На пути к единой теории поля реферат

Обновлено: 02.07.2024

Пример готового реферата по предмету: Концепция современного естествознания

ВВЕДЕНИЕ

ПРОБЛЕМА СОЗДАНИЯ ЕДИНОЙ ТЕОРИИ ПОЛЯ В СОВРЕМЕННОЙ НАУКЕ

Выдержка из текста

С формальной точки зрения, объектом изучения является концепция В.И.Ильина. С содержательной же точки зрения, объектом выступает потребление как социальное поле. Предмет изучения – проявления потребления как социального поля в практике маркетинговых коммуникаций.

На сегодняшний день актуальность проблемы становления образа другого с точки зрения гендерного аспекта не вызывает сомнений. Исследовательский интерес к ней обусловлен трансформацией гендерных установок и стереотипов в настоящих условиях, что проявляется, в частности, в высокой активности женщин в тех сферах общественной жизни, которые ранее считались традиционно мужскими (политика, руководство, власть) и активности мужчин в традиционно женских сферах (семья, уход за детьми).

Основным предметом изучения теории организации выступает анализ тех или иных процессов, связанных с организационными системами, которые включают определенные закономерности развития организации.Необходимость существования такой формы общественных отношений, как организация обусловлена распространением рыночных отношений, которые предполагают привлечение руководителей или управленцев всех уровней и создание таких объединений, как корпоративные объединения, компании и т.Цель работы: охарактеризовать теорию организации в системе наук, рассмотреть основные понятия

  • раскрыть определение образования как особого социального института в зарубежной и отечественной социологии;
  • охарактеризовать проблемы обеспечения равного доступа к получению услуг дошкольного образования и повышения их в современной России;
  • определение диверсионного анализа как метода прогнозирования возможных нежелательных явлений, в т.ч. производственного брака, аварий, катастроф, стихийных бедствий, выявление причин уже случившихся аварий и нежелательных явлений,

В философском плане системный подход представляет собой направление методологии научного познания и социальной практики, в основе которого лежит исследование объектов как систем. В его трудах дан не только конкретный анализ ряда важнейших проблем общественного развития, но и — что принципиально важно — разработаны исходные гносеологические средства такого анализа.

Теоретической базой исследования являются известные труды таких авторов, как Романов В.С., Рыхтикова Н.А., Тэпман Л.Н., Черникова Л.И., Черных Н.Б., Макарова Н.Н., Макеева Д.Ф., Хайлова С.К, Дубров А. М, Лагоша Б А, Хрусталев Е. Ю., Гвозденко А. А. и др.

Переход России к рыночной экономике, повышение ее эффективности и создание необходимой инфраструктуры не могут быть гарантированы без использования и развития кредитных отношений.Цель: изучить сущность, виды, проблемы и перспективы банковского кредитования в России.Рассмотреть проблемы и перспективы развития банковского кредитования современной России.

Список источников информации

1.Эйнштейн А. Собрание научных трудов в 2-х тт. Т. 2. М., 1966. С. 287

2.Косыев В.Я. Единая теория поля, пространства и времени – Арабеск, Нижний Новгород (2000)

Существенно, что идея о поле связывалась у Фарадея с идеей о взаимосвязи, взаимопревращаемости различных сил природы. Находясь под влиянием философских взглядов Шеллинга, который развивал целостно-диалектических подход к пониманию природной реальности, Фарадей, углубил понимание связи магнитных и электрических явлений, исследовал химические превращения в электрической цепи, размышлял о превращении света в магнетизм, тяготения – в электричество и магнетизм.

Д.К.Максвелл, являясь сторонником идей Фарадея, переводит качественные соображения Фарадея на математический язык, т.е. создает математическое описание электромагнитных явлений на основе представлений о близкодействии – на основе формализма теории поля, как говорят физики. Он создает систему четырех уравнений, которые позволяют описать с единой точки зрения огромное множество электрических, магнитных и оптических явлений. Главное в понимании сути нового видения мира, создаваемого в полевых уравнениях Максвелла, заключается в том, что законы электрического и магнитного воздействия выражены в них не через силы, действующие между зарядами на расстоянии, а в терминах теории поля. Электрические и магнитные явления записывались в форме локальной связи (связи в малой окрестности произвольной точки пространства) между зарядами и токами (как формами классической отдельности, конечности) и электрической и магнитной напряженностями (выражающими суть новой формы отдельности, конечности), пространственные и временные изменения которых вызывали воздействие на другие заряды и токи.

Итак, в физике возникли две взаимосвязанные физические теории, базирующиеся на совершенно различных представлениях о сути отдельного физического объекта, различных представлениях о физических формах конечности. Тем самым научно-теоретическая мысль (в который раз, начиная с Зенона) столкнулась с вечной проблемой соотношения дискретного, отдельного и непрерывного, бесконечно делимого. Апории Зенона, привлекавшие внимание ученых на каждом переломном этапе развития физики, показывают, что существующие в науке методы анализа пространства, времени и движения и существования отдельного объекта, внутренне противоречивы. В конце 19 в. эти апории приняли форму необходимости вскрытия характера связи различных форм конечности, отдельности, физической индивидуальности.

В чисто физическом плане проблемность понимания соотношения непрерывного и дискретного, соотношения различных форм конечности, отдельности проявилась в виде бесконечности электромагнитной энергии электрона. Более того, когда электрон удалось разогнать с помощью внешнего электрического поля до скорости, близкой к скорости света, то обнаружилось, что для электрона, движущегося с большой скоростью, законы ньютоновской механики перестают быть справедливыми. Объясняя взаимодействие быстродвижущегося электрона с электромагнитными полями, в том числе с тем, которые создаются им самим в процессе движения, физики пришли к необходимости признания зависимости массы электрона от скорости.

Предположение, что масса классически понимаемого физического объекта может зависеть от его скорости, произвело потрясение в мире ученых. Ведь в соответствии с ньютоновской картиной мира, обогащенной идеями Фарадея-Максвелла о реальности силового поля, масса считалась постоянной и неуничтожимой, абсолютно определенной. Идея об абсолютной определенности, неизменности массы является той идеей, которая позволяла понять все многообразие изменений в физическом мире. Более того, было доказано, что атом лишился своей вечности и неделимости. Вспомним в этой связи мысль Канта о том, что только сохраняющееся, неизменное изменяется. Поэтому стали возникать опасения, что фундамент, на котором построена физическая наука, не является надежным. Возникла острая необходимость перестройки фундамента физики.

Результатом такой перестройки явилось создание специальной теории относительности (СТО). СТО в определенной форме разрешила противоречие непрерывного и дискретного. Она привела к коренному изменению пространственно-временных представлений в физике. Возникло последовательно реляционное физическое понимание пространства и времени. Суть его можно выразить фразой - при отсутствии частиц и событий пространство и время теряют всякий смысл.

Нейтринная теория света, хотя и не свободная от недостатков, была первой в ряду моделей составных частиц. Среди них — модель, рассматривающая p-мезон как связанное состояние нуклона и антинуклона; модель, в которой все сильно взаимодействующие частицы строились из трёх фундаментальных частиц, и др.

Таким образом, Единая теория поля ещё не построена. Однако неразрывная связь между всеми частицами, универсальная взаимная превращаемость частиц, всё более явственно проявляющиеся черты единства материи заставляют искать пути перехода от современной квантовой теории поля, ограничивающейся констатацией многообразия форм материи, к единой теории, которая призвана это многообразие объяснить.

В своей повседневной жизни человек сталкивается с множеством сил действующих на тела: сила ветра или потока воды, давление воздуха, мускульная сила человека, вес предметов, давление квантов света, притяжение и отталкивание электрических зарядов, сейсмические волны. Вызывающие подчас катастрофические разрушения и т.д. одни силы действуют непосредственно при контакте с телом, другие, например, гравитация, действуют на расстоянии, через пространство. Но, как выяснилось в результате развития естествознания, несмотря на столь большое разнообразие, все действующие в природе силы можно свести к четырём фундаментальным взаимодействиям: сильное, слабое, электромагнитное и гравитационное. Именно эти взаимодействия в конечном счёте отвечают за все изменения в мире, именно они являются источником всех материальных преобразований тел, процессов. Изучение свойств взаимодействий составляет главную задачу современной физики.

Целью курсовой работы является рассмотрение известных типов взаимодействий, изложение главных направлений их объединения, ознакомление с основными положениями и достижениями современной физики.

1. ЕДИНАЯ ТЕОРИЯ ПОЛЕЙ И ВЗАИМОДЕЙСТВИЙ В НАСТОЯЩЕЕ ВРЕМЯ

При этом само понятие поля трансформировалось со временем. Основоположники электромагнетизма скорее понимали под полем некую среду, которая подвержена динамике, может перетекать и вращаться, откуда и появились такие понятия теории поля как дивергенция и ротор. Во многом такие представления о поле привели к появлению понятия эфира. Важно, что именно построение наглядных моделей невидимого поля поспособствовали успешному созданию классической электродинамики.

Другая школа, опирающаяся на математический формализм, была более склонна рассматривать поле как заданную в пространстве и времени математическую функцию. Этот подход не требовал построения умозрительных моделей и казался более строгим с математической точки зрения. Однако он способствовал сведению научного мышления к примитивному перебору математических вариантов, наиболее распространенному в рамках принципа наименьшего действия.

В XX веке на смену классического понятия поля пришло еще две концепции. Первая из них – подмена физического понятия поля математическим пространством. Это так называемый путь геометризации физики, наиболее известным примером которого является общая теория относительности. Вторая – модель обменного взаимодействия, воплощенная в квантовой теории. В этом случае в связи с необходимостью получить дискретные характеристики частиц и процессов вместо непрерывного поля используются виртуальные частицы – переносчики взаимодействия.

В современной физике (в ХХ веке) развитие идеи посредника пошло по двум принципиально разным путям. В рамках общей теории относительности вместо эфира ролью посредника наделили пространство как таковое, а причина взаимодействия, в частности гравитационного, была приписана искривлению пространства. В рамках квантовой физики роль посредника перешла к особым частицам – переносчикам взаимодействий. Согласно этой концепции, называемой обменное взаимодействие, объекты действуют друг на друга испуская и поглощая виртуальные частицы, а источником для рождения таких частиц служит физический вакуум. Вообще говоря, эти частицы могут быть вполне реальными. Например, переносчиками электромагнитного взаимодействия считаются фотоны, а ученые надеются обнаружить переносчиков и всех других взаимодействий. Однако пока этого не удается сделать, что в общем-то, не мешает развиваться теории, которая вполне может оперировать и виртуальными частицами.

Полевая физика в качестве альтернативы этим двум моделям взаимодействия использует понятие полевой среды, как реальной физической сущности, подверженной внутренней динамике, что во многом является возрождением подходов Фарадея-Максвелла к теории поля, только на более современном уровне. Механизм полевого взаимодействия материальных объектов согласно этой концепции состоит в передаче взаимного влияния через полевую среду.

Современная физика выделяет 4 типа фундаментальных взаимодействий. Два из них – электромагнитное и гравитационное – известны довольно давно, во многом похожи и поддаются классическому описанию (по крайней мере, на элементарном уровне). Два других – сильное (ядерное) и слабое (распад и взаимопревращение элементарных частиц) – являются плодом современной физики, не выражаются в виде элементарной зависимости величины действия от соответствующих зарядов и расстояния и служат во многом лишь как обобщающие понятия двух групп до конца не понятных явлений.

Полевая физика рассматривает в качестве фундаментальных только два типа взаимодействий – гравитационное и электрическое. Причем, на уровне полевой кинематики они полностью похожи и симметричны: – в классических условиях они подчиняются одним и тем же законам обратных квадратов, системе уравнений Максвелла, распространяются со скоростью света, симметричным образом определяют массы тел.

Различие между этими двумя типами взаимодействий лежит на уровне образования у материальных объектов свойств электрического заряда и гравитационного заряда. Другое различие – результат сложившегося распределения материи во Вселенной. Гравитационное поле доминирует в космических масштабах (глобальное поле) и в силу найденных в полевой физике причин возникает эффект маскировки свойства гравитационного отталкивания - антигравитации. Электрическое поле, наоборот, играет большую роль в локальных явлениях и в силу доминирования глобального гравитационного поля приобретает симметричные свойства притяжения и отталкивания.

Сильное и слабое взаимодействия не рассматриваются в полевой физике как фундаментальные. Они и относимые к ним эффекты оказываются результатом совместного действия обычной гравитации и электричества в тех или иных условиях. Например, полевая физика объясняет, почему на очень малых расстояниях между одноименными электрическими зарядами (протонами) вместо отталкивания возникает очень сильное притяжение и даже позволяет получить потенциал ядерных сил. Примечательное, что причиной столь аномального поведения оказывается гравитационное поле, которое незаслуженно считается не грающим никакой роли в ядерных процессах.

А. Эйнштейн высказал идею о возможности и необходимости создания ЕТП еще в 1908—1910 гг. и активно работал в этом направлении с 1920 г. Идея не была принята большинством физиков, более того, сформировалось убеждение, что построение ЕТП в принципе невозможно. Попытки А. Эйнштейна и его немногочисленных сподвижников создать ЕТП осуждались. Даже А.И. Иоффе назвал настойчивое стремление А. Эйнштейна создать ЕТП "маниакальным увлечением" Такое заблуждение разделяло большинство физиков-теоретиков до тех пор, пока в 1979 г. Нобелевской премии были удостоены А. Салам, С. Вейнберг, Ш. Глешоу за создание единой теории электрослабых взаимодействий.

Сдвиг в области построения Единой теории поля наметился только после открытия слабого и сильного взаимодействий. Первым шагом стала теория электрослабого взаимодействия, построенная Саламом, Глэшоу и Вайнбергом в 1967 году на основе квантовой электродинамики (за нее они получили Нобелевскую премию в 1979 году, т.е. почти сразу). Затем в 1973 году была построена теория, описывающая сильное взаимодействие — квантовая хромодинамика. На основе этих двух теорий и была создана Стандартная модель, все предсказания которой подтвердились, кроме до сих пор не обнаруженного бозона Хиггса.

2. ПОДРОБНЕЕ ОБ ОБЪЕДИНЕНИИ ВЗАИМОДЕЙСТВИЙ

Одной из важных особенностей физики элементарных частиц на начальном этапе было различие между различными типами взаимодействий. Оказалось, что существует всего четыре типа фундаментальных взаимодействий: сильное, электромагнитное, слабое и гравитационное.

Интенсивность различных взаимодействий при энергиях порядка нескольких МэВ характеризуется следующими константами:

константа сильного взаимодействия бs ~ 1,

константа электромагнитного взаимодействия бe ~ 10 -2 ,

константа слабого взаимодействия бw ~ 10 -6 ,

константа гравитационного взаимодействия бG ~ 10 -38 .

В основе идеи объединения различных взаимодействий лежит зависимость констант, слабого электромагнитного и сильного взаимодействий от расстояния. Из рис.1,3 видно как появляется такая зависимость. На рис. 1 показан механизм экранировки электрического заряда(*)электрона. Причина экранировки состоит в следующем: электрон может испускать виртуальные фотоны, которые в свою очередь могут превращаться в электрон - позитронные пары e + e - , пару м + м - , пару мезонов р + р - , K + K - и т.д. В результате взаимодействия отрицательно заряженного электрона с виртуально образующимися парами частиц происходит их поляризация (поляризация вакуума). Притяжение между противоположно заряженными частицами приводит к экранировке отрицательного заряда исходного электрона положительно заряженными e + , м + , р + -мезонами, располагающимися преимущественно ближе к электрону. Поэтому, при приближении пробного заряда к электрону, он будет чувствовать распределение поля виртуальных частиц. Т. е. величина измеренного заряда будет зависеть от расстояния между пробной частицей и электроном. Это называется в квантовой электродинамике экранировкой электрического заряда. Теоретические расчеты показывают, что с уменьшением расстояния величина наблюдаемого заряда растет, что и приводит к увеличению константы электромагнитного взаимодействия.


Рис.1 .Механизм экранировки электрического заряда


Рис. 2. Экранировка электрического заряда

Аналогичную ситуацию можно ожидать и в кквантовой хромодинамике (КХД). Цветовой заряд кварка будет экранироваться. При экранировке цветового заряда кварка в хромодинамике вокруг цветного кварка образуется поле виртуальных глюонов и кварк - антикварковых пар (рис. 3). Однако в квантовой хромодинамике в распределении цветового поля имеются существенные отличия. Т.к. глюоны имеют цветовой заряд, они взаимодействуют не только с кварками, но и с друг другом, что существенно меняет распределение цветового заряда вокруг кварка. Цветной кварк оказывается окружен преимущественно зарядами того же цвета. Поэтому, например, при приближении пробного цветового заряда к красному кварку он проникает внутрь облака красного цвета и, следовательно, величина измеренного красного заряда уменьшается - наблюдается эффект антиэкранировки. Т.е. при уменьшении растояния между цветными кварками величина взаимодействия уменьшается. Это явление называется асимптотической свободой кварков в адроне на малых расстояниях. Зависимость константы сильного взаимодействия от расстояния показана на рис.4(**)

Аналогичная ситуация имеет место и для константы слабого взаимодействия, которая также зависит от расстояния.


Рис. 3. Механизм антиэкранировки цветного заряда


Рис. 4. Антиэкранировка цветового заряда

Малость константы слабого взаимодействия при низких энергиях обусловлена тем, что слабые взаимодействия происходят в результате обмена частицами, имеющими большую массу (mW ~ 80 ГэВ, mZ ~ 90 ГэВ). При энергии порядка 100 ГэВ константа слабого взаимодействия возрастает до бw ~ 1/30.

Гипотеза о том, что слабое взаимодействие также обусловлено обменом некоторой заряженной частицей было выдвинута Юкавой еще в тридцатых годах. Завершение эта идея получила в рамках единой теории, связывающей электромагнитные и слабые взаимодействия, развитой в работах С. Вайнберга, А. Салама и Ш. Глэшоу.

В этой теории, которая носит название "стандартная модель", предсказывается существование тяжелых заряженных бозонов W + и и нейтрального бозона Z 0 со спином 1, обмен которыми и обуславливает слабое взаимодействие. В теории возникает также безмассовое векторное поле, отождествляемое с электромагнитным полем.По аналогии с сильным взаимодействием члены одного семейства, порождаемые или -бозоном объединяются в слабые левоспиральные изоспиновые дублеты

и

со слабым изоспином T = 1/2, которым приписываются значения T3 = +1/2 (нe,u) и T3 = -1/2 (e,d). У антифермионов проекции слабого изоспина имеют противоположные знаки.

Слабые взаимодействия с изменением заряда (заряженные токи) описываются состояниями и . Они происходят с испусканием или поглощением или -бозонов. Слабые процессы с участием Z 0 -бозона были названы процессами с нейтральными слабыми токами.

Таким образом в модели Вайнберга - Салама , , Z 0 -бозоны и -квант являются квантами единого электрослабого поля. Стандартная модель, объединяющая электромагнитное и слабое взаимодействия, предсказывает связь между константами электромагнитного и слабого взаимодействий и соотношение между массами заряженных и нейтральных бозонов:

,

где иW - угол Вайнберга. Извлеченная из экспериментов величина sin 2 иW = 0.23.


Обнаружение в 1973 г. слабых нейтральных токов явилось ярким подтверждением правильности стандартной модели, в которой были предсказаны значения масс промежуточных бозонов –m(Z 0 ) ~ 90 ГэВ ; m(W + ,) ~ 80 ГэВ

В стандартной модели лептоны и кварки группируются в левоспиральные дублеты - поколения.

Читайте также: