

Результаты исследования и их обсуждение

Как показывают исследования [10–13], a также многолетний педагогический опыт авторов, реализация перечисленных выше возможностей практического использования виртуальных лабораторий, в том числе в дистанционном образовательном процессе, позволяет обеспечить обучаемому:

– расширение и углубление области познавательной деятельности за счет возможности имитации изучаемых процессов и явлений;

– независимость от технического оснащения вузовских лабораторий, что важно в современных условиях, когда приобретение дорогостоящих лабораторных комплексов и стендов требует значительных капиталовложений и под силу далеко не всем образовательным организациям;

– сокращение сроков освоения изучаемых объектов, процессов или явлений, моделирование которых в настоящих лабораториях может занять длительное время;

– возможность самостоятельно наблюдать ход экспериментального исследования и фиксировать его результаты в масштабе реального времени;

– отсутствие ошибок и погрешностей измерений исследуемых параметров, a также возможность неограниченного повторения эксперимента;

– высокую безопасность лабораторных исследований;

– повышение мотивационной составляющей познавательной деятельности обучающихся за счет компьютерной визуализации исследуемых объектов и явлений;

– формирование информационной культуры как составляющей общей и профессиональной культуры члена информационного общества через работу с объектно-ориентированными программными инструментами и системами;

– вооружение стратегией решения технических задач посредством использования цифровых технологий.

В то же время применение исключительно виртуальных лабораторий в учебном процессе может привести к отсутствию выработки практических навыков работы с реальными приборами, в том числе в электроэнергетических системах; опасному воздействию технологий виртуальной реальности на психику человека; возможности социальной изоляции и предпочтению виртуального мира реальному.

Заключение

Таким образом, в инженерном образовании роль виртуального эксперимента, безусловно, важна, а возможность организации многопользовательского доступа к виртуальным лабораториям позволяет реализовать любую форму экспериментальной деятельности, что значительно повышает качество обучения, осуществляемого с помощью дистанционных технологий.

Читайте также: