Методы построения сечений реферат

Обновлено: 02.07.2024

Сечение — это плоская фигура, которая образуется при пересечении пространственной фигуры плоскостью и граница которой лежит на поверхности пространственной фигуры.

Замечание

Для построения сечений различных пространственных фигур необходимо помнить основные определения и теоремы о параллельности и перпендикулярности прямых и плоскостей, а также свойства пространственных фигур. Напомним основные факты.
Для более подробного изучения рекомендуется ознакомиться с темами “Введение в стереометрию. Параллельность” и “Перпендикулярность. Углы и расстояния в пространстве”.

Важные определения

1. Две прямые в пространстве параллельны, если они лежат в одной плоскости и не пересекаются.

2. Две прямые в пространстве скрещиваются, если через них нельзя провести плоскость.

3. Прямая и плоскость параллельны, если они не имеют общих точек.

4. Две плоскости параллельны, если они не имеют общих точек.

5. Две прямые в пространстве называются перпендикулярными, если угол между ними равен \(90^\circ\) .

6. Прямая называется перпендикулярной плоскости, если она перпендикулярна любой прямой, лежащей в этой плоскости.

7. Две плоскости называются перпендикулярными, если угол между ними равен \(90^\circ\) .

Важные аксиомы

1. Через три точки, не лежащие на одной прямой, проходит плоскость, и притом только одна.

2. Через прямую и не лежащую на ней точку проходит плоскость, и притом только одна.

3. Через две пересекающиеся прямые проходит плоскость, и притом только одна.

Важные теоремы

1. Если прямая \(a\) , не лежащая в плоскости \(\pi\) , параллельна некоторой прямой \(p\) , лежащей в плоскости \(\pi\) , то она параллельна данной плоскости.



2. Пусть прямая \(p\) параллельна плоскости \(\mu\) . Если плоскость \(\pi\) проходит через прямую \(p\) и пересекает плоскость \(\mu\) , то линия пересечения плоскостей \(\pi\) и \(\mu\) — прямая \(m\) — параллельна прямой \(p\) .



3. Если две пересекающиеся прямых из одной плоскости параллельны двум пересекающимся прямым из другой плоскости, то такие плоскости будут параллельны.

4. Если две параллельные плоскости \(\alpha\) и \(\beta\) пересечены третьей плоскостью \(\gamma\) , то линии пересечения плоскостей также параллельны:


\[\alpha\parallel \beta, \ \alpha\cap \gamma=a, \ \beta\cap\gamma=b \Longrightarrow a\parallel b\]

5. Пусть прямая \(l\) лежит в плоскости \(\lambda\) . Если прямая \(s\) пересекает плоскость \(\lambda\) в точке \(S\) , не лежащей на прямой \(l\) , то прямые \(l\) и \(s\) скрещиваются.



6. Если прямая перпендикулярна двум пересекающимся прямым, лежащим в данной плоскости, то она перпендикулярна этой плоскости.

7. Теорема о трех перпендикулярах.

Пусть \(AH\) – перпендикуляр к плоскости \(\beta\) . Пусть \(AB, BH\) – наклонная и ее проекция на плоскость \(\beta\) . Тогда прямая \(x\) в плоскости \(\beta\) будет перпендикулярна наклонной тогда и только тогда, когда она перпендикулярна проекции.



8. Если плоскость проходит через прямую, перпендикулярную другой плоскости, то она перпендикулярна этой плоскости.

Замечание

Еще один важный факт, часто использующийся для построения сечений:

для того, чтобы найти точку пересечения прямой и плоскости, достаточно найти точку пересечения данной прямой и ее проекции на эту плоскость.



Для этого из двух произвольных точек \(A\) и \(B\) прямой \(a\) проведем перпендикуляры на плоскость \(\mu\) – \(AA'\) и \(BB'\) (точки \(A', B'\) называются проекциями точек \(A,B\) на плоскость). Тогда прямая \(A'B'\) – проекция прямой \(a\) на плоскость \(\mu\) . Точка \(M=a\cap A'B'\) и есть точка пересечения прямой \(a\) и плоскости \(\mu\) .

Причем заметим, что все точки \(A, B, A', B', M\) лежат в одной плоскости.

Пример 1.

Дан куб \(ABCDA'B'C'D'\) . \(A'P=\dfrac 14AA', \ KC=\dfrac15 CC'\) . Найдите точку пересечения прямой \(PK\) и плоскости \(ABC\) .

Решение

1) Т.к. ребра куба \(AA', CC'\) перпендикулярны \((ABC)\) , то точки \(A\) и \(C\) — проекции точек \(P\) и \(K\) . Тогда прямая \(AC\) – проекция прямой \(PK\) на плоскость \(ABC\) . Продлим отрезки \(PK\) и \(AC\) за точки \(K\) и \(C\) соответственно и получим точку пересечения прямых – точку \(E\) .



2) Найдем отношение \(AC:EC\) . \(\triangle PAE\sim \triangle KCE\) по двум углам ( \(\angle A=\angle C=90^\circ, \angle E\) – общий), значит, \[\dfrac=\dfrac\]

Если обозначить ребро куба за \(a\) , то \(PA=\dfrac34a, \ KC=\dfrac15a, \ AC=a\sqrt2\) . Тогда:

Пример 2.

Дана правильная треугольная пирамида \(DABC\) с основанием \(ABC\) , высота которой равна стороне основания. Пусть точка \(M\) делит боковое ребро пирамиды в отношении \(1:4\) , считая от вершины пирамиды, а \(N\) – высоту пирамиды в отношении \(1:2\) , считая от вершины пирамиды. Найдите точку пересечения прямой \(MN\) с плоскостью \(ABC\) .

Решение

1) Пусть \(DM:MA=1:4, \ DN:NO=1:2\) (см. рисунок). Т.к. пирамида правильная, то высота падает в точку \(O\) пересечения медиан основания. Найдем проекцию прямой \(MN\) на плоскость \(ABC\) . Т.к. \(DO\perp (ABC)\) , то и \(NO\perp (ABC)\) . Значит, \(O\) – точка, принадлежащая этой проекции. Найдем вторую точку. Опустим перпендикуляр \(MQ\) из точки \(M\) на плоскость \(ABC\) . Точка \(Q\) будет лежать на медиане \(AK\) .
Действительно, т.к. \(MQ\) и \(NO\) перпендикулярны \((ABC)\) , то они параллельны (значит, лежат в одной плоскости). Следовательно, т.к. точки \(M, N, O\) лежат в одной плоскости \(ADK\) , то и точка \(Q\) будет лежать в этой плоскости. Но еще (по построению) точка \(Q\) должна лежать в плоскости \(ABC\) , следовательно, она лежит на линии пересечения этих плоскостей, а это – \(AK\) .



Значит, прямая \(AK\) и есть проекция прямой \(MN\) на плоскость \(ABC\) . \(L\) – точка пересечения этих прямых.

2) Заметим, что для того, чтобы правильно нарисовать чертеж, необходимо найти точное положение точки \(L\) (например, на нашем чертеже точка \(L\) лежит вне отрезка \(OK\) , хотя она могла бы лежать и внутри него; а как правильно?).

Т.к. по условию сторона основания равна высоте пирамиды, то обозначим \(AB=DO=a\) . Тогда медиана \(AK=\dfrac2a\) . Значит, \(OK=\dfrac13AK=\dfrac 1a\) . Найдем длину отрезка \(OL\) (тогда мы сможем понять, внутри или вне отрезка \(OK\) находится точка \(L\) : если \(OL>OK\) – то вне, иначе – внутри).

а) \(\triangle AMQ\sim \triangle ADO\) по двум углам ( \(\angle Q=\angle O=90^\circ, \ \angle A\) – общий). Значит,

\[\dfrac=\dfrac=\dfrac=\dfrac 45 \Rightarrow MQ=\dfrac 45a, \ AQ=\dfrac 45\cdot \dfrac 1a\]

Значит, \(QK=\dfrac2a-\dfrac 45\cdot \dfrac 1a=\dfrac7a\) .

б) Обозначим \(KL=x\) .
\(\triangle LMQ\sim \triangle LNO\) по двум углам ( \(\angle Q=\angle O=90^\circ, \ \angle L\) – общий). Значит,

Следовательно, \(OL>OK\) , значит, точка \(L\) действительно лежит вне отрезка \(AK\) .

Замечание

Не стоит пугаться, если при решении подобной задачи у вас получится, что длина отрезка отрицательная. Если бы в условиях предыдущей задачи мы получили, что \(x\) – отрицательный, это как раз значило бы, что мы неверно выбрали положение точки \(L\) (то есть, что она находится внутри отрезка \(AK\) ).

Пример 3

Дана правильная четырехугольная пирамида \(SABCD\) . Найдите сечение пирамиды плоскостью \(\alpha\) , проходящей через точку \(C\) и середину ребра \(SA\) и параллельной прямой \(BD\) .

Решение

1) Обозначим середину ребра \(SA\) за \(M\) . Т.к. пирамида правильная, то высота \(SH\) пирамиды падает в точку пересечения диагоналей основания. Рассмотрим плоскость \(SAC\) . Отрезки \(CM\) и \(SH\) лежат в этой плоскости, пусть они пересекаются в точке \(O\) .



Для того, чтобы плоскость \(\alpha\) была параллельна прямой \(BD\) , она должна содержать некоторую прямую, параллельную \(BD\) . Точка \(O\) находится вместе с прямой \(BD\) в одной плоскости – в плоскости \(BSD\) . Проведем в этой плоскости через точку \(O\) прямую \(KP\parallel BD\) ( \(K\in SB, P\in SD\) ). Тогда, соединив точки \(C, P, M, K\) , получим сечение пирамиды плоскостью \(\alpha\) .

2) Найдем отношение, в котором делят точки \(K\) и \(P\) ребра \(SB\) и \(SD\) . Таким образом мы полностью определим построенное сечение.

Заметим, что так как \(KP\parallel BD\) , то по теореме Фалеса \(\dfrac=\dfrac\) . Но \(SB=SD\) , значит и \(SK=SP\) . Таким образом, можно найти только \(SP:PD\) .

Рассмотрим \(\triangle ASC\) . \(CM, SH\) – медианы в этом треугольнике, следовательно, точкой пересечения делятся в отношении \(2:1\) , считая от вершины, то есть \(SO:OH=2:1\) .



Теперь по теореме Фалеса из \(\triangle BSD\) : \(\dfrac=\dfrac=\dfrac21\) .

3) Заметим, что по теореме о трех перпендикулярах \(CO\perp BD\) как наклонная ( \(OH\) – перпендикуляр на плоскость \(ABC\) , \(CH\perp BD\) – проекция). Значит, \(CO\perp KP\) . Таким образом, сечением является четырехугольник \(CPMK\) , диагонали которого взаимно перпендикулярны.

Пример 4

Дана прямоугольная пирамида \(DABC\) с ребром \(DB\) , перпендикулярным плоскости \(ABC\) . В основании лежит прямоугольный треугольник с \(\angle B=90^\circ\) , причем \(AB=DB=CB\) . Проведите через прямую \(AB\) плоскость, перпендикулярную грани \(DAC\) , и найдите сечение пирамиды этой плоскостью.

Решение

1) Плоскость \(\alpha\) будет перпендикулярна грани \(DAC\) , если она будет содержать прямую, перпендикулярную \(DAC\) . Проведем из точки \(B\) перпендикуляр на плоскость \(DAC\) — \(BH\) , \(H\in DAC\) .

Проведем вспомогательные \(BK\) – медиану в \(\triangle ABC\) и \(DK\) – медиану в \(\triangle DAC\) .
Т.к. \(AB=BC\) , то \(\triangle ABC\) – равнобедренный, значит, \(BK\) – высота, то есть \(BK\perp AC\) .
Т.к. \(AB=DB=CB\) и \(\angle ABD=\angle CBD=90^\circ\) , то \(\triangle ABD=\triangle CBD\) , следовательно, \(AD=CD\) , следовательно, \(\triangle DAC\) – тоже равнобедренный и \(DK\perp AC\) .

Применим теорему о трех перпендикулярах: \(BH\) – перпендикуляр на \(DAC\) ; наклонная \(BK\perp AC\) , значит и проекция \(HK\perp AC\) . Но мы уже определили, что \(DK\perp AC\) . Таким образом, точка \(H\) лежит на отрезке \(DK\) .



Соединив точки \(A\) и \(H\) , получим отрезок \(AN\) , по которому плоскость \(\alpha\) пересекается с гранью \(DAC\) . Тогда \(\triangle ABN\) – искомое сечение пирамиды плоскостью \(\alpha\) .

2) Определим точное положение точки \(N\) на ребре \(DC\) .

Обозначим \(AB=CB=DB=x\) . Тогда \(BK\) , как медиана, опущенная из вершины прямого угла в \(\triangle ABC\) , равна \(\frac12 AC\) , следовательно, \(BK=\frac12 \cdot \sqrt2 x\) .

Рассмотрим \(\triangle BKD\) . Найдем отношение \(DH:HK\) .



Заметим, что т.к. \(BH\perp (DAC)\) , то \(BH\) перпендикулярно любой прямой из этой плоскости, значит, \(BH\) – высота в \(\triangle DBK\) . Тогда \(\triangle DBH\sim \triangle DBK\) , следовательно

\[\dfrac=\dfrac \Rightarrow DH=\dfrac3x \Rightarrow HK=\dfrac6x \Rightarrow DH:HK=2:1\]



Рассмотрим теперь \(\triangle ADC\) . Медианы треугольника точной пересечения делятся в отношении \(2:1\) , считая от вершины. Значит, \(H\) – точка пересечения медиан в \(\triangle ADC\) (т.к. \(DK\) – медиана). То есть \(AN\) – тоже медиана, значит, \(DN=NC\) .

Метод сечений многогранников в стереометрии используется в задачах на построение. В его основе лежит умение строить сечение многогранника и определять вид сечения.

  1. Метод сечений применяется только для многогранников, так как различные сложные (наклонные) виды сечений тел вращения не входят в программу средней школы.
  2. В задачах используются в основном простейшие многогранники.
  3. Задачи представлены в основном без числовых данных, чтобы создать возможность их многовариантного использования.
  • что значит построить сечение многогранника плоскостью;
  • как могут располагаться относительно друг друга многогранник и плоскость;
  • как задается плоскость;
  • когда задача на построение сечения многогранника плоскостью считается решенной.
  • тремя точками;
  • прямой и точкой;
  • двумя параллельными прямыми;
  • двумя пересекающимися прямыми,

построение плоскости сечения проходит в зависимости от задания этой плоскости. Поэтому все способы построения сечений многогранников можно разделить на методы.

  1. Метод следов.
  2. Метод вспомогательных сечений.
  3. Комбинированный метод.

Первые два метода являются разновидностями Аксиоматического метода построения сечений.

  • построение сечения многогранника плоскостью, проходящей через заданную точку параллельно заданной плоскости;
  • построение сечения, проходящего через заданную прямую параллельно другой заданной прямой;
  • построение сечения, проходящего через заданную точку параллельно двум заданным скрещивающимся прямым;
  • построение сечения многогранника плоскостью, проходящей через заданную прямую перпендикулярно заданной плоскости;
  • построение сечения многогранника плоскостью, проходящей через заданную точку перпендикулярно заданной прямой.
  • Атанасяна Л.С., Бутузова В.Ф., Кадомцева С.Б. и др (Геометрия, 10-11);
  • Погорелова А.В. (Геометрия, 7-11);
  • Александрова А.Д., Вернера А.Л., Рыжик В.И. (Геометрия, 10-11);
  • Смирновой И.М. (Геометрия, 10-11);
  • Шарыгина И.Ф. (Геометрия, 10-11).

Рассмотрим подробнее учебники Л.С, Атанасяна и Погорелова А.В.

В учебнике Л.С. Атанасяна на тему “Построение сечений многогранников” выделено два часа. В 10 классе в теме “Параллельность прямых и плоскостей” после изучения тетраэдра и параллелепипеда отводится один час на изложение параграфа “Задачи на построение сечений”. Рассматриваются сечения тетраэдра и параллелепипеда. И тема “Параллельность прямых и плоскостей” завершается решением задач на одном или двух часах (всего задач на построение сечений в учебнике восемь).

В учебнике Погорелова А.В. на построение сечений отводится около трех часов в главе “Многогранники”: один – на изучение темы “Изображение призмы и построение ее сечений”, второй – на изучение темы “Построение пирамиды и ее плоских сечений” и третий – на решение задач. В списке задач, приведенных после темы, задач на сечение насчитывается всего около десяти.

Мы предлагаем систему уроков по теме “Построение сечений многогранников” для учебника Погорелова А.В.

  1. Определение сечения многогранников.
  2. Построение сечений призмы, параллелепипеда, пирамиды методом следов. (Как правило в школьном курсе стереометрии используются задачи на построение сечений многогранников, решаемые основными методами. Остальные методы, в связи с их более высоким уровнем сложности, учитель может оставить для рассмотрения на факультативных занятиях или на самостоятельное изучение. В задачах на построение основными методами требуется построить плоскость сечения, проходящую через три точки).
  3. Нахождение площади сечений в многогранниках (без использования теоремы о площади ортогональной проекции многоугольника).
  4. Нахождение площади сечений в многогранниках (с применением теоремы о площади ортогональной проекции многоугольника).

СТЕРЕОМЕТРИЧЕСКИЕ ЗАДАЧИ НА ПОСТРОЕНИЕ СЕЧЕНИЙ МНОГОГРАННИКОВ И МЕТОДИКА ИХ ИСПОЛЬЗОВАНИЯ НА УРОКАХ В 10-11 КЛАССАХ.

(система уроков и факультативных занятий по теме “Построение сечений многогранников”)

Тема урока: “Построение сечений многогранников”.

Цель урока: ознакомление с методами построений сечений многогранников.

Этапы урока:

А) Определение сечения.

Б) Методы построений сечений:

а) метод следов;

б) метод вспомогательных сечений;

в) комбинированный метод.

Вспомним:
- пересечение прямой с плоскостью;
- пересечение плоскостей;
- свойства параллельных плоскостей.

Вопросы к классу:
- Что значит построить сечение многогранника плоскостью?
- Как могут располагаться относительно друг друга многогранник и плоскость?
- Как задается плоскость?
- Когда задача на построение сечения многогранника плоскостью считается решенной?

А) Итак, задача состоит в построении пересечения двух фигур: многогранника и плоскости ( рис.1). Это могут быть: пустая фигура (а), точка (б), отрезок (в), многоугольник (г). Если пересечение многогранника и плоскости есть многоугольник, то этот многоугольник называется сечением многогранника плоскостью.


Будем рассматривать только случай, когда плоскость пересекает многогранник по его внутренности. При этом пересечением данной плоскости с каждой гранью многогранника будет некоторый отрезок. Таким образом, задача считается решенной, если найдены все отрезки, по которым плоскость пересекает грани многогранника.

Исследуйте сечения куба (рис.2) и ответьте на следующие вопросы:


- какие многоугольники получаются в сечении куба плоскостью? (Важно число сторон многоугольника);

[ Предполагаемые ответы: треугольник, четырехугольник, пятиугольник, шестиугольник.]

- может ли в сечении куба плоскостью получиться семиугольник? А восьмиугольник и т.д.? Почему?

Давайте рассмотрим призму и ее возможные сечения плоскостью ( на модели). Какие многоугольники получаются?

Какой можно сделать вывод? Чему равно наибольшее число сторон многоугольника, полученного сечением многогранника с плоскостью?

[ Наибольшее число сторон многоугольника, полученного в сечении многогранника плоскостью, равно числу граней многогранника.]

Б) а) Метод следов заключается в построении следов секущей плоскости на плоскость каждой грани многогранника. Построение сечения многогранника методом следов обычно начинают с построения так называемого основного следа секущей плоскости, т.е. следа секущей плоскости на плоскости основания многогранника.

б) Метод вспомогательных сечений построения сечений многогранников является в достаточной мере универсальным. В тех случаях, когда нужный след (или следы) секущей плоскости оказывается за пределами чертежа, этот метод имеет даже определенные преимущества. Вместе с тем следует иметь ввиду, что построения, выполняемые при использовании этого метода, зачастую получаются “скученными”. Тем не менее в некоторых случаях метод вспомогательных сечений оказывается наиболее рациональным.

Метод следов и метод вспомогательных сечений являются разновидностями аксиоматического метода построения сечений многогранников плоскостью.

в) Суть комбинированного метода построения сечений многогранников состоит в применении теорем о параллельности прямых и плоскостей в пространстве в сочетании с аксиоматическим методом.

А теперь на примере решения задач рассмотрим метод следов.

4. Закрепление материала.

Задача 1.

Построить сечение призмы ABCDA1B1C1D1 плоскостью, проходящей через точки P, Q, R (точки указаны на чертеже (рис.3)).


Построить сечение параллелепипеда ABCDA1B1C1D1 плоскостью, проходящей через точки M, N, P (точки указаны на чертеже (рис.4)).


  1. Точки N и P лежат в плоскости сечения и в плоскости нижнего основания параллелепипеда. Построим прямую, проодящую через эти точки. Эта прямая является следом секущей плоскости на плоскость основания параллелепипеда.
  2. Продолжим прямую, на которой лежит сторона AB параллелепипеда. Прямые AB и NP пересекутся в некоторой точке S. Эта точка принадлежит плоскости сечения.
  3. Так как точка M также принадлежит плоскости сечения и пересекает прямую АА1 в некоторой точке Х.
  4. Точки X и N лежат в одной плоскости грани АА1D1D, соединим их и получим прямую XN.
  5. Так как плоскости граней параллелепипеда параллельны, то через точку M можно провести прямую в грани A1B1C1D1, параллельную прямой NP. Эта прямая пересечет сторону В1С1 в точке Y.
  6. Аналогично проводим прямую YZ, параллельно прямой XN. Соединяем Z с P и получаем искомое сечение – MYZPNX.

Задача 3 ( для самостоятельного решения).

Построить сечение тетраэдра DACB плоскостью, проходящей через точки M, N, P (точки указаны на чертеже (рис.5)).


5. Подведение итогов урока.

Ответьте на вопрос: являются ли закрашенные фигуры сечениями изображенных многогранников плоскостью PQR? И выполните правильное построение (рис. 6).

Вариант 1.






Вариант 2.


Тема урока: НАХОЖДЕНИЕ ПЛОЩАДИ СЕЧЕНИЯ.

Цель урока: познакомить со способами нахождения площади сечения многогранника.

    Актуализация опорных знаний.

Вспомнить теорему о площади ортогональной проекции многоугольника.

- без использования теоремы о площади ортогональной проекции многоугольника;

- с использованием теоремы о площади ортогональной проекции многоугольника.

Вспомним теорему о площади ортогональной проекции многоугольника: площадь ортогональной проекции многоугольника на плоскость равна произведению его площади на косинус угла между плоскостью многоугольника и плоскостью проекции.

Задача 1.

ABCD – правильная треугольная пирамида со стороной основания AB равной а и высотой DH равной h. Постройте сечение пирамиды плоскостью, проходящей через точки D, C и М, где М – середина стороны АВ, и найдите его площадь (рис.7).

Решение.

Сечением пирамиды является треугольник MCD. Найдем его площадь.

  1. Так как основание пирамиды – равносторонний треугольник и точка М – середина стороны, то СМ является высотой и тогда, СМ = .
  2. Площадь треугольника можно найти:


S = 1/2 · DH · CM = 1/2 · =

Рис.7

Задача 2.

Найти площадь сечения куба ABCDA1B1C1D1 с ребром а плоскостью, проходящей через вершину D и точки Е и F на ребрах А1D1 и C1D1 соответственно, если A1E = k · D1E и C1F = k · D1F.

  1. Поскольку точки Е и F принадлежат плоскости сечения и плоскости грани A1B1C1D1, а две плоскости пересекаются по прямой, то прямая EF будет являться следом секущей плоскости на плоскость грани A1B1C1D1 (рис.8).
  2. Аналогично получаются прямые ED и FD.
  3. EDF – искомое сечение.




Задача 3 (для самостоятельного решения).

Построить сечение куба ABCDA1B1C1D1 со стороной а плоскостью, проходящей через точки B, M и N, где Ь – середина ребра АА1, а N – середина ребра СС1.

Сечение строим методом следов.

Площадь сечения находим с помощью теоремы о площади ортогональной проекции многоугольника. Ответ: S = 1/2 · a 2 .


Окружающие нас предметы в большинстве своем не являются плоскими, они расположены в пространстве и не умещаются в какой-то одной плоскости. Любой реальный предмет занимает какую-то часть пространства. Представления об геометрических телах дают предметы, встречающиеся в нашей повседневной жизни. Так, например, кристаллы имеют форму геометрических тел, поверхности которых составлены из многоугольников. Такие поверхности носят название многогранники.

Многогранником называется геометрическое тело, поверхность которого состоит из конечного числа плоских многоугольников. Первые упоминания о многогранниках известны еще за три тысячи лет до нашей эры в Египте и Вавилоне. Достаточно вспомнить знаменитые египетские пирамиды и самую известную из них – пирамиду Хеопса. С древнейших времен представления о красоте связаны с симметрией. Наверное, этим объясняется интерес человека к многогранникам - удивительным символам симметрии, привлекавшим внимание выдающихся мыслителей. Мы можем наблюдать, что многогранники окружают нас повсюду, как в природе, так и в искусстве человечества. Использовать многогранники в архитектуре люди стали еще до новой эры, так как форма куба и параллелепипеда является наиболее органичной для строительства сооружений.

Платоновы тела - трехмерный аналог плоских правильных многоугольников. Платоновыми телами называются выпуклые многогранники, все грани и углы которых равны, причем грани - правильные многоугольники. Существует бесконечно много различных правильных многоугольников, но лишь пять различных правильных многогранников: тетраэдр, гексаэдр, додекаэдр, октаэдр и икосаэдр.

Детали машин и приборов очень часто имеют формы, представляющие собой различные геометрические поверхности. И ногда необходимо выполнить развёртки поверхности полых деталей, усечённых плоскостью, выявить внутренние очертания деталей. Это применяется в раскрое листового материала, из которого изготовляются полые детали. Такие детали обычно представляют собой части всевозможных трубопроводов, вентиляционных устройств, кожухов для закрытия механизмов, ограждения станков и т.п. Сечением поверхности геометрических тел называется плоская фигура, полученная в результате пересечения тела плоскостью и содержащая точки, принадлежащие как поверхности тела, так и секущей плоскости.

В школьном курсе математики многогранники рассматриваются школьниками в 10-11 классах. Учебники содержат задачи на различные методы построений сечений: метод следов, метод внутреннего проектирования. В контрольно-измерительных материалах ЕГЭ присутствуют задачи связанные с сечениями многогранников и вызывают у ребят наибольшую трудность при сдаче ЕГЭ.

Объект исследования – методы построения сечений многогранников.

Предмет исследования – задачи на построение сечений многогранников разными методами.

Теоретическая часть

1.История многогранников

Знания о многогранниках применялись еще с древнейших времён цивилизацией Египта, Месопотамии, Африки: например, были найдены ювелирные украшения в форме многогранников, а их возраст насчитывает несколько тысяч лет, а также игральные кости ( археологами была найдена игральная кость в форме додекаэдра, датируемая 1000 годом до н.э.).

Пифагор Самосский (около 582 года до н.э. – 507 год до н.э.) создал космологическое учение, связавшее правильные многогранники с устройством Вселенной. Пифагорейцы считали, что элементы первоснов бытия имеют форму правильных многогранников, а именно: огонь- тетраэдр, земля-гексаэдр, воздух- октаэдр, вода- икосаэдр. Вся Вселенная, по мнению древних, имела форму додекаэдра. [7]

2. Определение многогранника и его элементов (рёбер, граней, вершин, двухгранных углов и диагоналей)

Существует множество различных определений понятия многогранник, которые встречаются в известных учебниках.

Л.С. Атанасян называет многогранником геометрическое тело, поверхность которого состоит из конечного числа плоских многоугольников, удовлетворяющих следующим двум условиям:

а) никакие два смежных многоугольника не лежат в одной плоскости;

б) объединение всех многоугольников является двумерным многообразием.[2]

Многогранник имеет множества элементов - ребро, грань, вершина, двухгранный угол и диагональ. Определения данных элементов можно увидеть в учебниках Л.С. Атанасян и А.П. Киселева [1,10].

Многоугольники, из которых составлен многогранник, называются его гранями.

Стороны граней называются ребрами, а концы ребер - вершинами многогранника.

Грани многогранника, сходящиеся в одной точке, образуют двугранный угол.

Отрезок, соединяющий две вершины, не принадлежащие одной грани, называется диагональю многогранника.

3.Виды многогранников

3.1.Выпуклые многогранники

Многогранник называется выпуклым, если он является выпуклой фигурой, т.е. вместе с любыми двумя своими точками целиком содержит и соединяющий их отрезок. Отсюда непосредственно следует, что грани выпуклого многогранника - выпуклые многоугольники.

Теорема 1(теорема Эйлера). Для любого выпуклого многогранника имеет место равенство

Где В - число вершин, Р - число рёбер и Г- число граней данного многогранника.

Доказательство [3]. Представим поверхность данного многогранника сделанной из эластичного материала. Удалим (вырежем) одну из граней и оставшуюся поверхность растянем на плоскости. Получим сетку (рис. 1,а), содержащую Г' = Г – 1 многоугольников (которые по-прежнему будут называться гранями), В вершинами и Р рёбрами.

Если для этой сетки выполняется соотношение

То для исходного многогранника будет справедливо требуемое соотношение (*).

Покажем, что соотношение (**) не изменится, если в каком-нибудь многоугольнике сетки провести диагональ. Действительно, после проведения такой диагонали в сетке будет В вершин, Р + 1 ребер и Г' + 1 граней, и, следовательно В - (Р + 1) + ( Г' + 1) = В – Р + Г'. Пользуясь этим свойством, проведем в сетке диагонали, разбивающие входящие в нее многоугольники на треугольники (рис. 1, б), и для полученной сетки покажем выполняемое соотношение (**). Для этого будем последовательно убирать внешние ребра сетки, уменьшая в ней количество треугольников.

При этом возможны два случая:

а) для удаления треугольника АВС требуется снять два ребра, в нашем случае АВ и ВС;

б) для удаления треугольника MKN требуется снять одно ребро, в нашем случае MN .

В обоих случаях соотношение (**) не изменится. Например, в первом случаем после удаления треугольника сетка будет состоять из В - 1 вершин, Р - 2 рёбер и Г '- 1 граней, (В – 1) – (Р – 2) + (Г' – 1) = В – Р + Г'.

Таким образом, удаление одного треугольника не меняет соотношение (**). Продолжая этот процесс удаления треугольников, в конце концов мы придём к сетке, состоящей из одного треугольника. Для такой сетки В=3, Р=3, Г'=1, и, следовательно, В – Р + Г' = 1. Значит соотношение (**) имеет место и для исходной сетки , откуда окончательно получаем, что для данного многогранника справедлива соотношение (*).

3.2. Правильные многогранники

Выпуклый многогранник называется правильным, если все его грани- равные правильные многоугольники и, кроме того, в каждой его вершине сходится одно и то же число рёбер [4].

Многогранник называется правильным, если [5]:

все его грани равны и правильны;

все его многогранные углы равны и правильны.

Теорема 2. Существует только пять видов правильных многогранников.

Доказательство [6]. Пусть m – число сторон каждой грани правильного многогранника; n – число рёбер каждого многогранного угла.

Если принять прямой угол за единицу, то каждый угол какой-либо грани выразится числом 2 - ; но сумма n плоских углов, примыкающих к одной вершине, должна быть меньше четырёх прямых; следовательно, каждый из них должен быть меньше .

2 - m и n больше или равно 3, но оба они не могут быть больше 3; так как для m и n 4, имеем .

Следовательно, по крайней мере одно из чисел m и n равно 3. Допустим, что это будет m : в равенстве (1) можно переставить числа m и n , так как оно симметрично относительно этих двух чисел.

При этом будем иметь:

откуда n n может иметь только значения 3, 4 и 5.

Симметрия неравенства (1) относительно чисел m и n не должна нас удивлять; в самом деле, каждое из этих чисел становится на место другого, если от некоторого многогранника перейти к многограннику, ему сопряжённому. Каждый раз, как m и n будут различны, мы будем иметь пару сопряжённых решений – всего-навсего получим следующие пять решений:

m = n = 3 ;

m , n = 3, 4;

m , n = 3, 5.

В соответствие с теоремой получаем следующие правильные многогранники (Платоновы тела): тетраэдр, куб, октаэдр, додекаэдр, икосаэдр (табл. 1).

Применение метода сечений для многогранников, его влияние на развитие у учащихся пространственных представлений и пространственного мышления. Основные методы построения сечений многогранников. Особенности методов следов и вспомогательных сечений.

Рубрика Педагогика
Вид реферат
Язык русский
Дата добавления 01.06.2015
Размер файла 115,7 K

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Метод сечений, широко известный своей универсальностью, применяется в некоторых разделах физики, в теоретической механике, сопротивлении материалов, гидравлике, в некоторых разделах высшей математики и других естественных науках и технических дисциплинах высшего образования. Этот метод оказывает значительное влияние на развитие у учащихся пространственных представлений и пространственного мышления.

Данный материал характеризуется следующими особенностями:

1. Метод сечений применяется только для многогранников, так как различные сложные (наклонные) виды сечений тел вращения не входят в программу средней школы.

2. В задачах используются в основном простейшие многогранники - с целью доступности решения таких задач как учащимися, так и учителями, а также ввиду возможности применения одних и тех же геометрических конструкций по нескольку раз для изучения различных тем.

3. Учителям, знакомящимся с данным материалом, предлагается самим оценить уровень его трудности в соответствии с уровнем подготовки своих учащихся. Материал как полностью, так и частично, может быть полезен классам и школам всех типов, в том числе и классам с углубленным изучением математики.

4. Задачи представлены в основном без числовых данных, чтобы создать возможность их многовариантного применения. В некоторых задачах намеренно повторяются алгоритмы вычисления различных элементов с целью упрочнения умений и навыков учащихся и стандартизации подхода к решению предложенных и аналогичных задач.

Материал расположен в той последовательности, в какой он применялся для обучения учащихся. Классифицировать его по тематике задач с примерным соблюдением принципа "от простого к сложному" можно весьма условно следующим образом:

При решении задач по стереометрии (геометрии в пространстве) необходимо уделять большое внимание чертежу, способам изображения многогранников.

Данный материал характеризуется следующим особенностями:

Метод сечений применяется только для многогранников, так как различные сложные (наклонные) виды сечений тел вращения не входят в программу средней школы.

В задачах используются в основном простейшие многогранники.

Задачи представлены в основном без числовых данных, чтобы создать возможность их многовариантного использования.

Чтобы решить задачу построения сечения многогранника ученик должен знать:

· что значит построить сечение многогранника плоскостью;

· как могут располагаться относительно друг друга многогранник и плоскость;

· как задается плоскость;

· когда задача на построение сечения многогранника плоскостью считается решенной.

Поскольку плоскость определяется:

· прямой и точкой;

· двумя параллельными прямыми;

· двумя пересекающимися прямыми,

построение плоскости сечения проходит в зависимости от задания этой плоскости. Поэтому все способы построения сечений многогранников можно разделить на методы.

Существует три основных метода построения сечений многогранников:

· Метод вспомогательных сечений.

Первые два метода являются разновидностями Аксиоматического метода построения сечений.

а) Метод следов заключается в построении следов секущей плоскости на плоскость каждой грани многогранника. Построение сечения многогранника методом следов обычно начинают с построения так называемого основного следа секущей плоскости, т.е. следа секущей плоскости на плоскости основания многогранника.

б) Метод вспомогательных сечений построения сечений многогранников является в достаточной мере универсальным. В тех случаях, когда нужный след (или следы) секущей плоскости оказывается за пределами чертежа, этот метод имеет даже определенные преимущества. Вместе с тем следует иметь ввиду, что построения, выполняемые при использовании этого метода, зачастую получаются "скученными”. Тем не менее в некоторых случаях метод вспомогательных сечений оказывается наиболее рациональным.

Метод следов и метод вспомогательных сечений являются разновидностями аксиоматического метода построения сечений многогранников плоскостью.

в) Суть комбинированного метода построения сечений многогранников состоит в применении теорем о параллельности прямых и плоскостей в пространстве в сочетании с аксиоматическим методом.

Можно также выделить следующие методы построения сечений многогранников:

· построение сечения многогранника плоскостью, проходящей через заданную точку параллельно заданной плоскости;

· построение сечения, проходящего через заданную прямую параллельно другой заданной прямой;

· построение сечения, проходящего через заданную точку параллельно двум заданным скрещивающимся прямым;

метод сечение вспомогательное след

· построение сечения многогранника плоскостью, проходящей через заданную прямую перпендикулярно заданной плоскости;

· построение сечения многогранника плоскостью, проходящей через заданную точку перпендикулярно заданной прямой.

Задача 1

ABCD - правильная треугольная пирамида со стороной основания AB равной а и высотой DH равной h. Постройте сечение пирамиды плоскостью, проходящей через точки D, C и М, где М - середина стороны АВ, и найдите его площадь.

Решение.

Сечением пирамиды является треугольник MCD. Найдем его площадь.

Так как основание пирамиды - равносторонний треугольник и точка М - середина стороны, то СМ является высотой и тогда, СМ = .

Площадь треугольника можно найти:

S = 1/2 · DH · CM = 1/2 · =

Задача 2

В правильной четырехугольной призме ABCDA1B1C1D1 сторона основания равна 20, а боковое ребро AA1=7. Точка M принадлежит ребру A1D1 и делит его в отношении 2: 3, считая от вершины D1. Найдите площадь сечения этой призмы плоскостью, проходящей через точки B,D и M.

Решение.

Сперва отметим точку M. Поскольку нам известно, в каком отношении она делит A1D1, то очевидно, что A1M=12,MD1=8.

Затем проведем отрезок BD. Так как плоскости ABCD и A1B1C1D1 параллельны, то секущая плоскость пересечет их по параллельным прямым. Одна из них - BD. Другая пройдет через точку M.

Отметим на отрезке A1B1 току N, такую что MNЎОBD.

Соединим точки M и N с точками D и B соответственно. Полученный четырехугольник - искомое сечение.

Так как MNЃaBD, то MNBD - трапеция.

Площадь трапеции будем искать как половину произведения оснований на высоту. Значит, нам нужны длины оснований.

Длины оснований трапеции BD=202v находим как длину диагонали нижнего основания призмы.

Длину MN легко получим из квадрата A1B1C1D1.

Заметим, что обе боковые стороны трапеции равны (можно рассмотреть грань AA1D1D и убедиться в этом).

Теперь можно найти площадь искомого сечения.

Опустим высоты NH и MH?. MNHH? - прямоугольник, значит, MN=HH? и MH?=NH. Так как при этом равнобедренная, то ЃўDMH?=ЃўBNH. Отсюда получаем, что HB=DH?=4v2.

Из ЃўBNH по теореме Пифагора находим высоту NH=v 113?32=9.

Таким образом, площадь трапеции равна MN+BD2?NH= ( (12v2+20v2) ?9) /2=16v2?9=144v2.

На этом решение задачи окончено

Ответ: 144v2.

Задача. В правильной четырехугольной пирамиде MABCD с вершиной M стороны основания равны 6, а боковые ребра равны 12. Найдите площадь сечения пирамиды плоскостью, проходящей через точку C и середину ребра MA параллельно прямой BD. Ответ 12

Задача. Ребра тетраэдра равны 1. Найдите площадь сечения, проходящего через середины четырех его ребер. Ответ: 0,25.

Подобные документы

Цель и место геометрических построений на проекционном чертеже в обучении стереометрии (анализ программ). Использование информационно-коммуникативных технологий в обучении построения сечений. Разработка презентации по обучению построению сечений пирамиды.

курсовая работа [43,4 K], добавлен 10.01.2015

Методы решения задач на построение в пространстве: задачи на воображаемое построение или на доказательство существования фигур; задачи на проекционном чертеже. Порядок построения плоскости, параллельной данной плоскости и проходящей через данную точку.

курсовая работа [2,0 M], добавлен 17.12.2009

Основы изучения темы "Объемы многогранников" в курсе геометрии 10-11 классов. Развитие пространственных представлений и логического мышления. Методика изучения темы "Объем. Объемы призмы. Объемы прямоугольного параллелепипеда". Цели изучения темы.

дипломная работа [275,4 K], добавлен 24.06.2009

Развитие пространственного воображения у детей как основы формирования навыков анализа, синтеза, логики и мышления. Особенности пространственного восприятия ребенка. Формирование пространственных представлений и практических ориентировок у дошкольников.

презентация [121,5 K], добавлен 10.08.2016

Значение курса черчения в общеобразовательной школе и развитие у учащихся пространственных представлений. Построение, классификация, расположение и обозначение разрезов. Образование и построение вертикального разреза, соединение вида и части разреза.

Геометрические задачи традиционно делятся на три типа:

1) на вычисление;

2) на доказательство;

3) на построение.


1. Метод следов. Суть метода заключается в построении вспомогательной прямой, являющейся изображением линии пересечения секущей плоскости с плоскостью какой-либо грани фигуры. Удобнее всего строить изображение линии пересечения секущей плоскости с плоскостью нижнего основания. Эту линию называют следом секущей плоскости. Используя след, легко построить изображения точек секущей плоскости, находящихся на боковых ребрах или гранях фигуры. Последовательно соединяя образы этих точек, получим изображение искомого сечения.

3. Комбинированный метод построения сечений. Суть комбинированного метода построения сечений многогранников состоит в применении теорем о параллельности прямых и плоскостей в пространстве в сочетании с методом следов и методом вспомогательных сечений.

4. Координатный метод построения сечений. Суть координатного метода заключается в вычислении координат точек пересечения ребер или многогранника с секущей плоскостью, которая задается уравнением плоскости. Уравнение плоскости сечения вычисляется на основе условий задачи.

Из всех перечисленных способов построения сечения наиболее приемлемым является координатный метод, так как он связан с большим объемом вычислений и имеет простой алгоритм реализации, что целесообразно реализовать с помощью ЭВМ. Достаточно знать координаты вершин каждой грани многогранника и три точки задающие плоскость сечения.

2.2 Задание сечений пространственных тел

Как уже говорилось, удобнее всего задавать плоскость сечения тремя точками, причем координаты этих точек должны быть известны или должны вычисляться. Рассмотрим возможные варианты задания точек плоскости сечения:

1) точка расположена вне многогранника;

2) точка находится внутри многогранника;

3) точка расположена в грани многогранника;

4) точка принадлежит ребру многогранника;

5) точка принадлежит диагонали многогранника;

6) точка совпадает с вершиной многогранника.

Условие задания секущей плоскости тремя точками будет выполняться не всегда и в этом случае придется вычислять уравнение плоскости сечения, используя другие методы. В данной работе рассматривается лишь способ задания тремя точками.

2.3 Построение сечений пространственных тел. Алгоритм

Метод построения сечения заключается в нахождении точек пересечения секущей плоскости с гранями многогранника, а вернее с ребрами многогранника. Проверка на пересечение секущей плоскости и ребра многогранника производится следующим образом:

1. Составление уравнения секущей плоскости по трем точкам;

2. Подстановка в уравнение координат концов ребра с целью проверки: расположены ли точки в разных полупространствах относительно плоскости сечения.

3. Нахождение точки пересечения ребра многогранника и плоскости сечения.

Для каждой грани записываются две точки, причем запись производится только для тех граней, где плоскость сечения пересекла два ребра. Далее используя полученные данные, строится многоугольник сечения следующим образом:

1. Берем первую пару точек и ищем следующую пару точек в которой повторяется одна из точек первой пары.

2. Найдя следующую пару проделываем для нее тоже самое, что и для первой пары, но исключаем из поиска первую пару.

3. Проделываем весь алгоритм для каждой пары, пока не останется одна ненайденная точка.

4. Полученная цепочка является последовательным описанием ребер многоугольника сечения.

Далее запоминаем полученный многоугольник, как новую грань многогранника.

2.4 Исследование свойств сечения

Перечислим некоторые свойства сечения (исходя из факта, что сечением является многоугольник).

1. Уравнение плоскости сечения.

2. Количество вершин многоугольника сечения.

3. Площадь многоугольника сечения.

4. Координаты вершин многоугольника сечения.

5. Двугранный угол между плоскостью сечения и гранями многогранника.

6. Углы при вершинах многоугольника сечения.

Некоторые из этих свойств реализованы в программе (1,2,3,4).


Пример: Нахождение площади сечения. Так как строятся сечения выпуклых многогранников, то многоугольник сечения будет тоже выпуклым, т.е. его площадь можно найти разбиением на треугольники (площадь сечения равна сумме площадей треугольников из которых оно составлено).

Глава III. Визуализация

Раздел: Математика
Количество знаков с пробелами: 64015
Количество таблиц: 3
Количество изображений: 8

Читайте также: