Нормализация данных в базе данных реферат

Обновлено: 02.07.2024

В данной теме я затрону 6 нормальных форм и методы приведения таблиц в эти формы.

Процесс проектирования БД с использование метода НФ является итерационным и заключается в последовательном переводе отношения из 1НФ в НФ более высокого порядка по определенным правилам. Каждая следующая НФ ограничивается определенным типом функциональных зависимостей и устранением соответствующих аномалий при выполнении операций над отношениями БД, а также сохранении свойств предшествующих НФ.

Используемые термины

Атрибут — свойство некоторой сущности. Часто называется полем таблицы.

Домен атрибута — множество допустимых значений, которые может принимать атрибут.

Кортеж — конечное множество взаимосвязанных допустимых значений атрибутов, которые вместе описывают некоторую сущность (строка таблицы).

Отношение — конечное множество кортежей (таблица).

Схема отношения — конечное множество атрибутов, определяющих некоторую сущность. Иными словами, это структура таблицы, состоящей из конкретного набора полей.

Проекция — отношение, полученное из заданного путём удаления и (или) перестановки некоторых атрибутов.

Нормальная форма — требование, предъявляемое к структуре таблиц в теории реляционных баз данных для устранения из базы избыточных функциональных зависимостей между атрибутами (полями таблиц).

Метод нормальных форм (НФ) состоит в сборе информации о объектах решения задачи в рамках одного отношения и последующей декомпозиции этого отношения на несколько взаимосвязанных отношений на основе процедур нормализации отношений.

Цель нормализации: исключить избыточное дублирование данных, которое является причиной аномалий, возникших при добавлении, редактировании и удалении кортежей(строк таблицы).

Аномалией называется такая ситуация в таблице БД, которая приводит к противоречию в БД либо существенно усложняет обработку БД. Причиной является излишнее дублирование данных в таблице, которое вызывается наличием функциональных зависимостей от не ключевых атрибутов.

Аномалии-модификации проявляются в том, что изменение одних данных может повлечь просмотр всей таблицы и соответствующее изменение некоторых записей таблицы.

Аномалии-удаления — при удалении какого либо кортежа из таблицы может пропасть информация, которая не связана на прямую с удаляемой записью.

Аномалии-добавления возникают, когда информацию в таблицу нельзя поместить, пока она не полная, либо вставка записи требует дополнительного просмотра таблицы.

Первая нормальная форма

Отношение находится в 1НФ, если все его атрибуты являются простыми, все используемые домены должны содержать только скалярные значения. Не должно быть повторений строк в таблице.


Нарушение нормализации 1НФ происходит в моделях BMW, т.к. в одной ячейке содержится список из 3 элементов: M5, X5M, M1, т.е. он не является атомарным. Преобразуем таблицу к 1НФ:

Вторая нормальная форма

Отношение находится во 2НФ, если оно находится в 1НФ и каждый не ключевой атрибут неприводимо зависит от Первичного Ключа(ПК).

Неприводимость означает, что в составе потенциального ключа отсутствует меньшее подмножество атрибутов, от которого можно также вывести данную функциональную зависимость.

Например, дана таблица:

Модель Фирма Цена Скидка
M5 BMW 5500000 5%
X5M BMW 6000000 5%
M1 BMW 2500000 5%
GT-R Nissan 5000000 10%

Таблица находится в первой нормальной форме, но не во второй. Цена машины зависит от модели и фирмы. Скидка зависят от фирмы, то есть зависимость от первичного ключа неполная. Исправляется это путем декомпозиции на два отношения, в которых не ключевые атрибуты зависят от ПК.

Модель Фирма Цена
M5 BMW 5500000
X5M BMW 6000000
M1 BMW 2500000
GT-R Nissan 5000000

Третья нормальная форма

Отношение находится в 3НФ, когда находится во 2НФ и каждый не ключевой атрибут нетранзитивно зависит от первичного ключа. Проще говоря, второе правило требует выносить все не ключевые поля, содержимое которых может относиться к нескольким записям таблицы в отдельные таблицы.

Модель Магазин Телефон
BMW Риал-авто 87-33-98
Audi Риал-авто 87-33-98
Nissan Некст-Авто 94-54-12
Магазин Телефон
Риал-авто 87-33-98
Некст-Авто 94-54-12
Модель Магазин
BMW Риал-авто
Audi Риал-авто
Nissan Некст-Авто

Нормальная форма Бойса-Кодда (НФБК) (частная форма третьей нормальной формы)

Определение 3НФ не совсем подходит для следующих отношений:
1) отношение имеет два или более потенциальных ключа;
2) два и более потенциальных ключа являются составными;
3) они пересекаются, т.е. имеют хотя бы один общий атрибут.

Для отношений, имеющих один потенциальный ключ (первичный), НФБК является 3НФ.

Отношение находится в НФБК, когда каждая нетривиальная и неприводимая слева функциональная зависимость обладает потенциальным ключом в качестве детерминанта.

Предположим, рассматривается отношение, представляющее данные о бронировании стоянки на день:

Номер стоянки Время начала Время окончания Тариф
1 09:30 10:30 Бережливый
1 11:00 12:00 Бережливый
1 14:00 15:30 Стандарт
2 10:00 12:00 Премиум-В
2 12:00 14:00 Премиум-В
2 15:00 18:00 Премиум-А

Отношение находится в 3НФ. Требования второй нормальной формы выполняются, так как все атрибуты входят в какой-то из потенциальных ключей, а неключевых атрибутов в отношении нет. Также нет и транзитивных зависимостей, что соответствует требованиям третьей нормальной формы. Тем не менее, существует функциональная зависимость Тариф → Номер стоянки, в которой левая часть (детерминант) не является потенциальным ключом отношения, то есть отношение не находится в нормальной форме Бойса — Кодда.

Можно улучшить структуру с помощью декомпозиции отношения на два и добавления атрибута Имеет льготы, получив отношения, удовлетворяющие НФБК (подчёркнуты атрибуты, входящие в первичный ключ.):

Тариф Номер стоянки Имеет льготы
Бережливый 1 Да
Стандарт 1 Нет
Премиум-А 2 Да
Премиум-В 2 Нет
Тариф Время начала Время окончания
Бережливый 09:30 10:30
Бережливый 11:00 12:00
Стандарт 14:00 15:30
Премиум-В 10:00 12:00
Премиум-В 12:00 14:00
Премиум-А 15:00 18:00

Четвертая нормальная форма

Отношение находится в 4НФ, если оно находится в НФБК и все нетривиальные многозначные зависимости фактически являются функциональными зависимостями от ее потенциальных ключей.

В отношении R (A, B, C) существует многозначная зависимость R.A -> -> R.B в том и только в том случае, если множество значений B, соответствующее паре значений A и C, зависит только от A и не зависит от С.

Предположим, что рестораны производят разные виды пиццы, а службы доставки ресторанов работают только в определенных районах города. Составной первичный ключ соответствующей переменной отношения включает три атрибута: .

Такая переменная отношения не соответствует 4НФ, так как существует следующая многозначная зависимость:

То есть, например, при добавлении нового вида пиццы придется внести по одному новому кортежу для каждого района доставки. Возможна логическая аномалия, при которой определенному виду пиццы будут соответствовать лишь некоторые районы доставки из обслуживаемых рестораном районов.

Для предотвращения аномалии нужно декомпозировать отношение, разместив независимые факты в разных отношениях. В данном примере следует выполнить декомпозицию на и .

Однако, если к исходной переменной отношения добавить атрибут, функционально зависящий от потенциального ключа, например цену с учётом стоимости доставки ( → Цена), то полученное отношение будет находиться в 4НФ и его уже нельзя подвергнуть декомпозиции без потерь.

Пятая нормальная форма

Это очень жесткое требование, которое можно выполнить лишь при дополнительных условиях. На практике трудно найти пример реализации этого требования в чистом виде.

Пятая нормальная форма ориентирована на работу с зависимыми соединениями. Указанные зависимые соединения между тремя атрибутами встречаются очень редко. Зависимые соединения между четырьмя, пятью и более атрибутами указать практически невозможно.

Доменно-ключевая нормальная форма

Переменная отношения находится в ДКНФ тогда и только тогда, когда каждое наложенное на неё ограничение является логическим следствием ограничений доменов и ограничений ключей, наложенных на данную переменную отношения.
Ограничение домена – ограничение, предписывающее использовать для определённого атрибута значения только из некоторого заданного домена. Ограничение по своей сути является заданием перечня (или логического эквивалента перечня) допустимых значений типа и объявлением о том, что указанный атрибут имеет данный тип.

Ограничение ключа – ограничение, утверждающее, что некоторый атрибут или комбинация атрибутов является потенциальным ключом.

Любая переменная отношения, находящаяся в ДКНФ, обязательно находится в 5НФ. Однако не любую переменную отношения можно привести к ДКНФ.

Шестая нормальная форма

Переменная отношения находится в шестой нормальной форме тогда и только тогда, когда она удовлетворяет всем нетривиальным зависимостям соединения. Из определения следует, что переменная находится в 6НФ тогда и только тогда, когда она неприводима, то есть не может быть подвергнута дальнейшей декомпозиции без потерь. Каждая переменная отношения, которая находится в 6НФ, также находится и в 5НФ.

Для хронологических баз данных определены U_операторы, которые распаковывают отношения по указанным атрибутам, выполняют соответствующую операцию и упаковывают полученный результат. В данном примере соединение проекций отношения должно производится при помощи оператора U_JOIN.

Таб.№ Время Должность Домашний адрес
6575 01-01-2000:10-02-2003 слесарь ул.Ленина,10
6575 11-02-2003:15-06-2006 слесарь ул.Советская,22
6575 16-06-2006:05-03-2009 бригадир ул.Советская,22

Должности работников

Таб.№ Время Должность
6575 01-01-2000:10-02-2003 слесарь
6575 16-06-2006:05-03-2009 бригадир
Таб.№ Время Домашний адрес
6575 01-01-2000:10-02-2003 ул.Ленина,10
6575 11-02-2003:15-06-2006 ул.Советская,22

Литература

Нормализация отношений (таблиц) — одна из основополагающих частей теории реляционных баз данных. Нормализация имеет своей целью избавиться от избыточности в отношениях и модифицировать их структуру таким образом, чтобы процесс работы с ними не был обременён различными посторонними сложностями. При игнорировании такого подхода эффективность проектирования стремительно снижается, что вкупе с прочими подобными вольностями может привести к критическим последствиям. Нормализация отношений — это итерационный обратный процесс декомпозиции начального отношения на несколько более простых отношений меньшей размерности. Под возвратностью процесса понимают то, что операция объединения отношений, полученных в результате декомпозиции, должна дать начальное отношение.

Содержание

Введение 3
Основные понятия нормализации отношений 4
Нормальные формы 7
Первая нормальная форма (1НФ) 7
Вторая нормальная форма (2НФ) 8
Третья нормальная форма (3НФ) 11
Нормальная форма Бойса-Кодда (НФБК) 14
Четвертая нормальная форма (4НФ) 16
Пятая нормальная форма (5НФ) 18
Доменно-ключевая нормальная форма (ДКНФ) 20
Заключение 21
Список использованной литературы 22

Вложенные файлы: 1 файл

реферат по РиСПСиИТ.docx

Министерство образования и науки РФ

САРАТОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

ИМЕНИ Н.Г. ЧЕРНЫШЕВСКОГО

РАЗРАБОТКА И СТАНДАРТИЗАЦИЯ

ПРОГРАММНЫХ СРЕДСТВ И ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ

Реферат на тему: Теория нормализации отношений (6 форм)

студент механико-математического факультета 442 группы

Гижко Дарья

Основные понятия нормализации отношений 4

Нормальные формы 7

Первая нормальная форма (1НФ) 7

Вторая нормальная форма (2НФ) 8

Третья нормальная форма (3НФ) 11

Нормальная форма Бойса-Кодда (НФБК) 14

Четвертая нормальная форма (4НФ) 16

Пятая нормальная форма (5НФ) 18

Доменно-ключевая нормальная форма (ДКНФ) 20

Список использованной литературы 22

Введение

Нормализация отношений (таблиц) — одна из основополагающих частей теории реляционных баз данных. Нормализация имеет своей целью избавиться от избыточности в отношениях и модифицировать их структуру таким образом, чтобы процесс работы с ними не был обременён различными посторонними сложностями. При игнорировании такого подхода эффективность проектирования стремительно снижается, что вкупе с прочими подобными вольностями может привести к критическим последствиям. Нормализация отношений — это итерационный обратный процесс декомпозиции начального отношения на несколько более простых отношений меньшей размерности. Под возвратностью процесса понимают то, что операция объединения отношений, полученных в результате декомпозиции, должна дать начальное отношение. В результате нормализации состав атрибутов отношений БД должны отвечать таким требованиям:

- между атрибутами должны исключаться нежелательные функциональные зависимости;

- группирование атрибутов не должно иметь убыточного дублирования данных;

- обеспечивать обработку и обнобновление атрибутов без осложнений.

Аппарат нормализации был разработан американским ученым Э.Ф. Коддом. Каждая нормальная форма ограничивает тип допустимых зависимостей между атрибутами.

Основные понятия нормализации отношений

Процесс проектирования представляет собой процесс нормализации схем отношений, причем каждая следующая нормальная форма обладает свойствами лучшими, чем предыдущая. Каждой нормальной форме соответствует некоторый определенный набор ограничений, и отношение находится в некоторой нормальной форме, если удовлетворяет свойственному ей набору ограничений. Примером набора ограничений является ограничение первой нормальной формы - значения всех атрибутов отношения атомарны. Поскольку требование первой нормальной формы является базовым требованием классической реляционной модели данных, мы будем считать, что исходный набор отношений уже соответствует этому требованию.

В теории реляционных баз данных обычно выделяется следующая последовательность нормальных форм:

- первая нормальная форма (1NF);

- вторая нормальная форма (2NF);

- третья нормальная форма (3NF);

- нормальная форма Бойса-Кодда (BCNF);

- четвертая нормальная форма (4NF);

- пятая нормальная форма, или нормальная форма проекции-соединения (5NF или PJ/NF);

- доменно–ключевая нормальная форма.

Основные свойства нормальных форм:

- каждая следующая нормальная форма в некотором смысле лучше предыдущей;

- при переходе к следующей нормальной форме свойства предыдущих нормальных свойств сохраняются.

В основе процесса проектирования лежит метод нормализации, декомпозиция отношения, находящегося в предыдущей нормальной форме, в два или более отношения, удовлетворяющих требованиям следующей нормальной формы. Наиболее важные на практике нормальные формы отношений основываются на фундаментальном в теории реляционных баз данных понятии функциональной зависимости. Для дальнейшего изложения нам потребуются несколько определений.

Определение 1. Функциональная зависимость

В отношении R атрибут Y функционально зависит от атрибута X (X и Y могут быть составными) в том и только в том случае, если каждому значению X соответствует в точности одно значение Y: R.X (r) R.Y.

Определение 2. Полная функциональная зависимость

Функциональная зависимость R.X (r) R.Y называется полной, если атрибут Y не зависит функционально от любого точного подмножества X.

Определение 3. Транзитивная функциональная зависимость

Функциональная зависимость R.X -> R.Y называется транзитивной, если существует такой атрибут Z, что имеются функциональные зависимости R.X -> R.Z и R.Z -> R.Y и отсутствует функциональная зависимость R.Z --> R.X. (При отсутствии последнего требования мы имели бы "неинтересные" транзитивные зависимости в любом отношении, обладающем несколькими ключами.)

Определение 4. Неключевой атрибут

Неключевым атрибутом называется любой атрибут отношения, не входящий в состав первичного ключа (в частности, первичного).

Определение 5. Взаимно независимые атрибуты

Два или более атрибута взаимно независимы, если ни один из этих атрибутов не является функционально зависимым от других.

Нормализация – это формальный метод анализа отношений на основе их первичного ключа (или потенциальных ключей) и существующих функциональных зависимостей. Он включает ряд правил, которые использоваться для проверки отдельных отношений таким образом, чтобы вся база данных могла быть нормализована до желаемой степени. Чаще всего нормализация осуществляется в виде нескольких последовательно выполняемых этапов, каждый из которых соответствует определенной нормальной форме, обладающей известными свойствами. В ходе нормализации формат отношений становится все более ограниченным (строгим) и менее восприимчивым к аномалиям обновления. При работе с реляционной моделью данных важно понимать, что для создания отношений приемлемого качества обязательно только выполнение требований первой нормальной формы(1НФ). Все остальные формы могут использоваться по желанию проектировщиков. Но для того чтобы избежать аномалий обновления нормализацию рекомендуется выполнять как минимум до третьей нормальной формы (3НФ).

Аномалия удаления – т.е., удаляя факты, относящиеся к одной сущности, мы непроизвольно удаляем факты, относящиеся к другой сущности.

Аномалия ввода - мы хотим записать в базу данных факт, однако мы не можем ввести эти данные в отношение, пока хотя бы один факт не будет записан в это отношение.

Нормальные формы

Первая нормальная форма (1НФ)

Таблица находится в первой нормальной форме (1НФ) если: ячейки таблицы должны содержать одиночные значения и в качестве значений не допускаются ни повторяющиеся группы, ни массивы. Все записи в одном столбце (атрибуте) должны иметь один и тот же тип. Каждый столбец должен иметь уникальное имя, но порядок следования столбцов в таблице несуществен. В таблице не может быть двух одинаковых строк, порядок следования строк в таблице несуществен. Отношения на след. рисунке находятся в первой нормальной форме, однако они могут иметь аномалии модификации. Чтобы удалить эти аномалии, мы разбиваем отношения на два или более новых отношений.

Вторая нормальная форма (2НФ)

Отношения находятся во второй нормальной форме, если все его неключевые атрибуты зависят от всего ключа. В соответствии с этим определением, если отношение имеет в качестве ключа одиночный атрибут, то оно автоматически находится во второй нормальной форме. Поскольку ключ является одиночным атрибутом, то по умолчанию каждый неключевой атрибут зависит от всего ключа, и частичных зависимостей не может быть.

Рассмотрим следующий пример схемы отношения:

(СОТР_НОМЕР, СОТР_ЗАРП, ОТД_НОМЕР, ПРО_НОМЕР, СОТР_ЗАДАН)

СОТР_НОМЕР, ПРО_НОМЕР -> СОТР_ЗАДАН

Как видно, хотя первичным ключом является составной атрибут СОТР_НОМЕР, ПРО_НОМЕР, атрибуты СОТР_ЗАРП и ОТД_НОМЕР функционально зависят от части первичного ключа, атрибута СОТР_НОМЕР. В результате мы не сможем вставить в отношение СОТРУДНИКИ-ОТДЕЛЫ-ПРОЕКТЫ кортеж, описывающий сотрудника, который еще не выполняет никакого проекта (первичный ключ не может содержать неопределенное значение). При удалении кортежа мы не только разрушаем связь данного сотрудника с данным проектом, но утрачиваем информацию о том, что он работает в некотором отделе. При переводе сотрудника в другой отдел мы будем вынуждены модифицировать все кортежи, описывающие этого сотрудника, или получим несогласованный результат. Такие неприятные явления называются аномалиями схемы отношения. Они устраняются путем нормализации.

Вторая нормальная форма (в этом определении предполагается, что единственным ключом отношения является первичный ключ)

Отношение R находится во второй нормальной форме (2NF) в том и только в том случае, когда находится в 1NF, и каждый неключевой атрибут полностью зависит от первичного ключа.

Можно произвести следующую декомпозицию отношения СОТРУДНИКИ-ОТДЕЛЫ- ПРОЕКТЫ в два отношения СОТРУДНИКИ- ОТДЕЛЫ и СОТРУДНИКИ-ПРОЕКТЫ:

СОТРУДНИКИ-ОТДЕЛЫ (СОТР_НОМЕР, СОТР_ЗАРП, ОТД_НОМЕР)

СОТРУДНИКИ-ПРОЕКТЫ (СОТР_НОМЕР, ПРО_НОМЕР, СОТР_ ЗАДАН)

СОТР_НОМЕР, ПРО_НОМЕР -> CОТР_ЗАДАН

Каждое из этих двух отношений находится в 2NF, и в них устранены отмеченные выше аномалии (легко проверить, что все указанные операции выполняются без проблем).

Отношение R находится во второй нормальной форме (2NF) в том и только в том случае, когда оно находится в 1NF, и каждый неключевой атрибут полностью зависит от каждого ключа R.

Здесь и далее мы не будем приводить примеры для отношений с несколькими ключами. Они слишком громоздки и относятся к ситуациям, редко встречающимся на практике.

Третья нормальная форма (3НФ)

Отношения находятся в третьей нормальной, если оно находится во второй нормальной форме и не имеет транзитивных зависимостей.

Транзитивная зависимость – неключевой атрибут функционально зависит от неключевых атрибутов. (транзитивная зависимость – если атрибут В зависит от атрибута А, а атрибут С зависит от атрибута В, то атрибут С транзитивно зависит от атрибута А).

Отношения в данной таблице также содержит транзитивную зависимость. Номер студента определяет атрибут Секции, а Секции определяет атрибут Плата, Поэтому отношения данной таблицы не находится в третьей нормальной форме. Разбиение этой таблицы на две таблицы устраняет аномалии.

Развития вычислительной техники осуществлялось по двум основным направлениям:

· применение вычислительной техники для выполнения численных расчетов;

· использование средств вычислительной техники в информационных системах.

Информационная система – это совокупность программно-аппаратных средств, способов и людей, которые обеспечивают сбор, хранение, обработку и выдачу информации для решения поставленных задач. На ранних стадиях использования информационных систем применялась файловая модель обработки. В дальнейшем в информационных системах стали применяться базы данных. Базы данных являются современной формой организации, хранения и доступа к информации. Примерами крупных информационных систем являются банковские системы, системы заказов железнодорожных билетов и т.д.

База данных – это интегрированная совокупность структурированных и взаимосвязанных данных, организованная по определенным правилам, которые предусматривают общие принципы описания, хранения и обработки данных. Обычно база данных создается для предметной области.

Предметная область – это часть реального мира, подлежащая изучению с целью создания базы данных для автоматизации процесса управления.

Наборы принципов, которые определяют организацию логической структуры хранения данных в базе, называются моделями данных.

Существуют 4 основные модели данных – списки (плоские таблицы), реляционные базы данных, иерархические и сетевые структуры.

В течение многих лет преимущественно использовались плоские таблицы (плоские БД) типа списков в Excel. В настоящее время наибольшее распространение при разработке БД получили реляционные модели данных. Реляционная модель данных является совокупностью простейших двумерных таблиц – отношений (англ. relation), т.е. простейшая двумерная таблица определяется как отношение (множество однотипных записей объединенных одной темой).

От термина relation (отношение) происходит название реляционная модель данных. В реляционных БД используется несколько двумерных таблиц, в которых строки называются записями, а столбцы полями, между записями которых устанавливаются связи. Этот способ организации данных позволяет данные (записи) в одной таблице связывать с данными (записями) в других таблицах через уникальные идентификаторы (ключи) или ключевые поля.

Основные понятия реляционных БД: нормализация, связи и ключи

1. Принципы нормализации:

· В каждой таблице БД не должно быть повторяющихся полей;

· В каждой таблице должен быть уникальный идентификатор (первичный ключ);

· Каждому значению первичного ключа должна соответствовать достаточная информация о типе сущности или об объекте таблицы (например, информация об успеваемости, о группе или студентах);

· Изменение значений в полях таблицы не должно влиять на информацию в других полях (кроме изменений в полях ключа).

2. Виды логической связи.

Отношения, которые могут существовать между записями двух таблиц:

· один – к - одному, каждой записи из одной таблицы соответствует одна запись в другой таблице;

· один – ко - многим, каждой записи из одной таблицы соответствует несколько записей другой таблице;

· многие – к - одному, множеству записей из одной таблице соответствует одна запись в другой таблице;

· многие – ко - многим, множеству записей из одной таблицы соответствует несколько записей в другой таблице.

Тип отношения в создаваемой связи зависит от способа определения связываемых полей:

3. Ключи. Ключ – это столбец (может быть несколько столбцов), добавляемый к таблице и позволяющий установить связь с записями в другой таблице. Существуют ключи двух типов: первичные и вторичные или внешние.

Первичный ключ – это одно или несколько полей (столбцов), комбинация значений которых однозначно определяет каждую запись в таблице. Первичный ключ не допускает значений Null и всегда должен иметь уникальный индекс. Первичный ключ используется для связывания таблицы с внешними ключами в других таблицах.

Внешний (вторичный) ключ - это одно или несколько полей (столбцов) в таблице, содержащих ссылку на поле или поля первичного ключа в другой таблице. Внешний ключ определяет способ объединения таблиц.

Из двух логически связанных таблиц одну называют таблицей первичного ключа или главной таблицей, а другую таблицей вторичного (внешнего) ключа или подчиненной таблицей. СУБД позволяют сопоставить родственные записи из обеих таблиц и совместно вывести их в форме, отчете или запросе.

Существует три типа первичных ключей: ключевые поля счетчика (счетчик), простой ключ и составной ключ.

Если поле содержит уникальные значения, такие как коды или инвентарные номера, то это поле можно определить как первичный ключ. В качестве ключа можно определить любое поле, содержащее данные, если это поле не содержит повторяющиеся значения или значения Null.

В случаях, когда невозможно гарантировать уникальность значений каждого поля, существует возможность создать ключ, состоящий из нескольких полей. Чаще всего такая ситуация возникает для таблицы, используемой для связывания двух таблиц многие - ко - многим.

Необходимо еще раз отметить, что в поле первичного ключа должны быть только уникальные значения в каждой строке таблицы, т.е. совпадение не допускается, а в поле вторичного или внешнего ключа совпадение значений в строках таблицы допускается.

Если возникают затруднения с выбором подходящего типа первичного ключа, то в качеcтве ключа целесообразно выбрать поле счетчика.

Программы, которые предназначены для структурирования информации, размещения ее в таблицах и манипулирования данными называются системами управления базами данных (СУБД). Другими словами СУБД предназначены как для создания и ведения базы данных, так и для доступа к данным. В настоящее время насчитывается более 50 типов СУБД для персональных компьютеров. К наиболее распространенным типам СУБД относятся: MS SQL Server, Oracle, Informix, Sybase, DB2, MS Access и т. д.

Создание БД. Этапы проектирования

Создание БД начинается с проектирования.

Этапы проектирования БД:

· Исследование предметной области;

· Анализ данных (сущностей и их атрибутов);

· Определение отношений между сущностями и определение первичных и вторичных (внешних) ключей.

В процессе проектирования определяется структура реляционной БД (состав таблиц, их структура и логические связи). Структура таблицы определяется составом столбцов, типом данных и размерами столбцов, ключами таблицы.

Сущность – любой конкретный или абстрактный объект в рассматриваемой предметной области. Сущности – это базовые типы информации, которые хранятся в БД (в реляционной БД каждой сущности назначается таблица). К сущностям могут относиться: студенты, клиенты, подразделения и т.д. Экземпляр сущности и тип сущности - это разные понятия. Понятие тип сущности относится к набору однородных личностей, предметов или событий, выступающих как целое (например, студент, клиент и т.д.). Экземпляр сущности относится, например, к конкретной личности в наборе. Типом сущности может быть студент, а экземпляром – Петров, Сидоров и т. д.

Атрибут – это свойство сущности в предметной области. Его наименование должно быть уникальным для конкретного типа сущности. Например, для сущности студент могут быть использованы следующие атрибуты: фамилия, имя, отчество, дата и место рождения, паспортные данные и т.д. В реляционной БД атрибуты хранятся в полях таблиц.

Связь – взаимосвязь между сущностями в предметной области. Связи представляют собой соединения между частями БД (в реляционной БД – это соединение между записями таблиц).

Сущности – это данные, которые классифицируются по типу, а связи показывают, как эти типы данных соотносятся один с другим. Если описать некоторую предметную область в терминах сущности – связь, то получим модель сущность - связь для этой БД.

Задача о предметной области

Рассмотрим предметную область: Деканат (Успеваемость студентов)

Основные предметно-значимые атрибуты сущностей:

-студенты – фамилия, имя, отчество, пол, дата и место рождения, группа студентов;

-группы студентов – название, курс, семестр;

-дисциплины – название, количество часов

- успеваемость – оценка, вид контроля.

Основные требования к функциям БД:

-выбрать успеваемость студента по дисциплинам с указанием общего количества часов и вида контроля;

-выбрать успеваемость студентов по группам и дисциплинам;

-выбрать дисциплины, изучаемые группой студентов на определенном курсе или определенном семестре.

Из анализа данных предметной области следует, что каждой сущности необходимо назначить простейшую двумерную таблицу (отношения). Далее необходимо установить логические связи между таблицами. Между таблицами Студенты и Успеваемость необходимо установить такую связь, чтобы каждой записи из таблицы Студенты соответствовало несколько записей в таблице Успеваемость, т.е. один – ко – многим, так как у каждого студента может быть несколько оценок.

Логическая связь между сущностями Группы – Студенты определена как один – ко – многим исходя из того, что в группе имеется много студентов, а каждый студент входит в состав одной группе. Логическая связь между сущностями Дисциплины – Успеваемость определена как один – ко – многим, потому что по каждой дисциплине может быть поставлено несколько оценок различным студентам.


Для создания БД необходимо применить одну из известных СУБД, например СУБД Access.

Нормализация баз данных

Начну я с нормализации баз данных. В этом материале мы поговорим в целом о процессе нормализации, узнаем, зачем проводить нормализацию базы данных, что такое нормальная форма базы данных, а также какие нормальные формы существуют. В следующих материалах я подробно и с примерами расскажу про каждую нормальную форму.

Реляционная база данных

В целом под базой данных можно понимать любой набор информации, которую можно найти в этой базе данных и воспользоваться ей, однако если говорить в контексте SQL, то речь будет идти, конечно, о реляционных базах данных, а что же это такое?

Реляционная база данных – это упорядоченная информация, связанная между собой определёнными отношениями.

Логически такая база данных представлена в виде таблиц, в которых и лежит вся эта информация.

Примечание! Если Вас интересует язык SQL, рекомендую пройти мой онлайн-курс по основам SQL, который ориентирован на изучение SQL как стандарта, таким образом, Вы сможете работать в любой системе управления базами данных. Курс включает много практики: онлайн-тестирование, задания и многое другое.

Нормализация баз данных

Нормализация – это процесс удаления избыточных данных.

Также нормализацию можно рассматривать и с позиции проектирования базы данных, в таком случае мы можем сформулировать определение нормализации следующим образом.

Нормализация – это метод проектирования базы данных, который позволяет привести базу данных к минимальной избыточности.

Избыточность устраняется, как правило, за счёт декомпозиции отношений (таблиц), т.е. разбиения одной таблицы на несколько.

Зачем нормализовать базу данных?

У Вас может возникнуть вопрос – а зачем вообще нормализовать базу данных и бороться с этой избыточностью?

Дело в том, что избыточность данных создает предпосылки для появления различных аномалий, снижает производительность, и делает управление данными не гибким и не очень удобным. Отсюда можно сделать вывод, что нормализация нужна для:

  • Устранения аномалий
  • Повышения производительности
  • Повышения удобства управления данными

Теперь давайте поговорим о самой избыточности данных, что же это такое.

Избыточность данных – это когда одни и те же данные хранятся в базе в нескольких местах, именно это и приводит к аномалиям.

Так как в этом случае необходимо добавлять, изменять или удалять одни и те же данные в нескольких местах. Например, если не выполнить операцию в каком-нибудь одном месте, то возникает ситуация, когда одни данные не соответствуют вроде как точно таким же данным в другом месте.

Давайте рассмотрим пример. Допустим, у нас есть следующая таблица, она хранит информацию о предметах мебели, в частности наименование предмета и материал, из которого изготовлен этот предмет.

Идентификатор предмета Наименование предмета Материал
1 Стул Металл
2 Стол Массив дерева
3 Кровать ЛДСП
4 Шкаф Массив дерева
5 Комод ЛДСП

Идентификатор предмета Наименование предмета Материал
1 Стул Металл
2 Стол Натуральное дерево
3 Кровать ЛДСП
4 Шкаф Массив дерева
5 Комод ЛДСП

Идентификатор предмета Наименование предмета Материал
1 Стул Металл
2 Стол Натуральное дерево
3 Кровать ЛДСП
4 Шкаф Массив дерева
5 Комод ЛДСП
6 Тумба Дерево

Однако по своей сути это один и тот же материал, мы просто решили или подкорректировать его название, или ошиблись при добавлении новой записи. Это и есть аномалия, когда одни данные в одном месте не соответствуют вроде как точно таким же данным в другом месте. Это всего лишь один вид аномалии, однако в процессе добавления, изменения и удаления данных может возникать много других противоречивых ситуаций, т.е. аномалий.

При этом, обязательно стоит отметить, что в нашей таблице всего 5 записей, а теперь представьте, что их миллион!

Именно поэтому мы должны устранять избыточность данных в базе, т.е. проводить так называемую нормализацию базы данных.

В данном конкретном случае мы должны название материала, из которого изготовлены предметы мебели, вынести в отдельную таблицу, а в таблице с предметами сделать всего лишь ссылку на нужный материал, тем самым, соотнеся эту ссылку с исходной записью, мы будем понимать, из какого материала сделан тот или иной предмет.

Идентификатор предмета Наименование предмета Идентификатор материала
1 Стул 2
2 Стол 1
3 Кровать 3
4 Шкаф 1
5 Комод 3

Материалы, из которых изготовлены предметы мебели.

Идентификатор материала Материал
1 Массив дерева
2 Металл
3 ЛДСП

Таким образом, представляя материалы в виде отдельной сущности и создавая для нее отдельную таблицу, мы устраняем описанную выше аномалию.

Другими словами, каждая сущность должна храниться отдельно, а в случае необходимости использования этой сущности в другой таблице на нее делается всего лишь ссылка, т.е. выстраивается связь.

Нормальные формы базы данных

В целом процесс нормализации базы данных выглядит следующим образом: мы, следуя определённым правилам и соблюдая определенные требования, проектируем таблицы в базе данных.

При этом все эти правила и требования можно сгруппировать в несколько наборов, и если спроектировать базу данных с соблюдением всех правил и требований, которые включаются в тот или иной набор, то база данных будет находиться в определённом состоянии, т.е. форме, и такая форма называется нормальная форма базы данных.

Иными словами, следуя определённым правилам и соблюдая определенные требования мы приводим базу данных к определенной нормальной форме.

Нормальная форма базы данных – это набор правил и критериев, которым должна отвечать база данных.

Каждая следующая нормальная форма содержит более строгие правила и критерии, тем самым приводя базу данных к определённой нормальной форме мы устраняем определённый набор аномалий.

Отсюда можно сделать вывод, что чем выше нормальная форма, тем меньше аномалий в базе будет.

Процесс нормализации – это последовательный процесс приведения базы данных к эталонному виду, т.е. переход от одной нормальной формы к следующей.

Иными словами, процесс перехода от одной нормальной формы к следующей – это усовершенствование базы данных. Так как если база данных находится в какой-то определённой нормальной форме – это означает, что в базе данных отсутствует определенный вид аномалий.

Существует 5 основных нормальных форм базы данных:

  • Первая нормальная форма (1NF)
  • Вторая нормальная форма (2NF)
  • Третья нормальная форма (3NF)
  • Четвертая нормальная форма (4NF)
  • Пятая нормальная форма (5NF)

Однако выделяют еще дополнительные нормальные формы:

  • Ненормализованная форма или нулевая нормальная форма (UNF)
  • Нормальная форма Бойса-Кодда (BCNF)
  • Доменно-ключевая нормальная форма (DKNF)
  • Шестая нормальная форма (6NF)

Если объединить оба этих списка и упорядочить нормальные формы от менее нормализованной до самой нормализованной, т.е. начиная с формы, при которой база данных по своей сути не является нормализованной, и заканчивая самой строгой нормальной формой, то мы получим следующий перечень:

  1. Ненормализованная форма или нулевая нормальная форма (UNF)
  2. Первая нормальная форма (1NF)
  3. Вторая нормальная форма (2NF)
  4. Третья нормальная форма (3NF)
  5. Нормальная форма Бойса-Кодда (BCNF)
  6. Четвертая нормальная форма (4NF)
  7. Пятая нормальная форма (5NF)
  8. Доменно-ключевая нормальная форма (DKNF)
  9. Шестая нормальная форма (6NF)

База данных считается нормализованной, если она находится как минимум в третьей нормальной форме (3NF).

В реальном мире нормализация до третьей нормальной формы (3NF) является обычной, стандартной практикой, так как 3NF устраняет достаточное количество аномалий, при этом производительность базы данных, а также удобство ее использования не снижается, что нельзя сказать о всех последующих формах.

Ситуации, при которых требуется нормализовать базу данных до четвертой нормальной формы (4NF), в реальном мире встречаются достаточно редко.

Если говорить о всех последующих нормальных формах (5NF, DKNF, 6NF), то в реальной жизни трудно даже представить ситуации, при которых потребуется нормализовать базу данных до этих форм.

Иными словами, 5NF, DKNF, 6NF – это в большей степени теоретические нормальные формы, немного отстраненные от реального мира.

Стоит отметить, что приведение базы данных к какой-то конкретной нормальной форме, обязательно требует, чтобы эта база данных уже находилась в предыдущей нормальной форме. Другими словами, если Вы хотите нормализовать базу данных до третьей нормальной формы, то база уже должна находиться во второй нормальной форме, т.е. нельзя нормализовать базу данных до третьей формы, если она еще не нормализована до второй.

Описание нормальных форм базы данных

В следующих статьях представлено подробное описание каждой нормальной формы и приведены примеры.

Читайте также: