Нефть и природный газ ценные полезные ископаемые реферат

Обновлено: 05.07.2024

4. Понятия: "месторождение", "ловушка", "залежь", "пласт"….

5. Залежи и месторождения нефти и газа……………………….

6. Мировые запасы нефти и газа ……………………………..

7. Классификация запасов месторождений, перспективных и прогнозных ресурсов нефти и горючих газов в России

8. Группы запасов нефти и газа………………………………

Список использованной литературы…………………………….

Нефть и газ играют большую роль в развитии народного хо­зяйства нашей страны. Нефть и газ как наиболее эффектив­ные и энергоемкие из всех природных веществ имеют домини­рующее положение в энергетике.

Почти все автомобили и самолеты, а также значительная часть судов и локомотивов работают на нефтепродуктах. Про­изводное нефти - керосин с жидким кислородом применяют в ракетной технике, где особенно остро стоит проблема энерго­емкости топлива.

Ценность нефти как топлива определяется ее энергетиче­скими свойствами, ее физическим состоянием, достаточной ста­бильностью при хранении и транспортировке, малой токсич­ностью.

Но не менее ценна - нефть как сырье для химической про­мышленности. Сегодня нефтехимическая промышленность охва­тывает производство синтетических материалов и изделий глав­ным образом на основе продуктов переработки нефти и при­родного газа (синтетический каучук, продукты основного органического синтеза, сажа, резиновые, асботехнические и дру­гие изделия).

Газ - высококалорийное топливо. Это отличное сырье для химического производства. Он в известном смысле заменяет кокс, являясь технологическим компонентом при выплавке ме­таллов, используется в цементном производстве и для выработки электроэнергии, нашел широкое применение в быту.

1. Происхождение нефти и газа

Существуют разные теории происхождения нефти и газа. Одни из них предполагают неорганическое, а другие - органи­ческое образование этих полезных ископаемых.

Приведу сущность некоторых из них.

К ядру Земли движется по трещинам вода. В условиях вы­соких температур и давлений водяной пар реагирует с карбидами тяжелых металлов, в результате чего образуются их окислы и углеводороды, т. е. компоненты нефти и газа. Пары углеводородов поднимаются в верхние холодные зоны Земли, там конденсируются и скапливаются в трещинах, пустотах и порах, образуя залежи.

Другая гипотеза о космическом происхождении нефти. Земля образовывалась из рассеянного в протосолнечной системе газопылевого вещества. В газовой оболочке Земли содержались углеводороды. По мере остывания Земли и перехода ее из огненно-жидкого состояния в жидкостно-твердое углеводороды поглощались остывающим веществом. В наиболее остывших верхних слоях Земли они конденсировались, перемещались по трещинам и скапливались в определенных зонах, образуя за­лежи нефти и газа.

Так объясняют предполагаемое неорганическое происхож­дение нефти и газа.

Общепринятой является теория органического образования нефти и газа. Остатки животных и растительных организмов, разлагаясь в недрах Земли без доступа кислорода под действием высоких температур и давлений, образовали углеводороды - компоненты нефти и газа.

Нефтеобразование связано с процессами образования и последующих изменений осадочных горных пород в значительно опустившихся бассейнах. Этот процесс многоступенчатый: нефть состоит из компонентов, которые образовались в раз­личные периоды. Некоторые составные части ее возникли еще в живых организмах. Следующее поколение компонентов нефти образовалось в процессе преобразования рыхлых осадков в осадочные горные породы в верхней зоне земной коры.

Нефть насыщает горную породу, которая с течением вре­мени подвергается действию все большего горного давления в связи с увеличением толщи осадочных горных пород. Под влиянием этого давления нефть перемещалась в более пори­стые породы, в результате чего образовались залежи.

Подтверждением органическому происхождению нефти яв­ляются следующие факторы. Нефтяные залежи почти отсут­ствуют в вулканических областях и тех районах, которые сло­жены породами, изверженными с больших глубин. Преобладаю­щее большинство известных скоплений нефти и газа связано с осадочными толщами горных пород.

2. Породы, содержащие нефть и природные газы

Горные породы, обладающие способностью вмещать нефть, газ и воду и отдавать их при разработке мест их скоплений, называются коллекторами. Большинство пород-коллек­торов осадочного происхождения. Коллекторами нефти и газа являются, пески, песчаники, алевролиты, алевриты, некоторые глинистые породы, известняки, мел, доломиты.

Породы-коллекторы характеризуются двумя признаками - пористостью и проницаемостью. Пористость характеризует объем пустот в породе, а проницаемость - способность проникновения нефти, воды или газа через породу. Не все по­ристые породы проницаемы для нефти и газа. Проницаемость зависит от размера пустот или пор, зерен, взаимного располо­жения и плотности укладки частиц, трещиноватости пород. Сверхкапиллярные пустоты имеют размеры >0,5 мм, капиллярные 0,5-0,0002 мм, субкапиллярные 0,0002 мм.

Различают общую, открытую и эффективную пористость. Общая пористость - это объем всех пор в породе. Открытая по­ристость—это объем только тех пор, которые сообщаются между собой. Эффективная пористость определяется наличием таких пор, из которых нефть может быть извлечена при разра­ботке мест ее скопления. Значение пористости достигает 40%.

При разработке мест скопления нефти и газа иногда при­меняют искусственные методы увеличения пористости и прони­цаемости.

Понятие и структура природного газа, принципы его применения и способы добычи. Нефть как маслянистая жидкость темно-бурого или почти черного цвета с характерным запахом, его свойства, применение в промышленности. Использование угля в качестве топлива.

Рубрика Физика и энергетика
Вид реферат
Язык русский
Дата добавления 16.10.2014
Размер файла 17,9 K

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Природный газ. Нефть. Каменный уголь

1. Природный газ

Природный газ - смесь газов, образовавшихся в недрах Земли при анаэробном разложении органических веществ.

Основную часть природного газа составляет метан (CH4) - от 92 до 98%. В состав природного газа могут также входить более тяжёлые углеводороды - гомологи метана: этан (C2H6), пропан (C3H8), бутан (C4H10). А также другие неуглеводородные вещества: водород (H2), сероводород (H2S), диоксид углерода (СО2), азот (N2), гелий (Не).

Природный газ относится к полезным ископаемым. Часто является попутным газом при добыче нефти. Природный газ в пластовых условиях (условиях залегания в земных недрах) находится в газообразном состоянии - в виде отдельных скоплений (газовые залежи) или в виде газовой шапки нефтегазовых месторождений, либо в растворённом состоянии в черного золота или воде.

Чистый природный газ не имеет цвета и запаха. Газ всегда заполняет объём, ограниченный непроницаемыми для него стенками. Для облегчения возможности определения утечки газа, в него в небольшом количестве добавляют одоранты - вещества, имеющие резкий неприятный запах (гнилой капусты, прелого сена, тухлых яиц).

Применяется в виде природного газа метан используется в качестве топлива. Метан является исходным продуктом для получения метанола, уксусной кислоты, синтетических каучуков, синтетического бензина и многих других ценных продуктов.

2. Нефть

Нефть - это маслянистая жидкость темно-бурого или почти черного цвета с характерным запахом. Она легче воды, практически нерастворима в воде. В ее состав входит около 1000 веществ Наибольшую часть из них (80-90%) составляют углеводороды, то есть органические вещества, состоящие из атомов углерода и водорода. Нефть содержит порядка 500 углеводородных соединений - парафиновых (алканов), составляющих половину всех углеводородов нефти, нафтеновых (цикланов) и ароматических (бензол и его производные). Имеются в нефти и высокомолекулярные соединения в виде смол и асфальтовых веществ. Суммарное содержание углерода и водорода в нефти - около 97-98% (по весу), в том числе углерода 83-87% и водорода 11-14%.В незначительных количествах в нефтях встречаются ванадий, никель, железо, алюминий, медь, магний, барий, стронций, марганец, хром, кобальт, молибден, бор, мышьяк, калий и другие химические элементы.

Свойства нефти базируются на ее легком воспламенении. Причем, вспышка может произойти уже при +35 о , именно поэтому резервуары для хранения нефти делаются таким образом, чтобы случайное повышение температуры не повлекло за собой возгорания нефтепродуктов. Если же состав более разряжен, и растворенные в нефти газы имеют другие пропорции, то температура воспламенения может быть выше 100 о по Цельсию.

В органических растворителях позволяют жидкости растворяться. В воде, напротив, нефть не растворима, но образовать с водой стойкую эмульсию нефть сможет. Поэтому, чтобы отделить воду от нефти, в промышленности производят обессоливание и обезвоживание. Сырую нефть практически не применяют. Ее подвергают очистке и переработке. Бывает первичная и вторичная переработка нефти.

Первичная переработка нефти - это перегонка, в результате которой нефтепродукты разделяются на составные части (их называют фракциями): сжиженный газ; бензины (автомобильный и авиационный), реактивное топливо, керосин, дизельное топливо (солярка), мазут. Первые пять видов нефтепродуктов являются топливом. А мазут перерабатывают для получения: парафина, битума, жидкого котельного топлива, масел.

При смешивании битума с минеральными веществами получается асфальт (асфальтобетон), используемый в качестве дорожного покрытия. Жидкое котельное топливо используют для обогрева домов.

Из нефти выпускают широкий ассортимент смазочных материалов: смазочное масло; электроизоляционное масло; гидравлическое масло; пластичную смазку; мазочно-охлаждающую жидкость; вазелин. Масла, получаемые из нефти, идут на приготовление мазей и кремов. Оставшийся после перегонки нефти концентрат называется гудроном. Он идет на дорожные и строительные покрытия.

Вторичная переработка нефти включает в себя изменение структуры ее компонентов - углеводородов. Она дает сырье, из которого получают: синтетические каучуки и резины; синтетические ткани; пластмассы; полимерные пленки (полиэтилен, полипропилен); моющие средства; растворители, краски и лаки; красители; удобрения; ядохимикаты; воск; и многое другое. Даже отходы переработки нефти имеют практическую ценность. Из отходов перегонки нефти производится кокс. Его используют в производстве электродов и в металлургии. А сера, которую извлекают из нефти в процессе переработки, идет на производство серной кислоты.

газ уголь топливо нефть

3. Каменный уголь

Каменный уголь - это осадочная порода, представляющая собой продукт глубокого разложения остатков растений (древовидных папоротников, хвощей и плаунов, а также первых голосеменных растений). Большинство залежей каменного угля было образовано в палеозое, преимущественно в каменноугольном периоде, примерно 300-350 миллионов лет тому назад.

По химическому составу каменный уголь представляет собой смесь высокомолекулярных ароматических соединений с высокой массовой долей углерода, а также воды и летучих веществ с небольшими количествами минеральных примесей. Таковые примеси при сжигании угля образуют золу. Ископаемые угли отличаются друг от друга соотношением слагающих их компонентов, что определяет их теплоту сгорания. Ряд органических соединений, входящих в состав каменного угля, обладает канцерогенными свойствами.

Каменный уголь используется в качестве топлива, как в быту, так и в промышленности. Он был первым ископаемым материалом, который люди стали использовать как топливо. Именно уголь позволил совершить промышленную революцию. В XIX веке много угля использовалось для транспорта. В 1960 году уголь давал около половины мирового производства энергии. Однако к 1970 году его доля упала до одной трети: уголь в качестве топлива потеснили другие источники энергии, в частности, нефть и газ.

Однако этим применение угля не ограничивается. Каменный уголь - это ценное сырье для химической и металлургической промышленности.

В угольной промышленности используется коксование угля. Коксохимические заводы потребляют до 1/4 от добываемого угля. Коксование - это процесс переработки каменного угля нагреванием до 950-1050°С без доступа кислорода. При разложении угля образуются твёрдый продукт - кокс и летучие продукты - коксовый газ.

Кокс составляет 75-78% от массы угля. Он используется в металлургической промышленности для выплавки чугуна, а также как топливо.

Коксовый газ составляет 25% от массы перерабатываемого угля. Летучие продукты, которые образуются при коксовании угля, конденсируют водяным паром, в результате чего выделяют каменноугольную смолу и надсмольную воду.

Каменноугольная смола составляет 3-4% от массы угля и является сложной смесью органических веществ. В настоящее время ученые идентифицировали только 60% компонентов смолы, а это более 500 веществ! Из смолы получают нафталин, антрацен, фенантрен, фенолы и каменноугольные масла.

Из надсмольной воды (она составляет 9-12% от массы угля) отгонкой с паром выделяют аммиак, фенолы, пиридиновые основания. Из непредельных соединений, содержащихся в сыром бензоле, получают кумароновые смолы, использующиеся для производства лаков, красок, линолеума и в резиновой промышленности.

Из каменного угля получают искусственный графит.

Каменный уголь используется также в качестве неорганического сырья. Из каменного угля при переработке в промышленных масштабах извлекают такие редкие металлы, как ванадий, германий, галлий, молибден, цинк, свинец, а также серу.

Зола от сжигания углей, отходы добычи и переработки используются в производстве стройматериалов, керамики, огнеупорного сырья, глинозема, абразивов.

В общей сложности, путем переработки каменного угля можно получить более 400 различных продуктов, стоимость которых в 20-25 раз выше стоимости самого угля, а побочные продукты, получаемые на коксохимических заводах, превосходят стоимость самого кокса.

Кстати…

Уголь - это далеко не самое лучшее топливо. Он имеет большой недостаток: от его сжигания образуется очень много выбросов, как газообразных, так и твердых (зола), загрязняющих окружающую среду. В большинстве развитых стран действуют жёсткие требования по уровню выбросов, допустимых при сжигании угля. Снижения выбросов добиваются путем использования различных фильтров.

Подобные документы

Стадии производства энергии. Виды газообразного топлива. Нефть как природная маслянистая горючая жидкость, состоящая из сложной смеси углеводородов и некоторых других органических соединений. Ископаемое, растительное и искусственное твердое топливо.

курсовая работа [26,6 K], добавлен 24.09.2012

Понятие и история происхождения сланцевого газа, его главные физические и химические свойства. Способы добычи, используемое оборудование и материалы, оценка степени влияние на экологию. Перспективы применения данного типа газа в будущем в энергетике.

контрольная работа [28,7 K], добавлен 11.12.2014

Состав газового комплекса страны. Место Российской Федерации в мировых запасах природного газа. Перспективы развития газового комплекса государства по программе "Энергетическая стратегия до 2020 г". Проблемы газификации и использование попутного газа.

курсовая работа [1,4 M], добавлен 14.03.2015

Добыча каменного угля и его классификация. Перспективы угольной промышленности. Расчет основных характеристик солнечных установок. Влияние климатических условий на выбор режима работы солнечной установки. Классификация систем солнечного теплоснабжения.

контрольная работа [2,5 M], добавлен 26.04.2012

Нефть и природный газ известны человечеству более трех тысяч лет. И уже тогда люди начали использовать нефть, асфальты и биту­мы в медицине, строительстве, для освещения, как смазочный мате­риал и в военных целях.

Датой рождения нефтяной промышленности в России офици­ально принято считать 1864 год с начала бурения первых промыш- ленных скважин. Однако впоследствии было выявлено, что первая скважина в России и во всем мире была пробурена в 1848 г. на Ап- шеронском полуострове, в США — в Пенсильвании в 1859 г. Бур­ное развитие нефтяной отрасли во всем мире совпало с развитием промышленности и транспорта. Добыча нефти с этого периода рос­ла беспрецедентными темпами — удваивалась каждые 10 лет, и к се­редине семидесятых годов достигла 3 млрд. т в год. Несмотря на все трудности, разрушительные войны и революции Советская Россия наступала США на пятки, а в 1986 г. ее добыча достигла 624 млн. т, что вывело ее на первое место в мире.

В последние годы мировая добыча нефти стабилизировалась на уровне около 3,5 млрд. т. При этом доказанные запасы нефти стран мира составляют более 150 млрд. т. Самые большие начальные дока­занные извлекаемые запасы — 48560 млн. т — сосредоточены в недрах Саудовской Аравии.

Наметились положительные тенденции и в новой России.

Объем добычи нефти и газового конденсата в СССР в 1990 г. со­ставлял 515,9 млн. т (рис. 44). После распада СССР объем добычи
нефти в России снижался и достиг своего минимума — 301,2 млн. т в 1996 г. В последующие годы происходил неуклонный рост объе­мов добычи.

В 2006 г. добыча нефти составила 480,5 млн. т, почти сравняв­шись с объемом добычи всего СССР.

Основной рост добычи нефти и газового конденсата обеспечива­ют крупные нефтяные компании. Их вклад в добычу постоянно уве­личивался, как в абсолютном, так и в процентном отношении.

Развитие газовой промышленности началось значитель­но позже, но уже с 1920 г. потребление газа удваивалось каждые 7—10 лет и к 1990 г. уровень добычи газа составил 2540 млрд. м 3 . Есть все основания полагать, что в начале третьего тысячелетия будет достигнут годовой отбор газа 3 трлн. м 3 . Доказанные запа­сы газа в мире составляют 143,0 трлн. м 3 . Страной с наибольши­ми начальными разведанными запасами газа — 56960 млрд. м 3 яв­ляется Россия.

Сочетание целого ряда таких уникальных свойств, как высо­кая теплотворная способность, технологичность добычи и транс­портировки обеспечили нефти и газу ведущую роль в топливно- энергетическом балансе. Уголь, торф, дрова и другие виды топлива в 60-х годах прошлого столетия уступили первенство более эффек­тивным источникам энергии — нефти и газу (рис. 45). Эта диаграмма представляет научно обоснованный прогноз потребления всех ви­дов топлив в самой развитой стране мира США вплоть до 2030 года. Невооруженным взглядом видно, как растет тенденция потребле­ния нефти и газа как основных источников энергии на ближайший период.

600,0

Рис. 44. Объемы добычи нефти и газового конденсата в 1990-2006 гг. (млн. т)

В настоящее время технический прогресс во всех отраслях про­мышленности связан с применением нефти и газа. Нефть необ­ходима для развития всех видов промышленности, транспорта и сельского хозяйства. Нефть и газ — отличное сырье для химиче­ской промышленности. Из нефти получают пластмассы, синтети-


Рис. 45. Прогноз потребления основных первичных источников энергии в США до 2030 г., квадратных Британских тепловых единиц


Фактические данные Возобновляемые источники
1970 1980 1990 2000 Составлено по данным: Annual Energy Outlook 2006. US Departament of Energy, 2006, table Al, p. 133.

ческие текстильные волокна, удобрения, синтетический каучук, спирты, лекарства и другие продукты. В последнее время нефть и природный газ стали рассматривать как комплексное сырье, содержащее помимо углеводородов целый ряд других полезных и ценных компонентов, необходимых в народном хозяйстве (ге­лий, аргон, сера, азот — в газах; тяжелые металлы — в нефти; йод, бром, легкие металлы — в попутных водах).

Нефть — очень ценное и дорогое сырье, являющееся одним из главных элементов мировой торговой системы. В каналы мировой торговли в 1999 г. поступило около 1,9 млрд. т сырой нефти, 550 млн. т нефтепродуктов и 520 млрд. м 3 газа. Естественно, что в этих условиях ведется постоянная борьба за цену нефти. Резкие скач­ки цен на нефть связаны с кризисами, войнами и борьбой меж­ду экспортерами и импортерами, с глобальными политическими играми.







Главное свойство горючих полезных ископаемых — способ­ность гореть, поэтому их элементный состав в общем сходен: главные элементы — углерод, водород и гетероэлементы (кисло­род, азот, сера), соотношение последних определяет вид или тип горючих полезных ископаемых и их свойства.

Органическое вещество горючих ископаемых состоит из ог­ромного числа родов молекул, его можно назвать гетеромолеку-лярным. В отличие от химически индивидуальных веществ, со­стоящих из одинаковых молекул и обладающих постоянными свойствами, для гетеромолекулярных веществ характерно непос­тоянство их свойств. Гетеромолекулярные вещества не имеют определенных точек кипения и отвердевания, эти превращения происходят постепенно. С возрастанием величины молекул их подвижность (летучесть, растворимость) уменьшается.

Для исследования горючих полезных ископаемых приемы и методы классической химии недостаточны, поскольку в ней

изучаются химически индивидуальные вещества и не учитывается зависимость свойств от дисперсной структуры (Веселов, 1955). При изменении внешних условий (температуры, давления и др.) в веществе горючих ископаемых происходят химические реакции, при которых молекулы реагируют пропорционально их концент­рациям и активностям; это групповые реакции, приводящие не к химически индивидуальным продуктам, а к смеси неопределенно большого числа родов молекул. Для горючих ископаемых в при­роде ведущую роль играют такие типовые реакции, которые мо­гут быть сведены к двум простейшим типам: ассоциации-диссо­циации и окислению-восстановлению. Напряженность и продол­жительность протекания реакций ассоциации-диссоциации и окисления-восстановления приводят к разнообразию горючих ископаемых.

Для изучения горючих ископаемых используется большое ко­личество аналитических методов. Наравне с традиционными ме­тодами фундаментальных наук (химии и физики) применяются петрографические, минералогические методы и др. В последние годы в практику исследования горючих ископаемых внедрились новые методы: электронная микроскопия, ядерно-магнитный ре­зонанс, хромато-масс-спектрометрия.

По типам исходных биопродуцентов и с учетом химической структуры тканей все концентрированные формы ОВ были под­разделены на: 1) сапропелиты, образующиеся за счет фитозоо-планктона (жиры, белки, хитин); 2) гумиты, формирующиеся за счет остатков высшей наземной растительности (углеводы и лиг­нин); 3) липтобиолиты, исходный материал которых представлен наиболее стойкими к разложению тканями высших растений (воски, смолы, кутикулы).

Генетическая классификация каустобиолитов

Более приемлемой оказалась классификация каустобиолитов, разработанная В.А. Клубовым (1948), который исходил из поло­жения, что все каустобиолиты имеют сходный элементный состав и что количественные изменения соотношений этих элементов, происходящие в процессе образования и преобразования каусто­биолитов, отразятся на соотношениях С:Н и C:(O+N+S). Пос­троенная в прямоугольной системе координат диаграмма пред­ставляла генетическую классификацию каустобиолитов, в основу которой положены три генетических класса каустобиолитов, вы­деленные Г. Потонье (гумиты, сапропелиты и липтобиолиты). В.А. Клубов выделил четвертый самостоятельный класс нефтяных битумов, к которому отнес газы, нефти и все природные продук­ты ее преобразования. Сходство элементного состава антрацитов и антраксолитов, обусловленное общностью характера процессов карбонизации гумитов и нефтяных битумов асфальтового ряда, привело В.А. Клубова к необходимости выделения еще одного, пятого, класса каустобиолитов — карболитов.




Генетическая классификация каустобиолитов, в основу кото­рой положены представления о геологических условиях их обра­зования, была создана В.А. Успенским и О.А. Радченко. Схема представляет собой блок-диаграмму (рис. 1.1), которая состоит из двух ветвей: левой, соответствующей каустобиолитам угольного ряда, и правой, отвечающей горючим ископаемым нефтяного (битумного ряда). Отдельные типы горючих полезных ископае­мых изображены на схеме в виде блоков, на торцевой стороне которых дана геохимическая и фациальная обстановки их образо­вания. У основания левой угольной ветви изображены две основ­ные категории биопродуцентов — высшие растения и низшие организмы. В зависимости от исходного органического вещества и палеобстановки накопления образуются и горючие ископаемые различных типов. Угольная ветвь изображена в виде трех сопри­касающихся блоков: гумусовые, гумусо-сапропелитовые и сапро­пелитовые угли. Нарастание интенсивности катагенетического преобразования показано в виде вертикального подъема ветви.

Правая ветвь схемы отвечает горючим ископаемым нефтяно­го ряда (от газов до антраксолитов и шунгитов). Генетичес­кая связь их с сапропелитами, отложениями озер и морских во­доемов, показана стрелками. Также стрелками показана генети­ческая связь озокеритов с легкими метановыми нефтями. В сред­ней части правой ветви располагаются продукты гипергенетичес­кого изменения нефтей, а в верхней части — продукты катагенеза и метаморфизма нафтидов. Крайне левая и крайне правая части соответствуют наиболее выветрелым разностям как углей, так и нафтидов. И хотя не все ныне известные типы каустобиолитов на этой генетической диаграмме нашли свое место согласно услови­ям генезиса (просто невозможно на одной схеме представить раз­нообразие процессов, дающие сходные продукты), эта генетичес­кая классификация наиболее полно отражает суть геологических обстановок углеобразования и битумогенеза.

Горючие полезные ископаемые относятся к органическим породам, подразделяемым на каустобиолиты и акаустобиолиты (мшанковые, птероподовые известняки и др.). До сих пор нет единой общей классификации каустобиолитов, и, видимо, созда­вать ее по единому принципу невозможно, поскольку при разли­чии исходного ОВ нефти и угля существует ряд переходных форм.

Современные классификации нефтей, газов и твердых наф­тидов приводятся в соответствующих разделах.

Природный газ

Природный газ – полезное ископаемое, представляющее собой смесь газообразных углеводородов природного происхождения, состоящую главным образом из метана и примесей других алканов. Иногда в составе также присутствует некоторое количество углекислого газа, азота, сероводорода и гелия.

Вследствие своего состава природный газ представляет собой чрезвычайно ценное сырье, из которого выделяют отдельные компоненты или более простые смеси.

Месторождения природного газа

В природе газ может находиться в следующих формах:

Доказано, что большое количество углеводородов находится в мантии Земли, но в настоящее время, ввиду технической недоступности, они не представляют практического интереса.

Помимо залежей газа в недрах планеты, необходимо упомянуть, что углеводороды встречаются и в космосе. В частности, метан является третьим по распространенности газом во Вселенной после водорода и гелия. В форме метанового льда он входит в структуру планет и других космических тел. Однако такие образования не относят к залежам природного газа и при настоящем уровне развития технологий не могут быть извлечены.

Химический состав природного газа

Молекула метана

Основным компонентом природного газа является метан (CH4) – его содержание варьируется в диапазоне 70 - 98%. Кроме него в состав могут входить более тяжелые насыщенные углеводороды – гомологи метана:

Помимо углеводородной составляющей, природный газ может содержать неорганические газообразные соединения:

  • водород
  • сероводород
  • углекислый газ
  • азот
  • инертные газы (преимущественно гелий)

Физические свойства природного газа

Смесь с воздухом в диапазоне концентраций от 4,4 до 17% взрывоопасна. Поэтому важно контролировать содержание газа в окружающей атмосфере, а также вовремя принимать соответствующие меры в случае его утечки.

Природный газ бесцветен и не имеет запаха, за исключением случаев повышенного содержания в его составе сероводорода. В связи с этим, для облегчения обнаружения утечек газа, к нему в небольших концентрациях добавляют специальные одоранты – вещества с резким неприятным запахом. В качестве одорантов преимущественно используются серосодержащие соединения, например, тиолы (меркаптаны). Стандартная концентрация таких добавок составляет 16 г на 1000 м 3 . Однако человек способен уловить присутствие одного из самых распространенных одорантов – этилмеркаптана, даже при его концентрации в воздухе 2*10 -6 % по объему.

Физические свойства природного газа зависят от его компонентного состава, однако в большинстве случаев основные параметры укладываются в диапазоны, приведенные в таблице ниже.

©PetroDigest.ru
Плотность 0,65. 0,85 кг/м³ (сухой газообразный);
400. 500 кг/м³ (сжиженный)
Температура самовоспламенения Около 650 °C
Удельная теплота сгорания: 28. 46 МДж/м³ (6,7. 11,0 Мкал/м³ или 8. 12 кВт·ч/м³)

Добыча природного газа

Методы добычи газообразных углеводородов схожи с добычей нефти – газ извлекают из недр с помощью скважин. Для того, чтобы пластовое давление залежи падало постепенно, скважины размещают равномерно по всей территории месторождения. Такой метод также препятствует возникновению перетоков газа между областями месторождения и преждевременному обводнению залежи.

Более подробнов статье: Добыча природного газа.

Согласно отчету BP в 2017 год мировая добыча природного газа составила 3680 млрд м 3 . Лидером по добыче стала США - 734,5 млрд м 3 , или 20% от общего мирового показателя. Россия заняла вторую строчку с 635,6 млрд м 3 .

Происхождение

Существует две теории происхождения природного газа: минеральная и биогенная.

По минеральной теории, углеводороды образуются в результате химической реакции глубоко в недрах нашей планеты из неорганических соединений под действием высоких давлений и температур. Далее вследствие внутренней динамики Земли, углеводороды поднимается в зону наименьшего давления, образуя залежи полезных ископаемых, в том числе газа.

Согласно биогенной теории, природный газ образовался в недрах Земли в результате анаэробного разложения органических веществ растительного и животного происхождения под действием высоких температур и давлений.

Несмотря на продолжающиеся споры относительно происхождения углеводородов, в научном сообществе выигрывает биогенная теория.

Транспортировка

Подготовка газа к транспортировке

Несмотря на то, что на некоторых месторождениях газ отличается исключительно качественным составом, в общем случае природный газ – это не готовый продукт. Помимо целевого содержания компонентов (при этом целевые компоненты могут различаться в зависимости от конечного пользователя), в газе содержаться примеси, которые затрудняют транспортировку и являются нежелательными при применении.

Например, пары воды могут конденсироваться и скапливаться в различных местах трубопровода, чаще всего, изгибах, мешая таким образом продвижению газа. Сероводород – сильный коррозионный агент, пагубно влияющий на трубопроводы, сопоуствуеющее оборудование и емкости для хранения.

В связи с этим, перед отправкой в магистральный нефтепровод или на нефтехимический завод газ проходит процедуру подготовки на газоперерабатывающем заводе (ГПЗ).

Первый этап подготовки – очистка от нежелательных примесей и осушка. После этого газ компримируют – сжимают до давления, необходимого для переработки. Традиционно природный газ сжимают до давления 200 — 250 бар, что приводит к уменьшению занимаемого объема в 200 — 250 раз.

Далее идет этап отбензинивания: на специальных установках газ разделяют на нестабильный газовый бензин и отбензиненный газ. Именно отбензиненный газ направляется в магистральные газопроводы и на нефтехимические производства.

Нестабильный газовый бензин подается на газофракционирующие установки, где из него выделяют легкий углеводороды: этан, пропан, бутан, пентан. Данные вещества также являются ценным сырьем, в частности для производства полимеров. А смесь бутана и пропана – уже готовый продукт, используемый, в частности, в качестве бытового топлива.

Газопровод

Основным видом транспортировки природного газа является его прокачка по трубопроводу.

Стандартный диаметр трубы магистрального газопровода составляет 1,42 м. Газ в трубопроводе прокачивается под давлением 75 атм. По мере продвижения по трубе, газ, за счет преодоления сил трения, постепенно теряет энергию, которая рассеивается в виде тепла. В связи с этим, через определенные промежутки на газопроводе сооружаются специальные компрессорные станции подкачки. На них газ дожимается до необходимого давления и охлаждается.

Для доставки непосредственно до потребителя от магистрального газопровода отводят трубы меньшего диаметра — газораспределительные сети.

Газопровод

Транспортировка СПГ

Что делать с труднодоступными районами, находящимися вдали от основных магистральных газопроводов? В такие районы газ транспортируется в сжиженном состоянии (сжиженный природный газ, СПГ) в специальных криогенных емкостях по морю, и по суше.

По морю сжиженный газ перевозится на газовозах (СПГ-танкерах), судах оборудованных изотермическими емкостями.

СПГ перевозят также и сухопутным транспортом, как железнодорожным, так и автомобильными. Для этого используются специальных цистерны с двойными стенками, способными поддерживать необходимую температуру определенное время.

Применение природного газа

Главным образом природный газ используется для обеспечения отопления, производства электроэнергии, и для бытовых нужд населения. Например, в России около 50% поставок приходится на энергетические компании и коммунальное хозяйство. Кроме этого, он находит применение в качестве топлива для транспортных средств, сырья при производстве пластмасс и других органических веществ.

Более подробно: Что делают из природного газа?

Экология

Природный газ является самым чистым среди углеводородных ископаемых топлив. В идеале, при его сгорании образуется только вода и углекислый газ, в то время как сгорание нефтепродуктов сопровождается образованием копоти и золы.

Конечно, сами по себе выбросы большого количества углекислого газа в атмосферу не безопасны. По мнению некоторых ученых, они могут привести к возникновению парникового эффекта, и как следствие, – к существенному потеплению климата. Однако стоит отметить, что и в этом отношении природный газ выигрывает - эмиссия CO2 при его сжигании существенно ниже, чем у нефтяного топлива.

Читайте также: