Моделирование и подобие реферат

Обновлено: 19.05.2024

* Данная работа не является научным трудом, не является выпускной квалификационной работой и представляет собой результат обработки, структурирования и форматирования собранной информации, предназначенной для использования в качестве источника материала при самостоятельной подготовки учебных работ.

Хабаровский государственный институт искусств и культуры

Классификация моделей и характеристика их видов

______I курс, 146 группа______

2. Общие понятия: моделирование и математические модели…………………. 5

4. Классификация моделей с различных точек зрения…………………………..11

5. Процедура математического моделирования………………………………….14

6. Два метода моделирования……………………………………………………. 15

Процесс математического моделирования может развиваться по одному из двух сценариев. Наиболее распространен следующий: формулируется задача, затем ее пытаются форма­лизовать в виде известной математической модели, которая, как правило, хорошо известна исследователю и решение которой потенциально доступно. Это путь подгонки задачи под модель. Здесь возникает проблема адекватности полученного решения исходной задаче.

Другой сценарий ориентирован на построение наиболее адекватной математической модели. После построения модели проводится поиск метода решения, который может быть неизвестен исследователю или вообще не существовать (пос­троение модели под задачу). Основная трудность такого подхода, порой непреодолимая, заключается в построении метода решения задачи и оценке точности получаемого результата.

Специалист должен представлять себе сов­ременное состояние науки о математическом моделировании, знать основные модели, их свойства и соответствующие методы решения. Каждый тип математических моделей имеет свои особенности, ориентирован на тот или иной класс задач, связан с определенными требованиями к вычислительной технике и т. п. В этой связи становится важной классификация матема­тических моделей.

2. Общие понятия: моделирование и математические модели.

Моделированием называют построение модели того или иного явления реального мира. В общем виде модель - это абстракция реального явления, сохраняющая его существенную структуру таким образом, чтобы ее анализ дал возможность определить влияние одних сторон явления на другие или же на явления в целом. В зависимости от логических свойств и связей моделей с отображаемыми явлениями можно все модели разделить на три типа: изобразительные, аналоговые и математические. Нас интересуют математические модели.

Математическая модель является самой сложной и наиболее общей и абстрактной по сравнению с изобразительной и аналоговой моделями. В ней для отображения свойств изучаемого явления используются символы математического или логического характера. Особые трудности возникают при решении задач с большой размерностью, расплывчатостью постановки, неопределенностью информации и т.д. В постановке таких задач появляются неклассические моменты, такие как плохая формализуемость, нестандартность, противоречивость.

Остановимся на понятие плохо формализуемой задачи, которое появляется в результате решения потока серьезных прикладных задач в самых различных областях. Эти могут быть и формализованные правила рассуждений, и правила логического вывода. Математические модели служат отражению и анализу некоторых свойств действительных объектов. Рассмотрим один из видов математических моделей, характеризующихся простой структурой и широко применяющихся в приложениях. Модели такого вида содержат следующие элементы:

связи между переменными, являющиеся неизвестными;

математический аппарат исследования соотношений (связей).

В качестве примера можно привести имитационные модели (о которых речь пойдет позже), описывающие возможные пути развития сложных технико-экономических и природных систем.

Поясним теперь, что мы понимаем под плохо формализуемыми задачами: это задачи, условия которых определены не полностью, не все связи заданы в аналитической форме, при этом формулировка задачи может содержать противоречия, а также не все соглашения о понятии решения могут быть в наличии.

Решению таких (плохо формализуемых) задач предшествуют этапы преобразования их формулировки, уточнений и упрощений. Результатом этих этапов является получение комплекса формализованных задач, имеющего некоторое отношение к исходной задаче. Необходимо знание этого отношения, иначе точность, достигаемая формальными методами, может оказаться бесполезной.

В сферу модели естественно также включить описание исходной задачи, выбираемый язык, критерии и ограничения, аппарат адекватности модели, средства интерпретации и подготовки к практическому внедрению, способы вне модельного анализа, учета плохо формализуемых факторов.

Можно выделить следующие разновидности плохо формализуемых задач:

нестационарные; эти задачи отличаются эволюцией информации об объекте и модельных представлений о нем;

задачи с расплывчатым отражением некоторых зависимостей и плохо определенными ограничениями. В этих задачах для описания зависимостей и ограничений требуется использовать специальные процедуры диалога с экспертами, а также проведение целенаправленных серий экспериментов;

с несовместными системами условий и ограничений и неопределенным понятием решения (неособенные задачи);

задачи, в которых оценка решения производится по системе несогласованных (противоречивых) критериев;

задачи с неоднозначно определенным решением;

неустойчивые или некорректные задачи.

Противоречивые определения объектов и противоречивые модели иногда возникают в результате абсолютизации локальных свойств действительно существующих объектов. Другая возможная причина появления противоречивых моделей - наличие различных несогласованных источников информации, которая служит основой моделирования.

В прикладной математике наблюдается заметный интерес к описанию противоречивых ситуаций, он вызван, по-видимому, необходимостью повысить реальный результат применения математических моделей и методов к решению сложных практических задач. Примеры решения противоречивых задач можно видеть и в сфере оптимизации, и в сфере распознавания образов. В некоторых случаях содержательный смысл модели может диктовать такой вид работы с ней, как выделение ее непротиворечивых подмоделей, в других случаях возможно ослабление ограничений модели, приводящее к ее непротиворечивости.

Основы процесса выработки решений

В процессе выработки решений применимы такие конкретные формы как анализ, синтез, индукция, дедукция, аналогия, абстракция и конкретизация.

Анализ логический прием расчленения целого на отдельные элементы с рассмотрением каждого из них в отдельности. При этом в процессе выработки решения анализу подвергаются поставленная задача, данные обстановки.

Анализ неразрывно связан с синтезом - объединением всех данных, полученных в результате анализа. Синтез - это не простое суммирование результатов анализа. Задача его состоит в мысленном воспроизведение основных связей между элементами обстановки. Синтез дает - возможность вскрыть сущность процессов, установить причинно-следственные связи, прогнозировать развитие действий.

Анализ и синтез тесно переплетаются с индукцией и дедукцией. Индукция - движение мысли от частного к общему, от ряда факторов к закону. Дедукция, наоборот, идет от общего к частному, от закона к отдельным его проявлениям. Индуктивный прием используется в тех случаях, когда на основе частного фактора можно сделать общие выводы, установить взаимосвязь между отдельными явлениями и каким-либо законом. Анализируя обстановку, необходимо следовать то от частного к общему (индукция), то от общего к частному (дедукция), стремясь установить взаимосвязь между явлениями обстановки и законом.

В процессе выработки решения можно использовать абстрагирование - способность отвлечься от совокупности факторов и сосредоточить внимание на каком-либо одном вопросе. При абстракции хотя и достигается частные цели, однако они не могут служить основанием для решения. Поэтому наряду с абстракцией должна применяться конкретизация - увязка того или иного явления с конкретными условиями.

Существенное значение в процессе выработки решений может сыграть аналогия - прием, в котором из сходства двух явлений в одних условиях делается вывод о сходстве этих явлений в других условиях. Однако, аналогия не доказательство, она дает почву для высказывания предположения о возможном развитии характера действий, дает толчок в мышлении.

В ходе выработки решения важно установить причинно-следственные связи между элементами. Причинность - одна из всеобщих форм объективной связи между предметами, явлениями и процессами реальной действительности.

3. Математические модели. - дескриптивные (описательные) модели; - оптимизационные модели; - многокритериальные модели; - игровые модели; - имитационные модели.

Моделируя движение кометы, вторгшейся в Солнечную систему, мы описываем (предсказываем) траекторию ее полета, расстояние, на котором она пройдет от Земли и т.д., т.е. ставим чисто описательные цели. У нас нет никаких возможностей повлиять на движение кометы, что-то изменить.

На другом уровне процессов мы можем воздействовать на них, пытаясь добиться какой-то цели. В этом случае в модель входит один или несколько параметров, доступных нашему влиянию. Например, меняя тепловой режим в зернохранилище, мы можем стремиться подобрать такой, чтобы достичь максимальной сохранности зерна, т.е. оптимизируем процесс.

Часто приходится оптимизировать процесс по нескольким параметрам сразу, причем цели могут быть весьма противоречивыми. Например, зная цены на продукты и потребность человека в пище, организовать питание больших групп людей (в армии, летнем лагере и др.) как можно полезнее и как можно дешевле. Ясно, что эти цели, вообще говоря, совсем не совпадают, т.е. при моделировании будет несколько критериев, между которыми надо искать баланс.

Игровые модели могут иметь отношение не только к детским играм (в том числе и компьютерным), но и к вещам серьезным. Например, полководец перед сражением в условиях наличия неполной информации о противостоящей армии должен разработать план: в каком порядке вводить в бой те или иные части и т.д., учитывая и возможную реакцию противника. Есть специальный достаточно сложный раздел современной математики - теория игр, - изучающий методы принятия решений в условиях неполной информации.

Наконец, бывает, что модель в большой мере подражает реальному процессу, т.е. имитирует его. Например, моделируя изменение (динамику) численности микроорганизмов в колонии, можно рассматривать много отдельных объектов и следить за судьбой каждого из них, ставя определенные условия для его выживания, размножения и т.д. При этом иногда явное математическое описание процесса не используется, заменяясь некоторыми словесными условиями (например, по истечении некоторого отрезка времени микроорганизм делится на две части, а другого отрезка - погибает). Другой пример - моделирование движения молекул в газе, когда каждая молекула представляется в виде шарика, и задаются условия поведения этих шариков при столкновении друг с другом и со стенками (например, абсолютно упругий удар); при этом не нужно использовать никаких уравнений движения. Можно сказать, что чаще всего имитационное моделирование применяется в попытке описать свойства большой системы при условии, что поведение составляющих ее объектов очень просто и четко сформулировано. Математическое описание тогда производится на уровне статистической обработки результатов моделирования при нахождении макроскопических характеристик системы. Такой компьютерный эксперимент фактически претендует на воспроизведение натурного эксперимента; на вопрос "зачем же это делать" можно дать следующий ответ: имитационное моделирование позволяет выделить "в чистом виде" следствия гипотез, заложенных в наши представления о микрособытиях, очистив их от неизбежного в натурном эксперименте влияния других факторов, о которых мы можем даже не подозревать. Если же, как это иногда бывает, такое моделирование включает и элементы математического описания событий на микроуровне, и если исследователь при этом не ставит задачу поиска стратегии регулирования результатов (например, управления численностью колонии микроорганизмов), то отличие имитационной модели от дескриптивной достаточно условно; это, скорее, вопрос терминологии.

Вид модели и степень ее детализации определяется не только свойствами моделируемого объекта, но и целью, с которой выполняется моделирование. Поэтому процесс разработки модели сложной системы состоит в последовательном анализе и моделировании отдельных ее подсистем с последующим установлением связей между этими подсистемами.

Процесс построения моделей представлен на рисунке 1.

На первом этапе создания модели выделяются признаки, характеризующие систему и системообразующие элементы, а также отношения, на которых реализуются эти признаки. Это позволяет определить исследуемый объект как систему. На втором - определяется цель моделирования системы. На третьем этапе на каждом уровне детализации разрабатываются математические модели и модели координаторов для взаимодействия между уровнями. На первом уровне изучают интересующую систему (объект моделирования) и описывают ее содержательно. Такое описание называют концептуальной (содержательной) моделью, представляющей собой словесное описание математической формулировки задачи. Затем формулируют концептуальную модель, для чего разрабатывают структуру модели. Это структурный или топологический уровень формирования модели, на котором модель записывается в виде балансовых соотношений и ограничений. Далее на алгоритмическом уровне разрабатывают алгоритм решения математической модели. Программная реализация которого соответствует следующему уровню детализации – параметрическому, на котором определяются параметры модели. И далее на последнем уровне проводится проверка адекватности модели моделируемому объекту. Основные принципы построения математических моделей.

При построении математических моделей целесообразно придерживаться следующих принципов, выработанных практикой.

Инвариантность информации. Данный принцип означает, что входная информация должна быть независима от параметров моделируемой системы. Иначе говоря, модель должна работать без коррекции в некотором диапазоне значений входной информации.

Преемственность. Каждая последующая модель не должна нарушать свойств объекта, полученного на предыдущих этапах или при использовании других моделей.

Эффективная реализуемость предполагает соответствие точности исходных данных, точности решения задачи и точности результирующей информации. В этой связи следует заметить, что нахождение оптимальных решений для практики часто иллюзорно.

Использование модели для замены исследуемого реального объекта. Возникновение учения о моделировании, его основные цели: прогноз, объяснение и понимание. Классификация по характеру моделируемой стороны объекта и характеру процессов, протекающих в объекте.

Рубрика Экономико-математическое моделирование
Вид реферат
Язык русский
Дата добавления 03.02.2011
Размер файла 222,4 K

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Процесс моделирования предполагает получение и обработку информации об объектах, которые взаимодействуют между собой и внешней средой. В общем случае под объектом понимается все то, на что направлена человеческая деятельность. Другими словами - это все то, что мы воспринимаем как нечто целое, реально существующее, или возникающее в нашем сознании и обладающее определенными свойствами. Свойством называется характерная особенность объекта, которая может быть качественно и количественно оценена исследователем. С точки зрения исследователя свойства делятся на внутренние, называемые параметрами объекта, и внешние, называемые факторами и представляющие собой свойства среды, влияющей на параметры исследуемого объекта или модели. Объект, с целью изучения которого проводятся исследования, называется оригиналом, а объект, исследуемый вместо оригинала для изучения определенных свойств, называется моделью.

Модель - это мысленно представляемая или материально реализованная система, которая, отображая или воспроизводя объект исследования, способна замещать его так, что ее изучение дает новую информацию об этом объекте. Модель, представляющая собой совокупность математических соотношений, называется математической. В конечном итоге под моделью системы понимается описание системы (оригинала), отображающее определенную группу ее свойств. Углубление описания - детализация модели.

Модели и моделирование

Моделирование - это замещение одного объекта другим с целью получения информации о важнейших свойствах объекта-оригинала.

Моделирование - это, во-первых, процесс создания или отыскания в природе объекта, который в некотором смысле может заменить исследуемый объект. Этот промежуточный объект называется моделью. Модель может быть материальным объектом той же или иной природы по отношению к изучаемому объекту (оригиналу). Модель может быть мысленным объектом, воспроизводящим оригинал логическими построениями или математическими формулами и компьютерными программами.

Моделирование, во-вторых, это испытание, исследование модели. То есть, моделирование связано с экспериментом, отличающимся от натурного тем, что в процесс познания включается "промежуточное звено" - модель. Следовательно, модель является одновременно средством эксперимента и объектом эксперимента, заменяющим изучаемый объект.

Моделирование, в-третьих, это перенос полученных на модели сведений на оригинал или, иначе, приписывание свойств модели оригиналу. Чтобы такой перенос был оправдан, между моделью и оригиналом должно быть сходство, подобие.

Подобие может быть физическим, геометрическим, структурным, функциональным и т.д. Степень подобия может быть разной - от тождества во всех аспектах до сходства только в главном. Очевидно, модели не должны воспроизводить полностью все стороны изучаемых объектов. Достижение абсолютной одинаковости сводит моделирование к натурному эксперименту, о возможности или целесообразности которого было уже сказано.

Основные цели моделирования

Прогноз - оценка поведения системы при некотором сочетании ее управляемых и неуправляемых параметров. Прогноз - главная цель моделирования.

Объяснение и лучшее понимание объектов. Здесь чаще других встречаются задачи оптимизации и анализа чувствительности. Оптимизация - это точное определение такого сочетанная факторов и их величин, при котором обеспечиваются наилучший показатель качества системы, наилучшее по какому-либо критерию достижение цели моделируемой системой. Анализ чувствительности - выявление из большого числа факторов тех, которые в наибольшей степени влияют на функционирование моделируемой системы. Исходными данными при этом являются результаты экспериментов с моделью.

Часто модель создается для применения в качестве средства обучения: модели-тренажеры, стенды, учения, деловые игры и т.п.

Моделирование как метод познания применялось человечеством - осознанно или интуитивно - всегда. На стенах древних храмов предков южно-американских индейцев обнаружены графические модели мироздания. Учение о моделировании возникло в средние века. Выдающаяся роль в этом принадлежит Леонардо да Винчи (1452-1519).

Гениальный полководец А. В. Суворов перед атакой крепости Измаил тренировал солдат на модели измаильской крепостной стены, построенной специально в тылу.

Наш знаменитый механик-самоучка И.П. Кулибин (1735-1818) создал модель одноарочного деревянного моста через р. Неву, а также ряд металлических моделей мостов. Они были полностью технически обоснованы и получили высокую оценку российскими академиками Л. Эйлером и Д. Бернулли. К сожалению, ни один из этих мостов не был построен.

Огромный вклад в укрепление обороноспособности нашей страны внесли работы по моделированию взрыва - генерал-инженер Н.Л. Кирпичев, моделированию в авиастроении - М.В. Келдыш, С.В. Ильюшин, А.Н. Туполев и др., моделированию ядерного взрыва - И.В. Курчатов, А.Д. Сахаров, Ю.Б. Харитон и др.

Широко известны работы Н.Н. Моисеева по моделированию систем управления. В частности, для проверки одного нового метода математического моделирования была создана математическая модель Синопского сражения - последнего сражения эпохи парусного флота. В 1833 году адмирал П.С. Нахимов разгромил главные силы турецкого флота. Моделирование на вычислительной машине показало, что Нахимов действовал практически безошибочно. Он настолько верно расставил свои корабли и нанес первый удар, что единственное спасение турок было отступление. Иного выхода у них не было. Они не отступили и были разгромлены.

Сложность и громоздкость технических объектов, которые могут изучаться методами моделирования, практически неограниченны. В последние годы все крупные сооружения исследовалась на моделях - плотины, каналы, Братская и Красноярская ГЭС, системы дальних электропередач, образцы военных систем и др. объекты.

Поучительный пример недооценки моделирования - гибель английского броненосца "Кэптен" в 1870 году. В стремлении еще больше увеличить свое тогдашнее морское могущество и подкрепить империалистические устремления в Англии был разработан суперброненосец "Кэптен". В него было вложено все, что нужно для "верховной власти" на море: тяжелая артиллерия во вращающихся башнях, мощная бортовая броня, усиленное парусное оснащение и очень низкими бортами - для меньшей уязвимости от снарядов противника. Консультант инженер Рид построил математическую модель остойчивости "Кэптена" и показал, что даже при незначительном ветре и волнении ему грозит опрокидывание. Но лорды Адмиралтейства настояли на строительстве корабля. На первом же учении после спуска на воду налетевший шквал перевернул броненосец. Погибли 523 моряка. В Лондоне на стене одного из соборов прикреплена бронзовая плита, напоминающая об этом событии и, добавим мы, о тупоумии самоуверенных лордов Британского Адмиралтейства, пренебрегших результатами моделирования.

Классификация моделей и моделирования

модель реальный объект прогноз

Каждая модель создается для конкретной цели и, следовательно, уникальна. Однако наличие общих черт позволяет сгруппировать все их многообразие в отдельные классы, что облегчает их разработку и изучение. В теории рассматривается много признаков классификации и их количество не установилось. Тем не менее, наиболее актуальны следующие признаки классификации:

- характер моделируемой стороны объекта;

- характер процессов, протекающих в объекте;

- способ реализации модели.

Классификация моделей и моделирования по признаку "характер моделируемой стороны объекта"

В соответствии с этим признаком модели могут быть:

Функциональные модели отображают только поведение, функцию моделируемого объекта. В этом случае моделируемый объект рассматривается как "черный ящик", имеющий входы и выходы. Физическая сущность объекта, природа протекающих в нем процессов, структура объекта остаются вне внимания исследователя, хотя бы потому, что неизвестны. При функциональном моделировании эксперимент состоит в наблюдении за выходом моделируемого объекта при искусственном или естественном изменении входных воздействий. По этим данным и строится модель поведения в виде некоторой математической функции.

Компьютерная шахматная программа - функциональная модель работы человеческого мозга при игре в шахматы.

Структурное моделирование это создание и исследование модели, структура которой (элементы и связи) подобна структуре моделируемого объекта. Как мы выяснили ранее, подобие устанавливается не вообще, а относительно цели исследования. Поэтому она может быть описана на разных уровнях рассмотрения. Наиболее общее описание структуры - это топологическое описание с помощью теории графов.

Учение войск - структурная модель вида боевых действий.

Классификация моделей и моделирования по признаку "характер процессов, протекающих в объекте"

По этому признаку модели могут быть детерминированными или стохастическими, статическими или динамическими, дискретными или непрерывными или дискретно-непрерывными.

Детерминированные модели отображают процессы, в которых отсутствуют случайные воздействия.

Стохастические модели отображают вероятностные процессы и события.

Статические модели служат для описания состояния объекта в какой-либо момент времени.

Динамические модели отображают поведение объекта во времени.

Дискретные модели отображают поведение систем с дискретными состояниями.

Непрерывные модели представляют системы с непрерывными процессами.

Дискретно-непрерывные модели строятся тогда, когда исследователя интересуют оба эти типа процессов.

Очевидно, конкретная модель может быть стохастической, статической, дискретной или какой-либо другой, в соответствии со связями, показанными на рис. 1.

Рис. 1. ? Классификация моделей и моделирования

Классификация моделей и моделирования по признаку "способ реализации модели"

Согласно этому признаку модели делятся на два обширных класса:

- абстрактные (мысленные) модели;

Нередко в практике моделирования присутствуют смешанные, абстрактно-материальные модели.

Абстрактные модели представляют собой определенные конструкции из общепринятых знаков на бумаге или другом материальном носителе или в виде компьютерной программы.

Абстрактные модели, не вдаваясь в излишнюю детализацию, можно разделить на:

Символическая модель - это логический объект, замещающий реальный процесс и выражающий основные свойства его отношений с помощью определенной системы знаков или символов. Это либо слова естественного языка, либо слова соответствующего тезауруса, графики, диаграммы и т.п.

Символическая модель может иметь самостоятельное значение, но, как правило, ее построение является начальным этапом любого другого моделирования.

Математическое моделирование - это процесс установления соответствия моделируемому объекту некоторой математической конструкции, называемой математической моделью, и исследование этой модели, позволяющее получить характеристики моделируемого объекта.

Математическое моделирование - главная цель и основное содержание изучаемой дисциплины.

Математические модели могут быть:

Аналитические модели - это функциональные соотношения: системы алгебраических, дифференциальных, интегро-дифференциальных уравнений, логических условий. Уравнения Максвелла - аналитическая модель электромагнитного поля. Закон Ома - модель электрической цепи.

Преобразование математических моделей по известным законам и правилам можно рассматривать как эксперименты. Решение на основе аналитических моделей может быть получено в результате однократного просчета безотносительно к конкретным значениям характеристик ("в общем виде"). Это наглядно и удобно для выявления закономерностей. Однако для сложных систем построить аналитическую модель, достаточно полно отражающую реальный процесс, удается не всегда. Тем не менее, есть процессы, например, марковские, актуальность моделирования которых аналитическими моделями доказана практикой.

Имитационное моделирование. Создание вычислительных машин обусловило развитие нового подкласса математических моделей - имитационных.

Имитационное моделирование предполагает представление модели в виде некоторого алгоритма - компьютерной программы, - выполнение которого имитирует последовательность смены состояний в системе и таким образом представляет собой поведение моделируемой системы.

Процесс создания и испытания таких моделей называется имитационным моделированием, а сам алгоритм - имитационной моделью.

В чем заключается отличие имитационных и аналитических моделей?

В случае аналитического моделирования ЭВМ является мощным калькулятором, арифмометром. Аналитическая модель решается на ЭВМ.

В случае же имитационного моделирования имитационная модель - программа - реализуется на ЭВМ.

Имитационные модели достаточно просто учитывают влияние случайных факторов. Для аналитических моделей это серьезная проблема. При наличии случайных факторов необходимые характеристики моделируемых процессов получаются многократными прогонами (реализациями) имитационной модели и дальнейшей статистической обработкой накопленной информации. Поэтому часто имитационное моделирование процессов со случайными факторами называют статистическим моделированием.

Если исследование объекта затруднено использованием только аналитического или имитационного моделирования, то применяют смешанное (комбинированное), аналитико-имитационное моделирование. При построении таких моделей процессы функционирования объекта декомпозируются на составляющие подпроцессы и для которых возможно используют аналитические модели, а для остальных подпроцессов строят имитационные модели.

Материальное моделирование основано на применении моделей, представляющих собой реальные технические конструкции. Это может быть сам объект или его элементы (натурное моделирование). Это может быть специальное устройство - модель, имеющая либо физическое, либо геометрическое подобие оригиналу. Это может быть устройство иной физической природы, чем оригинал, но процессы в котором описываются аналогичными математическими соотношениями. Это так называемое аналоговое моделирование. Такая аналогия наблюдается, например, между колебаниями антенны спутниковой связи под ветровой нагрузкой и колебанием электрического тока в специально подобранной электрической цепи.

Нередко создаются материально-абстрактные модели. Та часть операции, которая не поддается математическому описанию, моделируется материально, остальная - абстрактно. Таковы, например, командно-штабные учения, когда работа штабов представляет собой натурный эксперимент, а действия войск отображаются в документах.

Классификация по рассмотренному признаку - способу реализации модели - показана на рис. 2.

Рис. 2. ? Классификация по способу реализации модели

1. Кочергин А.Н. Моделирование мышления. - М.: Наука, 2002.

2. Философия: Учебное пособие для высших учебных заведений. - Р-н/Д.: Феникс, 2002.

3. Тумаркин А. Философские аспекты моделирования как метода познания окружающего мира. Применение моделирования в различных отраслях человеческого знания и деятельности. ? 2005. (Новая версия)

4. Эксперимент. Модель. Теория. ? М., Берлин: Наука, 2000.

Подобные документы

Главные требования к математическим моделям в САП. Применение принципа декомпозиции при математическом моделировании сложного технического объекта. Разработка приближенных моделей объектов на микроуровне. Сущность метода сеток, метода конечных элементов.

презентация [705,6 K], добавлен 09.02.2015

Характеристика основных принципов создания математических моделей гидрологических процессов. Описание процессов дивергенции, трансформации и конвергенции. Ознакомление с базовыми компонентами гидрологической модели. Сущность имитационного моделирования.

презентация [60,6 K], добавлен 16.10.2014

Определение, цели и задачи эконометрики. Этапы построения модели. Типы данных при моделировании экономических процессов. Примеры, формы и моделей. Эндогенные и экзогенные переменные. Построение спецификации неоклассической производственной функции.

презентация [1010,6 K], добавлен 18.03.2014

Основной тезис формализации. Моделирование динамических процессов и имитационное моделирование сложных биологических, технических, социальных систем. Анализ моделирования объекта и выделение всех его известных свойств. Выбор формы представления модели.

реферат [493,5 K], добавлен 09.09.2010

Основные понятия и типы моделей, их классификация и цели создания. Особенности применяемых экономико-математических методов. Общая характеристика основных этапов экономико-математического моделирования. Применение стохастических моделей в экономике.

реферат [91,1 K], добавлен 16.05.2012

Метод имитационного моделирования, его виды, основные этапы и особенности: статическое и динамическое представление моделируемой системы. Исследование практики использования методов имитационного моделирования в анализе экономических процессов и задач.

курсовая работа [54,3 K], добавлен 26.10.2014

Основные этапы математического моделирования, классификация моделей. Моделирование экономических процессов, основные этапы их исследования. Системные предпосылки формирования модели системы управления маркетинговой деятельностью предприятия сферы услуг.

Содержание

Введение
Модель
Классификация моделей
Моделирование
Этапы математического моделирования
Пример математической модели
Заключение
Список литературы.

Прикрепленные файлы: 1 файл

Модели_и_моделирование..docx

ФАКУЛЬТЕТ АВТОМАТИКИ И ВЫЧИСЛИТЕЛЬНОЙ ТЕХНИКИ

КАФЕДРА ВЫЧИСЛИТЕЛЬНОЙ ТЕХНИКИ

Новосибирск 2013 г.

  1. Модель
  2. Классификация моделей
  3. Моделирование
  4. Этапы математического моделирования
  5. Пример математической модели

Целями данной работы является определение понятий терминов Модель и Моделирование, рассмотрение типа и классификации модели, изучение этапов моделирования.

В первой главе рассмотрим причины использования модели, требования к построению модели.

Вторая глава посвящена рассмотрению классификации моделей. Обозначим цели описательных и нормативных моделей, формы предоставления и их функциональное назначение.

Моделирование является темой третьей главы. Рассмотрим разнообразие применения моделирования в деятельности человека, виды моделирования. Отдельно изучим компьютерное моделирование.

В четвертой главе показаны этапы математического моделирования, в пятой показан пример математической модели.

Первая причина — сложность реальных объектов. Число факторов, которые относятся к решаемой проблеме, выходит за пределы человеческих возможностей. Поэтому одним из выходов (а часто единственным) в сложившейся ситуации является упрощение ситуации с помощью моделей, в результате чего уменьшается разнообразие этих факторов до уровня восприимчивости специалиста.

Вторая причина — необходимость проведения экспериментов. На практике встречается много ситуаций, когда экспериментальное исследование объектов ограничено высокой стоимостью или вовсе невозможно (опасно, вредно, ограниченность науки и техники на современном этапе).

Среди других причин можно назвать следующие:

• исследуемый объект либо очень велик (модель Солнечной системы), либо очень мал (модель атома);

• процесс протекает очень быстро (модель двигателя внутреннего сгорания) или очень медленно (геологические модели);

• исследование объекта может привести к его разрушению (модель самолета, автомобиля).

Построение и исследование моделей, то есть моделирование, облегчает изучение имеющихся в реальном устройстве (процессе) свойств и закономерностей. Применяют для нужд познания (созерцания, анализа и синтеза).

Моделирование является обязательной частью исследований и разработок, неотъемлемой частью нашей жизни, поскольку сложность любого материального объекта и окружающего его мира бесконечна вследствие неисчерпаемости материи и форм её взаимодействия внутри себя и с внешней средой.

Одни и те же устройства, процессы, явления и т. д. могут иметь много разных видов моделей. Как следствие, существует много названий моделей, большинство из которых отражает решение некоторой конкретной задачи

Разные науки исследуют объекты и процессы под разным углом зрения и строят различные типы моделей. В физике изучаются процессы взаимодействия и движения объектов, в химии — их внутреннее строение, в биологии — поведение живых организмов.

С другой стороны, разные объекты могут описываться одной моделью. Так, в механике различные материальные тела (от планеты до песчинки) могут рассматриваться как материальные точки.
Один и тот же объект может иметь множество моделей, а разные объекты могут описываться одной моделью.

Моделирование всегда предполагает принятие допущений той или иной степени важности. При этом должны удовлетворяться следующие требования к моделям:

  • адекватность, то есть соответствие модели исходной реальной системе и учет, прежде всего, наиболее важных качеств, связей и характеристик. Оценить адекватность выбранной модели, особенно, например, на начальной стадии проектирования, когда вид создаваемой системы ещё неизвестен, очень сложно. В такой ситуации часто полагаются на опыт предшествующих разработок или применяют определенные методы, например, метод последовательных приближений;
  • точность, то есть степень совпадения полученных в процессе моделирования результатов с заранее установленными, желаемыми. Здесь важной задачей является оценка потребной точности результатов и имеющейся точности исходных данных, согласование их как между собой, так и с точностью используемой модели;
  • универсальность, то есть применимость модели к анализу ряда однотипных систем в одном или нескольких режимах функционирования. Это позволяет расширить область применимости модели для решения большего круга задач;
  • целесообразная экономичность, то есть точность получаемых результатов и общность решения задачи должны увязываться с затратами на моделирование. И удачный выбор модели, как показывает практика, — результат компромисса между отпущенными ресурсами и особенностями используемой модели;
  • и др.

Выбор модели и обеспечение точности моделирования считается одной из самых важных задач моделирования.

2. Классификация моделей

Человек в своей деятельности обычно вынужден решать две задачи — экспертную и конструктивную.

В экспертной задаче на основании имеющейся информации описывается прошлое, настоящее и предсказывается будущее. Суть конструктивной задачи заключается в том, чтобы создать нечто с заданными свойствами.

Для решения экспертных задач применяют так называемые описательные модели, а для решения конструктивных — нормативные.

Описательные модели (дескриптивные, познавательные) предназначены для описания свойств или поведения реальных (существующих) объектов. Они являются формой представления знаний о действительности.

Примеры. План города, отчет о деятельности фирмы, психологическая характеристика личности.

Можно назвать следующие цели описательного моделирования в зависимости от решаемых задач:

• изучение объекта (научные исследования) — наиболее полно и точно отразить свойства объекта;

• управление — наиболее точно отразить свойства объекта в рабочем диапазоне изменения его параметров;

• прогнозирование — построить модель, способную наиболее точно прогнозировать поведение объекта в будущем;

• обучение - отразить в модели изучаемые свойства объекта. Построение описательной модели происходит по следующей схеме: наблюдение, кодирование, фиксация.

Моделировать можно не только то, что существует, но и то, чего еще нет. Нормативные модели (прескриптивные, прагматические) предназначены для указания целей деятельности и определенного порядка (алгоритма) действий для их достижения.

Цель — образ желаемого будущего, т. е. модель состояния, на реализацию которого и направлена деятельность.

Алгоритм — образ (модель) будущей деятельности.

Примеры. Проекты машин, зданий; планы застройки; законы; уставы организаций и должностные инструкции, бизнес-планы, программы действий, управленческие решения.

Кроме того, познавательные и прагматические модели можно классифицировать по характеру выполняемых функций, форме, зависимости объекта моделирования от времени.

Функциональное назначение моделей.

Можно выделить следующие функции, выполняемые моделями:

• исследовательская — применяется в научном познании;

• практическая — применяется в практической деятельности (проектировании, управлении и т. п.);

• тренинговая — используется для тренировки практических умений и навыков специалистов в различных областях;

• обучения — для формирования у обучаемых знаний, умений и навыков.

Формы представления моделей.

Модели по форме бывают:

• физические — материальные объекты, имеющие сходство с оригиналом (модель самолета, которая исследуется в аэродинамической трубе; модель плотины);

• словесные (вербальные) — словесное описание чего-либо (внешность человека, принцип работы устройства, структура предприятия);

• графические — описание в виде графических изображений (схемы, карты, графики, диаграммы);

• знаковые — описание в виде символов и знаков (дорожные знаки, условные обозначения на схемах, математические соотношения). Разновидностью знаковых моделей являются математические модели. Математическая модель (или математическое описание) - это система математических соотношений, описывающих изучаемый процесс или явление.

Моделирование — исследование объектов познания на их моделях; построение и изучении моделей реально существующих объектов, процессов или явлений с целью получения объяснений этих явлений, а также для предсказания явлений, интересующих исследователя.

  • Информационное моделирование
  • Компьютерное моделирование
  • Математическое моделирование
  • Молекулярное моделирование
  • Цифровое моделирование
  • Логическое моделирование
  • Психологическое моделирование
  • Статистическое моделирование
  • Структурное моделирование
  • Физическое моделирование
  • Экономико-математическое моделирование
  • Имитационное моделирование
  • Графическое и геометрическое моделирование
  • Натурное моделирование

• концептуальное моделирование, при котором с помощью некоторых специальных знаков, символов, операций над ними или с помощью естественного или искусственного языков истолковывается основная мысль (концепция) относительно исследуемого объекта;

Чтобы некоторая материальная конструкция могла быть моделью, т.е. замещала в каком-то отношении оригинал, между оригиналом и моделью должно быть установлено отношение подобия. Существуют разные способы установления такого подобия, что придает моделям особенности, специфичные для каждого способа.

Прежде всего, это подобие, устанавливаемое в процессе создания модели. Назовем такое подобие прямым. Примером такого подобия являются фотографии, масштабированные модели самолетов, кораблей, макеты зданий, выкройки, куклы и т.д.

Следует помнить, что как бы хороша ни была модель, она все-таки лишь заменитель оригинала, только в определенном отношении. Даже тогда, когда модель прямого подобия выполнена из того же материала, что и оригинал, т.е. подобна ему субстратно, возникают проблемы переноса результатов моделирования на оригинал. Например, при испытании уменьшенной модели самолета в аэродинамической трубе задача пересчета данных модельного эксперимента становится нетривиальной и возникает разветвленная, содержательная теория подобия, позволяющая привести в соответствие масштабы и условия эксперимента, скорость потока, вязкость и плотность воздуха. Трудно достигается взаимозаменяемость модели и оригинала в фотокопиях произведений искусства, голографических изображениях предметов искусства.

Второй тип подобия между моделью и оригиналом называется косвенным. Косвенное подобие между оригиналом и моделью объективно существует в природе и обнаруживается в виде достаточной близости или совпадения их абстрактных математических моделей и вследствие этого широко используется в практике реального моделирования. Наиболее характерным примером может служить электромеханическая аналогия между маятником и электрическим контуром.

Оказалось, что многие закономерности электрических и механических процессов описываются одинаковыми уравнениями, различие состоит в разной физической интерпретации переменных, входящих в это уравнение. Роль моделей, обладающих косвенным подобием, очень велика и роль аналогий (моделей косвенного подобия) в науке и практике трудно переоценить. Аналоговые вычислительные машины позволяют найти решение почти всякого дифференциального уравнения, представляя собой, таким образом, модель, аналог процесса, описываемого этим уравнением. Использование электронных аналогов в практике определяется тем, что электрические сигналы легко измерить и зафиксировать, что дает известные преимущества модели.

Например, сигналом наступления кочевников у древних славян служили костры на курганах. Бумажные денежные знаки могут играть роль модели стоимости только до тех пор, пока в среде их обращения существуют правовые нормы, поддерживающие их функционирование. Керенки в настоящее время имеют только историческую ценность, но это не деньги, в отличие от царских золотых монет, которые представляют материальную ценность из-за наличия благородного металла. Особенно наглядна условность знаковых моделей: цветок в окне явочной квартиры Штирлица означал провал явки, ни сорт, ни цвет не имели никакого отношения к знаковой функции цветка.

1.4. Адекватность моделей

Модель, с помощью которой успешно достигается поставленная цель, будем называть адекватной этой цепи. Адекватность означает, что требования полноты, точности и правильности (истинности) модели выполнены не вообще, а лишь в той мере, которая достаточна достижения поставленной цели.

В ряде случаев удается ввести меру адекватности некоторых целей, т.е. указать способ сравнения двух моделей по степени успешности достижения цели с их помощью. Если к тому же есть способ количественно выразить меру адекватности, то задача улучшения модели существенно облегчается. Именно в таких случаях можно количественно ставить, вопросы об идентификации модели т.e. о нахождении в заданном классе моделей наиболее адекватной, об исследовании чувствительности и устойчивости моделей т.e. зависимости меры адекватности модели от ее точности, об адаптации моделей, т.е. подстройке параметров модели с целью повышения ее точности.

Приближенность модели не следует путать с адекватностью. Приближенность модели может быть очень высокой, но во всех случаях модель - это другой объект и различия неизбежны (единственной совершенной моделью любого объекта является сам объект). Величину, меру, степень приемлемости различия можно ввести, только соотнося его с целью моделирования. Так некоторые подделки произведений искусства даже эксперты не могут отличить от оригинала, но все-таки это всего лишь подделка, и с точки зрения вложения капитала не представляет никакой ценности, хотя для любителей искусства ничем не отличается от оригинала. У английского фельдмаршала Монтгомери во время войны был двойник, появление которого на разных участках фронта намеренно дезинформировало разведку немцев.

Упрощение является сильным средством для выявления главных эффектов в исследуемом явлении: это видно на примере таких явлений физики, как идеальный газ, абсолютно упругое тело, математический маятник и абсолютно твердый рычаг.

Есть еще один, довольно загадочный, аспект упрощенности модели. Почему-то оказывается, что из двух моделей, одинаково хорошо описывающих систему, та модель, которая проще, ближе к истине. Геоцентрическая модель Птоломея позволяла рассчитать движение планет, хотя и по очень громоздким формулам, с переплетением сложных циклов. Переход к гелиоцентрической модели Коперника значительно упростил расчеты. Древние говорили, что простота - печать истины.

Читайте также: