Насосы и насосные станции реферат

Обновлено: 05.07.2024

Насосом называется гидравлическая машина для создания потока жидкой среды. Воздуходувки и компрессоры предназначаются для создания потока или сжатия газовой среды. Те и другие являются машинами насосного типа и имеют сходные конструкции. Работу любого насоса принято характеризовать техническими параметрами, к числу которых относятся: подача, напор, мощность, коэффициент полезного действия (КПД) и высота всасывания.

Подача насоса — объем (масса) жидкой среды, подаваемой насосом в единицу времени. В зависимости от условий работы насос может характеризоваться различным количеством жидкой среды в единицу времени.

Напором (Н) называется приращение удельной энергии потока жидкой среды (отнесенное к единице веса) при прохождении ее через рабочие органы насоса. Различают напор манометрический, который определяют по показаниям приборов у всасывающего и напорного патрубков, и напор требуемый, подсчитанный по схеме насосной установки. Рассмотрим схему насосной установки, перекачивающей воду из нижнего в верхний резервуар. Насосная станция является звеном системы водоснабжения и представляет собой довольно сложный энергетический узел, обеспечивающий подачу воды потребителям в необходимом объеме с требуемым напором. На насосной станции размещаются главные насосные агрегаты, для обеспечения нормальной работы которых имеется целый ряд вспомогательных систем: система всасывающих и напорных трубопроводов с необходимой арматурой; системы запуска насосов, смазки, электроснабжения, автоматики, управления, контроля и др. На современных насосных станциях используются системы автоматики, телемеханики и электроники. [pic 1] [pic 2] [pic 3]

Все водопроводные насосные станции подразделяются на группы по ряду признаков.

По расположению в общей схеме системы водоснабжения и назначению они делятся на станции первого подъема, второго подъема, повысительные и циркуляционные.

Станции первого подъема подают воду из источника на очистные сооружения, а если очистка воды не требуется,— в регулирующие емкости или непосредственно в сеть потребителя. Станции второго подъема перекачивают воду из резервуаров чистой воды в сеть потребителя. В отдельных случаях насосы первого и второго подъемов могут располагаться в одном здании. Повысительные станции предназначены для повышения напора в сети (отдельные многоэтажные здания, районы с застройкой повышенной этажности, зонные водопроводы, водопроводы промышленных предприятий). Циркуляционные станции входят в состав системы технического водоснабжения (промпредприятия, теплоэлектростанции).

1. Обоснование выбора схемы и состав насосной станции 1-го подъема

Принципиальная компоновка и конструктивное выполнение насосных станций первого подъема разнообразны и зависят от вида источника водоснабжения, от топографических, геологических условий выбранного места водозабора. Конструктивное выполнение станции определяется также типом насосного оборудования (центробежные, осевые, горизонтальные, вертикальные насосы и т. д.). Окончательное решение выбора схемы насосной станции первого подъема принимают на основании технико-экономических расчетов при сравнении различных вариантов.

Основные рабочие насосы подбирают по расчетным значениям Q и Н с учетом совместной работы насосов и водовода. Расчетная подача насосов зависит от их количества. При выборе количества насосов следует учитывать следующее: 1) увеличение числа насосов приводит к возрастанию строительного объема здания насосной станции, к усложнению условий его эксплуатации; 2) при совместной работе в общий водовод подача насоса уменьшается по сравнению с подачей при индивидуальной его работе, и чем больше насосов работают вместе, тем больше снижение их подачи; 3) чем меньше насос, тем ниже его КПД. С учетом указанных обстоятельств рабочих насосов на станциях первого подъема должно быть как можно меньше (но не менее двух) при большей их мощности. В насосных станциях II и III категории при соответствующем обосновании допустима установка одного рабочего насоса. Тип насоса выбирают в зависимости от общей мощности насосной станции. На крупных станциях целесообразнее использовать вертикальные центробежные или осевые насосы, так как они требуют меньшей площади машинного зала. На средних и малых станциях используются насосы типа Д или К. В отдельных случаях на станциях с большим заглублением целесообразно применять скважинные насосы. Рабочие насосы на станции должны быть однотипными. При проектировании насосных станций первого подъема, учитывая, что их расширение (в связи с перспективой развития водоснабжения) связано с большими техническими трудностями, предусматривают место для установки дополнительных агрегатов либо увеличивают размеры фундаментов, чтобы можно было установить насос большей мощности. [pic 4]

Насосные установки предназначены для транспортировки жидкости, заполнения и осушения резервуаров, для обслуживания механизмов (например, система водяного охлаждения).

Наибольшее распространение получили центробежные насосы.

Для централизованного обеспечения водой промышленных и сельскохозяйственных объектов сооружаются насосные станции, состоящие из крупных насосных агрегатов, и с обслуживающим персоналом.

Характеристики центробежных насосов (ЦН).

Эксплуатационные свойства ЦН определяются зависимостью напора (давление жидкости) на выходе от производительности при различных скоростях

где Н— напор на выходе, м. ст. жидкости; Q— производительность, м 3 /с.

Эти зависимости, обычно, приводятся в виде графиков в каталогах для каждого конкретного агрегата.

Представление о характеристиках центробежного насоса и магистралей дает рис. 1.

Для определения рабочей точки, которая определяется пересечением двух характеристик: насоса и магистрали, нужно знать зависимости Нн = F(Q) и Hм = F(Q).

Полный напор (Н) в системе состоит из двух составляющих:

где Нс — статический напор, м; Ндин — динамический напор, м; Q — производительность, м 3 /с; С — постоянная величина.

В зависимости от преобладающей составляющей, характеристика магистрали может быть статической (А) или динамической (Б), которая представляет собой параболу по форме.

Из рис. 1 видно, что при снижении оборотов приводного ЭД характеристика насоса перемещается вниз параллельно номинальной (ωном ).

Таким образом, при приводе от АД и работе:

•при статической характеристике магистрали

- производительность изменяется (от Qном до Q1 ) значительно;

Примечание — Такой вариант возможен при снижении напряжения в сети.

•при динамической характеристике магистрали:

- производительность изменяется (от ном. до 1) незначительно;


- чрезмерное снижение скорости (до 2) не приводит к прекращению подачи жидкости, но производительность уменьшается.

При приводе от СД скорость не изменяется, но угол отставания ротора от статора увеличивается, что уменьшает момент на валу двигателя.

При чрезмерном снижении напряжения сети СД выпадают из синхронизма и останавливаются.

Производительность центробежных насосов можно регулировать следующими способами:

• дросселированием трубопровода (например, закрывать задвижки на напорной магистрали);

• изменением угловой скорости (ω) приводного ЭД (например, изменением напряжения в цепи статора АД);

• изменением числа работающих на магистраль агрегатов;

• изменением положения рабочего органа механизма (например, поворотом лопаток рабочего колеса).

Дросселирование осуществляется прикрытием задвижки на напоре, при этом (рис. 1, Б) характеристика магистрали перемещается влево (до точки РТ') при неизменной угловой скорости насоса (ωном ). При новом положении рабочей точки (РТ') производительность (Q') уменьшится, а напор (Н') увеличится (теоретически). Реально часть напора (∆Н') теряется на регулирующем устройстве, а следовательно, фактический напор (Нф ') тоже уменьшится. Расчеты показывают, что уменьшение производительности (Q) в два раза приводит к снижению КПД насоса в 4 раза и увеличивает потери мощности до 38 % от номинальной мощности ЭД.

Следовательно, данный способ целесообразно применять в установках небольшой мощности (несколько кВт) при преобладании статического напора в магистрали.

Изменение угловой скорости осуществляется изменением подводимого к статору электродвигателя напряжения (дроссель насыщения) или включением в цепь ротора добавочного сопротивления. При этом характеристика насоса перемещается вниз параллельно номинальной (ωном ). Из рис.1 видно, что при статической характеристике производительность (Q1 ) снижается значительно больше, чем при динамической для одной и той же скорости (ω1 ).

Расчеты показывают, что электрический способ регулирования более экономичен, чем дросселирование, так потери мощности меньше (до 16%). Следовательно, данный способ целесообразно применять в установках средней мощности (десятки кВт).

Изменение числа работающих агрегатов, подключенных на магистраль параллельно, целесообразно применять при статическом напоре, так как общая производительность совместно работающих агрегатов — это сумма производительностей всех работающих агрегатов, что обеспечивает их экономичную работу.

Примечание. При динамическом напоре общая производительность увеличивается незначительно, а агрегаты работают с пониженным КПД.

Устройства автоматизации насосных установок.

Наряду с аппаратурой общего назначения для пуска, переключения и управления, в системах автоматизации применяется специальная аппаратура.

Поплавковое реле уровня предназначено для контроля уровня в резервуарах с неагрессивной жидкостью и выдачи сигнала в схему управления.

Представление о конструкции и принципе действия поплавкового реле дает рис.2.

В резервуар (1) погружается поплавок (2), который подвешен на гибком канате (5), перекинутом через блок (4). Уравновешивание осуществляется с помощью груза (8).

На канате укреплены две переключающие шайбы (7), положение которых можно изменить в соответствии с условиями регулирования. Переключающие шайбы (7) при достижении предельных уровней жидкости поворачивают коромысло (6), связанное с контактным устройством (3), которое замыкает четную (2 и 4) или нечетную (1 и 3) пару контактов цепей управления.

Электродное реле уровня предназначено для контроля уровня электропроводных жидкостей и выдачи сигнала в схему управления.




Рис. 3. Электродное реле уровня

Представление о конструкции и принципе действия электродного реле дает рис. 3.

Основным контролирующим элементом являются два электрода (2), помещенные в резервуар (1) с электроприводной жидкостью (4). Электроды заключены в кожух (3), открытый снизу и включены в цепь катушки реле промежуточного (РП) малогабаритного исполнения (телефонного типа).

Слаботочное реле (РП) получает питание от понижающего трансформатора (по условиям электробезопасности).

При подъеме уровня жидкости в резервуаре до короткого электрода собирается цепь РП, которая срабатывает, дает команду в цепь управления (РП: 1) и становится на самопитание (РП: 2) через длинный электрод.

Насосный агрегат включается на откачивание жидкости из резервуара. Отключение агрегата произойдет при снижении уровня ниже длинного электрода.

Струйное реле предназначено для контроля наличия потока (струи) жидкости в трубопроводе. Представление о конструкции и принципе действия струйного реле дает рис. 4.

Чувствительным элементом является диафрагма (1) с дроссельным устройством (отверстие в центре), установленная в трубопроводе (4) и воспринимающая перепад давления жидкости при протоке. Обе полости диафрагмы трубками (3) соединены с сильфонами (2), у которых имеются цилиндрические мембраны (5), механически связанные тягами с электроконтактной частью реле (6).

При наличии протока жидкости давление в левой полости диафрагмы (1) будет больше, чем в правой, поэтому контактная группа (1 и 3) замкнута и в цепь управления 1 дается сигнал о наличии протока жидкости.


Примечание — Струйное реле, обычно, применяется в системах охлаждения, поэтому этот сигнал является разрешающим пуск механизма.

При уменьшении количества протекающей жидкости (например, остановка насоса) перепад давления изменяется на диафрагме, контактная группа левая (1 и 3) размыкается, а правая (2 и 4) замыкается. При этом выдается сигнал на остановку двигателя, который обслуживается этой СВО, через цепь управления 2 и он останавливается.

Реле контроля заливки предназначено для контроля заливки гидравлической полости центробежных насосов.

Они могут работать на принципе поплавка, но в настоящее время наибольшее распространение получили реле мембранного типа.

Такие реле устанавливаются выше уровня насоса от 0,3 до 0,5 м. При заливке полости насоса жидкостью мембрана прогибается, перемещая прикрепленный к ней шток, что переключает контактную систему реле, разрешая пуск насоса.

После снижения давления в полости мембрана пружиной возвращается в исходное положение.

Достоинством мембранных реле является большая чувствительность и способность выдерживать высокие давления. Такие реле применяют при заливке насосных агрегатов с помощью вакуум-насоса.

Принципиальная электрическая схема АУ задвижкой центробежного насосного агрегата (рис. 5)

Назначение. Для управления задвижкой ЦНА, сигнализации ее состояния и защиты цепей управления.

Основные элементы схемы.

Д1, Д2 — приводные двигатели ЦНА и задвижки на напоре агрегата.

КМ, КО, КЗ — контакторы пускателя магнитного (ПМ) Д1, открытия и закрытия задвижки агрегата.

РП — реле промежуточное.

РУ — реле уровня, для контроля уровня в резервуаре и коммутации цепей управления насоса и задвижки.

РД — реле давления, для контроля давления в полости насоса и выдачи сигнала на управление задвижкой.

П — передача понижающая, механическая.

ВБ — выключатель безопасности, для отключения электрических цепей при ручном управлении задвижкой.

Rl, R2 : — ограничительные резисторы в цепях сигнальных ламп.

КН.О, Кн.З, Кн.С1 — кнопки ДУ открытием, закрытием и остановкой задвижки (на пульте оператора).

Нн > Н > Нн — сигнал от датчика уровня в резервуаре, отклонение от нормального.

При поступлении жидкости в резервуар (Н > Нн) собирается цепь РУ

РУ ↑ — собирается цепь КМ (РУ: 1),

—готовится цепь РП (РУ:2).


КМ ↑ — подключается к сети (Д1) (КМ: 1. 3),

—становится на самопитание (КМ:4).

РП ↑ — собирается цепь КО (РП: 1),

—размыкается цепь КЗ (РП:2) повторно.

КО ↑ — подключается к сети (Д2) (КО:1. 3) и пускается на открытие задвижки,

—становится на самопитание (КО:4),

—блокируется цепь КЗ (КО:5),

—шунтируется часть резистора R2 (КО:6).

Задвижка начинает открываться, при этом собирается цепь ЛО (ВКЗ), она загорается полным накалом (ярко) на все время открывания.

При полном открытии задвижки контакт ВКО разомкнётся, при этом разомкнётся цепь КО , погаснет ЛЗ, горевшая вполнакала.

КО ↓ — отключается от сети (Д2)(КО:1. 3) и останавливается,

—размыкается цепь самопитания (КО:4),

—готовится цепь КЗ (КО:5),

—включается полностью R2 в цепь ЛО, она переходит на горение вполнакала.

Казанский Государственный Технологический Университет им. Кирова.

Для современной промышленности характерно соединение заводов в крупные

специализированные комплексы – производственные объединения. В составе таких

объединений, располагающих мощной финансовой базой, возможность организации

специальных конструкторских бюро, крупномасштабных испытательных стендов,

исследовательских лабораторий д ля разработки важнейших проблем отрасли. Это

относится и непосредственно и к области насосного и компрессорного

машиностроения. Поэтому теоретические и экспериментальные исследования,

направленные на усовершенствование рабочих процессов и повышение КПД машин

этого вида, имеют очень большое значение в наше время.

Насосами называются машины, служащие для перекачки и создания напора

жидкостей всех видов, механической смеси жидкостей с твердыми и коллоидными

веществами и газов. Следует заметить, что машины для перекачки и создания

напора газов (газообразных жидкостей) выделены в отдельные группы и получили

Насосы в настоящее время являются самым распространенным видом машин.

а) центробежные, у которых перекачка и создание напора происходят вследствие

центробежных сил, возникающих при вращении рабочего колеса;

б) осевые (пропеллерные) насосы, рабочим органом у которых служит лопастное

колесо пропеллерного типа. Жидкость в этих насосах перем ещается вдоль оси

в) поршневые и скальчатые насосы, в которых жидкость перемещается при

возвратно-поступательном движении поршня или скалки. К этой группе можно

отнести простейший вид поршневых насосов - диафрагмовые насосы, у которых

рабочим органом служит резиновая или кожаная диафрагма, совершающая

г) тараны, работающие за счет энергии гидравлического удара;

д) струйные насосы, в которых перемещение жидкости осуществляется за счет

энергии потока вспомогательной жидкости, пара или газа;

е) эрлифты (воздушные водоподъемники), в которых рабочим телом является

Насосы, применяемые в различных производственных установ ках, должны

выполнять одну, две или все три перечисленные функции. Насосная установка

состоит из собственно насоса 3; резервуара 5, из которого насос всасывает жидкость

при пом ощи всасывающего трубопровода 4; напорного резервуара 2, в который

подается жидкость с помощью нагнетательного трубопровода 1.

Расходом или подачей насоса Q называют объемное количество жидкости,

подаваемое насосом в единицу времени в нагнетательный трубопровод.

Следовательно, под расходом понимают то количество жидкости, которое получает

потребитель. В действительности, через рабочие органы насоса, его проточную часть


проходит большее количество жидкости Q 0 , которое учитывает объемные потери

жидкости, например, через сальниковое или другое уплотнения.

Манометрическим называют напор, создав аемый насосом для преодоления

геометрической высоты всасывания Z 1 и высоты нагнетания Z 2 , для преодоления

разности давлений на концах трубопровода р 2 - p 1 , т.е. разности м ежду внешним

давлением над поверхностью жидкости в нагнетательном резервуаре р 2 и внешним

давлением на поверхности жидкости во всасывающем резервуаре р 1 . Кроме того,

манометрический напор затрачивается на преодоление гидравлических

сопротивлений трубопроводов насосной установки на всасывающей линии h’ w и

нагнетательной линии h’’ w . Поэтому манометрический напор, создаваемый

Одним из основных параметров работы насоса является расход мощности N, т. е.

количество затрачиваемой насосом энергии для подъема, перемещения и нагнетания

Различают теоретическую мощность N T , т. е. такую, которую необходимо было

бы затратить для подачи жидкости, преодолевая необходимый м анометрический

напор при полном отсутствии потерь энергии в самом насосе.

Очевидно, теоретическая мощность (кВт) определяется величиной


В действительности, полная мощность, затрачиваемая двигателем, т. е. мощность

на валу насоса или эффективная мощность N больше теоретической N> N T . Поэтому

отношение N T :N всегда меньше единицы. Это отношение показывает, какая часть из

всей использованной насосом энергии затрачивается полезно. Вследствие этого

указанное отношение принято называть общим коэффициентом полезного действия

Поршневые насосы относятся к числу объемных насосов, в которых перемещение

жидкости осуществляется путем ее вытеснения из неподвижных рабочих камер

вытеснителями. Рабочей камерой объемного насоса называют ограниченное

пространство, попеременно сообщающееся со входом и выходом насоса.

Вытеснителем называется рабочий орган насоса, который совершает вытеснение

жидкости из рабочих камер (плунжер, поршень, диафрагма).

Классифицируются поршневые насосы по следующим показателям:

1) по типу вытеснителей: плунжерные, поршневые и диафрагменные;

2) по характеру движения ведущего звена: возвратно-поступательное движение

ведущего звена; вращательное движение ведущего звена ( кривошипные и

3) по числу циклов нагнетания и всасывания за один двойной ход: одностороннего

4) по количеству поршней: однопоршневые; двухпоршневые; многопоршневые.

Насос простого действия . Схема насоса простого действия изображена на рис. 1.

Поршень 2 связан с кривошипно-шатунным механизм ом через шток 3 , в результате

чего он совершает возвратно-поступательное движение в цилиндре 1 . Поршень при

ходе вправо создает разрежение в рабочей камере, вследствие чего всасывающий


клапан 6 подни мается и жидкость из расходного резервуара 4 по всасывающему

трубопроводу 5 поступает в рабочую кам еру 7 . При обратном ходе поршня (влево)

всасывающий клапан з акрывается, а нагнетательный клапан 8 открывается, и

Так как каждому обороту двигателя соответствует два хода поршня, из которых

лишь один соответствует нагнетанию, то теоретическая производительность в одну

Для повышения производительности поршневых насосов их часто выполняют

сдвоенными, строенными и т.д. Поршни таких насосов приводятся в действие от

Действительная производительность насоса Q м еньше теоретической, так как

возникают утечки, обусловленные несвоевременным закрытием клапанов,

неплотностями в клапанах и уплотнениях поршня и штока, а также неполнотой

Отношение действительной подачи Q к теоретической Q

Объемный КПД - основной экономический показатель, характеризующий работу

Рис. 2. Схема поршневого насоса с дифференциальным поршнем


Дифференциальный насос . В дифференциальном насосе (рис. 7.5) поршень 4

перемещается в гладко обработанном цилиндре 5. Уплотнением поршня служит

сальник 3 или малый зазор со стенкой цилиндра. Насос имеет два клапана:

всасывающий 7 и нагнетательный 6, а также вспомогательную камеру 1. Всасывание

происходит за один ход поршня, а нагнетание за оба хода. Так, при ходе поршня

влево из вспомогательной камеры в нагнетательный трубопровод 2 вытесняется

объем жидкости, равный ( F - f )l ; при ходе поршня вправо из основной камеры

нагнетательный трубопровод будет подан объем жидкости, равный

т.е. столько же, сколько подается насосом простого действия. Разница лишь в

том, что это количество жидкости подается за оба хода поршня, следовательно, и

Насос двойного действия . Более равномерная и увеличенная подача жидкости, по

сравнению с насосом простого действия, может быть достигнута насосом двойного

действия (рис. 3), в котором каждому ходу поршня соответствуют одновременно

процессы всасывания и нагнетания. Эти насосы выполняются горизонтальными и

вертикальными, причем последние наиболее ком пактны. Теоретическая

Насосы представляет собой мембрану, поршнем,XXXXXXXXXXX выполненную из

эластичного материала (резины, кожи, ткани, пропитанной лаком, и др.).


Мембрана отделяет рабочую камеру от пространства, в которое жидкость не

В диафрагменном насосе, представленном на рисунке 6, а, клапанная коробка с

всасывающим 4 и нагнетательным 5 клапанами расположена отдельно, а прогиб

диафрагмы 3 осуществляется благодаря возвратно-поступательному движению

плунжера 2 в цилиндре насоса 1, заполненном специальной жидкостью.

Диафрагменные насосы подобного типа часто применяются для перекачки

жидкостей, загрязненных различными прим есями (песком, илом, абразивными

материалами), а также химически активных жидкостей и строительных растворов.

Рис. 4. Схемы диафрагменного насоса с плунжерным приводом диафрагмы

Диафрагму можно приводить в движение не только с помощью плунжера, но и

1) числу колес (одноколесные многоколесные); XXX кроме XX того,XXX одноколесныеXXX

насосы XX выполняют XXX с консольным расположением вала – консольные;

2) напору (низкого напора до 2 кгс/см2 (0,2 МН/м2), среднего напора от 2 до 6

кгс/см2 (от 0,2 до 0,6 МН/м2), высокого напора больше 6 кгс/см2 (0,6 МН/м2));

3) способу подвода воды к рабочему колесу (с односторонним входом воды XXX на XX

рабочееXXX колесо,XXX с XX двусторонним XX входом XXX водыXXX (двойного всасывания));

5) способу разъема корпуса (с горизонтальным разъемом корпуса, с вертикальным

6) способу отвода жидкости из рабочего колеса в спиральный канал корпуса XX

(спиральныеXX и X турбинные).XX ВXX спиральных X насосахXX жидкость отводится

непосредственно в спиральный канал; в турбинных жидкость, прежде X чем X

попастьXX вX спиральный X канал,XX проходитX через специальное устройство –

направляющий аппарат (неподвижное колесо с лопатками);


7) степени быстроходности рабочего колеса (тихоходные, нормальные,

8) роду перекачиваемой жидкости (водопроводные, канализационные, кислотные и

9) способу соединения с двигателем (приводные (с редуктором или со шкивом),

непосредственного соединения с электродвигателем с помощью муфт). Насосы со

шкивным приводом встречаются в настоящее время редко.

Основными частями центробежного насоса (рис. 5) являются: корпус 6 насоса со

всасывающим 1 и нагнетательным 3 патрубками. Внутри корпуса имеется рабочее

колесо 4, жестко посаженное на вал 2. В корпусе вокруг раб очего колеса

Корпус насоса с патрубками служит для подхода жидкости к рабочему колесу и

для отвода жидкости после воздействия на нее рабочего колеса в нагнетательный

трубопровод. При вращении рабочее колесо своими лопастями непосредственно

воздействует на жидкость, а также создает внутри насоса поле центробежных сил за

Обычно рабочее колесо центробежного насоса (рис. 6) представляет собой два

диска: один плоский со втулкой, а второй имеет вид широкого кольца 2. Между

дисками смонтированы лопасти 3 рабочего колеса, образующие расширяющиеся

каналы. В центральной части колеса имеется втулка 4, при помощи которой оно

монтируется на валу, Все перечисленные элементы рабочего колеса изготовляются в


Принцип работы центробежного насоса состоит в следующем. При пуске корпус

насоса должен быть заполнен капельной жидкостью. При быстром вращении

рабочего колеса его лопасти оказывают непосредственное силовое воздействие на

частицы ж идкости. Кроме того, создается поле центробежных сил в жидкости,

находящейся в межлопастном пространстве рабочего колеса. Таким образом,

жидкость, подвергаясь силовому воздействию лопастей рабочего колеса, с большой

скоростью перемещается от центра к периферии, освобождая межлопастные каналы

рабочего колеса. Поэтому в центральной части рабочего колеса давление снижается

и под действием внешнего, чаще всего атмосферного давления, жидкость входит во

всасывающий патрубок и вновь подводится к центральной части рабочего колеса.

Жидкость, выходящая из каналов рабочего колеса по его выходному диаметру,

попадает в межлопастное пространство неподвижного направляющего аппарата. В

направляющем аппарате жидкость, имеющая большую скорость, как бы тормозится

и ее кинетическая энергия частично преобразуется в потенциальную энергию

давления в благоприятных условиях течения через плавно изм еняющиеся каналы.

Если направляющий аппарат отсутствует, то преобразование кинетической энергии

потока в потенциальную энергию давления происходит в спиральном корпусе насоса

Спиральная форма корпуса насоса и эксцентричное расположение в нем рабочего

колеса обусловлены следующим. В корпусе насоса по направлению вращения

рабочего колеса собирается все больший объем жидкости, выходящей из

межлопастных каналов. Вся эта жидкость направляется к нагнетательному патрубку

и отводится в нагнетательный трубопровод. Спиральная форма обеспечивает

увеличение внутреннего объема корпуса насоса, примерно пропорциональное

количеству жидкости, направляющейся к нагнетательному патрубку. Поэтому

скорость жидкости, проходящей через корпус насоса, во всех сечениях примерно

Очень часто нагнетательный патрубок насоса имеет вид диффузора. В этом

случае преобразование кинетической энергии в потенциальную продолжается и при

движении жидкости через нагнетательный патрубок. В принципе, при отсутствии

специального направляющего аппарата, преобразование кинетической энергии,

приобретенной жидкостью в рабочем колесе центробежного насоса, д олжно

Как известно, коэффиц иент быстроходности ns характеризует в некоторой

Исходя из этого, можно полагать, что основные параметры работы лопастного

насоса — подача Q, напора N и частота вращения рабочего колеса n - определяют

С увеличением подачи насоса и частоты вращения рабочего колеса, при

уменьшении напора коэффициент быстроходности насоса растет. Вместе с этим

Насосные станции являются важным элементом систем водоснабжения и водоотведения. Они представляют собой сложный комплекс сооружений и оборудования. Правильный выбор технико-экономических параметров этого комплекса во многом определяет надежность и экономическую эффективность подачи или отведения воды. На насосной станции размещается главный насосный агрегат, для обеспечения нормальной работы которых имеется целый ряд вспомогательных устройств: система всасывающих и напорных трубопроводов с необходимой арматурой, системы запуска насосов, смазки, электроснабжения, автоматики управления и контроля.

Содержание

ВВЕДЕНИЕ……………………………………………………………………. 3
1. ВЫБОР ОСНОВНОГО ОБОРУДОВАНИЯ НАСОСНОЙ СТАНЦИИ……..4
1.1 Определение часовой подачи насосной станции…………………………….5
1.2Определение подачи насосной станции в период восстановления противопожарного запаса воды…………………. ………………………..5
1.3Определение количества напорных водоводов и их диаметров……………6
1.4Определение потерь напора в напорном водоводе…………………. ……..7
1.5Определение предварительного значения потребляемого напора насоса. 8
1.6Определение количества и типа рабочих насосов…………………………..9
1.7Определение расчетной подачи одного насоса……………………………. 9
2.3 Подбор типоразмера насоса…………………………………………………..9
2.4 Определение количества резервных насосов………………………………..10
2.10 Определение мощности насоса……………………………………………..10
2.11 Определение потребляемой мощности электродвигателя………. ………10
2.12 Определение геометрической высоты всасывания насоса………………..12
3. ОПРЕДЕЛЕНИЕ ОСНОВНЫХ РАЗМЕРОВ И РАЗРАБОТКА КОНСТРУКЦИИ НАСОСНОЙ СТАНЦИИ……………………………………13
3.1 Определение отметок оси насоса и пола машинного зала…………………13
3.2 Составление схемы расположения лотков, трубопроводов и арматуры….14
3.3 Подбор диаметра труб, фасонных частей и арматуры……………………. 15
3.3.1 Подбор диаметров трубопроводов………………………………………. 15
3.3.2 Подбор фасонных частей и арматуры………………………….…………..18
3.4 Компоновка технологического оборудования, трубопроводов и арматуры20
3.5 Подбор грузоподъемных устройств………………………………………….21
3.6 Определение отметки верхнего строения насосной станции………………22
3.7 Подбор дренажных насосов…………………………………………………..22
4. УТОЧНЕНИЕ РЕЖИМА РАБАОТЫ НАСОСНОЙ СТАНЦИИ……………23
4.1 Расчет потерь напора во внутристанционных коммуникациях и уточнение потерь напор………………………………………………………………………23
4.2 Анализ совместной работы насоса и системы напорных водоводов……. 27
5. АРХИТЕКТУРНО-СТРОИТЕЛЬНАЯ ЧАСТЬ……………………………….30
Приложение 1: Характеристика насосов и напорных водоводов……………. 31
Приложение 2: Параллельная работа двух рабочих насосов на два водовода…. 32
Приложение 3: Вертикальная схема насосной станции………………………..33
Приложение 4: Аксонометрическая схема………………….…………………..34
6.. Спецификация …………………………………………………………………35
СПИСОК ИСПОЛЬЗУЕМОЙ ЛИТЕРАТУРЫ

Насосные установки предназначены для транспортировки жидкости, заполнения и осушения резервуаров, для обслуживания механизмов (например, система водяного охлаждения).

Наибольшее распространение получили центробежные насосы.

Для централизованного обеспечения водой промышленных и сельскохозяйственных объектов сооружаются насосные станции, состоящие из крупных насосных агрегатов, и с обслуживающим персоналом.

Характеристики центробежных насосов (ЦН).

Эксплуатационные свойства ЦН определяются зависимостью напора (давление жидкости) на выходе от производительности при различных скоростях

где Н— напор на выходе, м. ст. жидкости; Q— производительность, м 3 /с.

Эти зависимости, обычно, приводятся в виде графиков в каталогах для каждого конкретного агрегата.

Представление о характеристиках центробежного насоса и магистралей дает рис. 1.

Для определения рабочей точки, которая определяется пересечением двух характеристик: насоса и магистрали, нужно знать зависимости Нн = F(Q) и Hм = F(Q).

Полный напор (Н) в системе состоит из двух составляющих:

где Нс — статический напор, м; Ндин — динамический напор, м; Q — производительность, м 3 /с; С — постоянная величина.

В зависимости от преобладающей составляющей, характеристика магистрали может быть статической (А) или динамической (Б), которая представляет собой параболу по форме.

Из рис. 1 видно, что при снижении оборотов приводного ЭД характеристика насоса перемещается вниз параллельно номинальной (ωном ).

Таким образом, при приводе от АД и работе:

•при статической характеристике магистрали

- производительность изменяется (от Qном до Q1 ) значительно;

Примечание — Такой вариант возможен при снижении напряжения в сети.

•при динамической характеристике магистрали:

- производительность изменяется (от ном. до 1) незначительно;


- чрезмерное снижение скорости (до 2) не приводит к прекращению подачи жидкости, но производительность уменьшается.

При приводе от СД скорость не изменяется, но угол отставания ротора от статора увеличивается, что уменьшает момент на валу двигателя.

При чрезмерном снижении напряжения сети СД выпадают из синхронизма и останавливаются.

Производительность центробежных насосов можно регулировать следующими способами:

• дросселированием трубопровода (например, закрывать задвижки на напорной магистрали);

• изменением угловой скорости (ω) приводного ЭД (например, изменением напряжения в цепи статора АД);

Читайте также: