Методы контроля качества электроизоляционных жидкостей реферат

Обновлено: 04.07.2024

* В одной порции жидкости (см. также п.1.3).

1. Объем порции уточняется в зависимости от объема рабочей части измерительной ячейки.

2. Число порций для испытаний указывается в стандартах на конкретные виды жидких электроизоляционных материалов.

1.3. Для жидких материалов с вязкостью более 50·10 м/с при 20 °С, определяемой по ГОСТ 33, объем пробы должен быть достаточным для определения пробивного напряжения в шести отдельных порциях жидкости, если об этом не имеется других указаний в стандартах на конкретные виды жидких электроизоляционных материалов.

1.4. Условия подготовки жидкого электроизоляционного материала, продолжительность воздействия среды на жидкость, а также среда, в которой проводится испытание, и температура жидкости в момент определения характеристик должны быть указаны в стандартах на конкретные виды жидких электроизоляционных материалов.

Если нет таких указаний, то при определениях выше 0 °С тангенса угла диэлектрических потерь, диэлектрической проницаемости и удельного объемного электрического сопротивления жидкостей температуры выбираются из следующего ряда: 15-35; 50; 70; 90 (100); 110 и далее до 250 °С через каждые 20 °С.

Определение тангенса угла диэлектрических потерь и удельного объемного электрического сопротивления жидкостей при 15-35 °С допускается только в случае маловязких (менее 50·10 м/с при этих температурах) материалов. Допускается определение диэлектрической проницаемости жидкостей любой вязкости при упомянутых температурах.

Пробивное напряжение жидких электроизоляционных материалов определяется при температуре 15-35 °С.

Перед испытанием плотно закрытый сосуд с пробой жидкости должен быть выдержан в помещении, в котором будут проводиться испытания, до приобретения жидкостью температуры помещения, но не менее 30 мин. При этом сосуд с жидкостью должен быть защищен от воздействия дневного света.

(Измененная редакция, Изм. N 1).

1.5. Определение характеристик при температуре, заданной в стандартах на конкретные виды жидкого электроизоляционного материала и отличающейся от температуры помещения, где проводится испытание, должно проводиться после того, как испытываемая жидкость примет эту температуру, но не позднее чем через 30 мин.

2. МЕТОДЫ ОПРЕДЕЛЕНИЯ ТАНГЕНСА УГЛА ДИЭЛЕКТРИЧЕСКИХ ПОТЕРЬ И ДИЭЛЕКТРИЧЕСКОЙ ПРОНИЦАЕМОСТИ ПРИ ЧАСТОТЕ 50 Гц

2.1. Измерительная ячейка и аппаратура

2.1.1. Ячейки для определения тангенса угла диэлектрических потерь и диэлектрической проницаемости

2.1.1.1. Конструкция ячейки должна быть удобной для ее разборки и тщательной очистки. Электроды должны сохранять первоначальное положение относительно друг друга (т.е. собственная емкость ячейки должна воспроизводиться с погрешностью не более ±3%). Типы измерительных ячеек с указанием габаритных размеров представлены на черт.1, 1а, 2 и 2а.

Схема цилиндрической измерительной ячейки трехзажимного типа, применяемой при определении тангенса угла диэлектрических потерь, диэлектрической проницаемости и удельного объемного электрического сопротивления

1 - измерительный электрод (внутренний); 2 - высоковольтный электрод (внешний); 3 - охранный электрод; 4 - экранирующий колпачок; 5, 6 - прокладка из твердого изоляционного материала с высоким электрическим сопротивлением; 7 - зажимы для соединения с измерительной схемой; 8 - карман для термометра (термопары)

Схема плоской измерительной ячейки трехзажимного типа, применяемой при определении тангенса угла диэлектрических потерь, диэлектрической проницаемости и удельного объемного электрического сопротивления

1 - измерительный электрод (внутренний); 2 - высоковольтный электрод (внешний); 3 - охранный электрод; 4, 5 - прокладки из твердого изоляционного материала с высоким электрическим сопротивлением; 6 - зажимы для соединения с измерительной схемой

Схема цилиндрической измерительной ячейки двухзажимного типа, применяемой при определении тангенса угла диэлектрических потерь, диэлектрической проницаемости и удельного объемного электрического сопротивления

1 - измерительный электрод (внутренний); 2 - высоковольтный электрод (внешний); 3 - прокладка из твердого изоляционного материала с высоким электрическим сопротивлением; 4 - зажимы для соединения с измерительной схемой; 5 - карман для термометра (термопары)

Схема плоской измерительной ячейки двухзажимного типа, применяемой при определении тангенса угла диэлектрических потерь, диэлектрической проницаемости и удельного объемного электрического сопротивления

1 - измерительный электрод (внутренний); 2 - высоковольтный электрод (внешний); 3 - прокладка из твердого изоляционного материала с высоким электрическим сопротивлением; 4 - зажимы для соединения с измерительной схемой; 5 - отверстие для термометра (термопары)

2.1.1.2. Материалы, применяемые при изготовлении ячеек, должны выдерживать требуемые температуры, а изменение температуры не должно влиять на взаимное расположение электродов.

Для изготовления электродов измерительной ячейки должны применяться металлы, устойчивые против коррозии, вызываемой испытуемой жидкостью или промывочным составом, и не оказывающие каталитического влияния на окисление испытуемой жидкости.

2.1.1.3. Шероховатость рабочих поверхностей электродов по ГОСТ 2789 не должна превышать 0,20 мкм на базовой длине =0,25 мм.

2.1.1.4. Твердые электроизоляционные материалы, применяемые в конструкции ячейки, не должны адсорбировать испытываемые жидкости, а также промывочные составы, растворяться в них или оказывать влияния на испытуемые жидкости и результаты измерений.

В качестве твердого электроизоляционного материала применяются плавленый кварц, фторопласт-4 или керамика, отвечающие указанным выше требованиям.

2.1.1.1-2.1.1.4. (Измененная редакция, Изм. N 1).

2.1.1.5. Для измерения тангенса угла диэлектрических потерь и диэлектрической проницаемости допускается использовать измерительные ячейки различных типов (плоскую или цилиндрическую двух- или трехзажимного типа), которые отвечают указанным выше требованиям. Тип измерительной ячейки указывается в стандартах или технических условиях на конкретные виды жидких электроизоляционных материалов.

Ячейки двухзажимного типа допускается использовать при проведении приемо-сдаточных испытаний, входном и периодическом контроле, если такое указание имеется в стандарте на материал. В остальных случаях должны применяться ячейки трехзажимного типа.

2.1.1.6. Обязательными размерами в конструкции измерительной ячейки являются: зазор между измерительными и высоковольтными электродами, который должен быть равен (2±0,1) мм; зазор между измерительным и охранным электродами, который должен быть равен (2±0,1) мм.

2.1.1.7. Электроды ячейки должны иметь контактные зажимы, обеспечивающие надежное соединение электродов с соответствующими элементами схемы. Все соединения ячейки с измерительным прибором выполняются экранированным кабелем. При этом охранный электрод трехзажимного типа ячейки должен быть присоединен к заземлению и экрану кабеля, соединяющего внутренний (измерительный) электрод с измерительным прибором. При применении ячейки двухзажимного типа экран высоковольтного кабеля должен быть присоединен к заземленной клемме.

Изобретение относится к области электроэнергетики, а именно к определению состояния качества жидких диэлектриков (нефтяных, трансформаторных и кабельных масел, синтетических электроизоляционных жидкостей).

Известен способ контроля качества электроизоляционных жидкостей путем определения пробивного напряжения [1]. Для измерения пробивного напряжение используют измерительную ячейку с двумя электродами, которая заполняется жидким диэлектриком, и подается переменное напряжение. Повышая напряжение на электродах, фиксируют напряжение, при котором происходит пробой. Качество масла оценивают по величине пробивного напряжения.

К недостаткам способа контроля качества электроизоляционных жидкостей путем определения пробивного напряжения относится неспособность выявления полярных свойств жидкости.

Другой известный способ оценки качества электроизоляционных жидкостей основан на измерении тангенса угла диэлектрических потерь на переменном напряжении частотой 50 Гц. Для измерения тангенса угла диэлектрических потерь жидких диэлектриков используются схемы с применением мостов переменного тока. Измерение тангенса угла диэлектрических потерь масел служит критерием оценки степени старения масел [1].

Основным недостатком способа оценки качества электроизоляционных жидкостей, основанного на измерении тангенса угла диэлектрических потерь, является то, что тангенс угла диэлектрических потерь электроизоляционных жидкостей измеряется при небольших значениях напряженности электрического поля, обусловленных геометрическими размерами измерительной ячейки (на измерительную ячейку подается не более 2,5 кВ). Указанные способы не выявляют всех недостатков, которые могут проявляться при более высоких значениях напряженности электрического поля.

Для измерения тангенса угла диэлектрических потерь электроизоляционных жидкостей в современной измерительной ячейки требуется 140 мл изоляционной жидкости, что вызывает необходимость неоправданно большого оборота объема жидкости, используемой для анализа, что приводит к загрязнению окружающей среды.

Измерение тангенса угла диэлектрических потерь на переменном напряжении отражает процессы поляризации, имеющие место только в переменном электрическом поле, и не отражает процессов, проходящих при постоянном электрическом поле, характерных для грозовых перенапряжений.

Целью настоящего изобретения является диагностика электроизоляционных жидкостей при высоких значениях напряженности постоянного электрического поля, приводящих к явлениям высоковольтной поляризации для выявления изменения структурного состава жидкости и содержания инородных примесей, с использованием малых объемов проб жидкостей.

Предлагаемый способ диагностики электроизоляционных жидкостей заключается в том, что исследуемая жидкость помещается в измерительную ячейку из диэлектрического материала, установленного на проводящем основании.

В электроизоляционную жидкость помещается электрод игольчатой формы (для создания высоких значений напряженности электрического поля на острие иглы), на который подается высокое постоянное напряжение относительно проводящего основания.

Заряды, возникающие внутри жидкого диэлектрика при поляризации, создают противоЭДС поляризации по отношении к разности потенциалов на электродах. При воздействии на больших уровнях напряженности поля эта противоЭДС поляризации невелика. Однако в резко неоднородном поле высокого напряжения происходит образование сильно сосредоточенных пространственных зарядов, вызывающих появление больших разностей поляризационных потенциалов, направленных противоположно потенциалам, приложенным к электродам, такая разновидность поляризации получила название поляризации высокого напряжения [2].

Диагностируемая электроизоляционная жидкость обрабатывается, таким образом, в течение определенного времени, после чего напряжение снимается и к электроду подключается регистрирующий вольтметр для измерения напряжения пространственных зарядов (реполяризации).

Измеренное напряжение регистрируется до полного его спадания. Амплитуда, скорость и характер изменения напряжения реполяризации зависит от содержания инородных примесей в диэлектрической жидкости.

Положительным свойством данного способа является то, что выявляются свойства анализируемой жидкости при высоких значениях напряженности электрического поля, наиболее приближенных к условиям эксплуатации маслонаполненного оборудования, что позволяет выявить скрытое отрицательное явление примесей, которые не могут быть выявлены измерением пробивного напряжения и тангенса угла диэлектрических потерь.

Применение предложенного способа позволяет оценить остаточный ресурс электроизоляционной жидкости маслонаполенного оборудования по степени увеличения полярных составляющих, учитывая то, что трансформаторное масло является неполярной жидкостью, способ чувствителен к полярным продуктам разложения изоляции.

Существующие ячейки обладают значительным объемом от 300 до 140 мл, в предлагаемом способе необходимый объем испытуемой жидкости не превышает 40 мл. Кроме того, измерительная ячейка может быть встроена непосредственно в маслонаполненное оборудование, что полностью исключит потери жидкости на анализ. Указанный способ контроля состояния электроизоляционной жидкости является неразрушающим и может быть использован в системах непрерывного контроля силовых трансформаторов.

1. Материалы электроизоляционные жидкие. Методы электрических испытаний. ГОСТ 6581-75.

Электроизоляционные жидкости , как показывает их название, представляют собой рабочие жидкости, используемые в электрических аппаратах высокого напряжения. Основное назначение таких жидкостей - обеспечение надежной и длительной электрической изоляции находящихся под напряжением элементов конструкции аппарата и отвод от них тепла, выделяющегося при работе. [1]

Электроизоляционные жидкости этого типа чаще всего представляют собой алкилбензолы весьма сложного строения. Основные физико-химические показатели жидкости на основе додецилбензола характеризуются следующими величинами: плотность - 0 875; вязкость кинематическая при 30 и 75 С - соответственно 8 7 и 2 8 ест; температура застывания - 65 С; tg6 при 100 С - 0 002; pv при 100 С составляет 1ХЮ15 ом-см. Эти жидкости применяются для пропитки сверхвысоковольтных кабелей, в том числе для линий постоянного тока. Алкилбензольные масла отличаются хорошей противо-окислительной стабильностью. [3]

Различают электроизоляционные жидкости на основе по-лиорганосилоксановых ( кремнийнорганических) соединений ( ПОСЖ) и электроизоляционные жидкости на основе хлорированных углеводородов. [4]

Все электроизоляционные жидкости можно подразделять по химической природе на две большие группы: 1) нефтяное масло ( трансформаторное, конденсаторное и кабельное); 2) синтетические жидкости ( хлорированные и фторированные углеводороды, кремнийорганические, фторорганические и др.) - Однако возможно подразделение и по другим признакам: по применению, по верхнему пределу допустимой рабочей температуры, по степени горючести. [6]

Все электроизоляционные жидкости ( масла) не должны содержать водорастворимых кислот, щелочей и механических примесей. [7]

Для электроизоляционных жидкостей применяются голые электроды в виде стержня, двух коаксиальных цилиндров или параллельных пластин. Для электропроводных жидкостей электроды покрывают слоем изоляции, обычно фторопластом. Разработаны гибкие электроды, позволяющие размещать их в сосудах сложной формы. [8]

В состав электроизоляционных жидкостей , помимо полихлордифенилов, в качестве компонента, снижающего вязкость и температуру застывания, входит трихлор-бензол, получаемый непосредственным хлорированием бензола. [9]

Пробой в электроизоляционной жидкости начинается с процесса ударной ионизации молекул жидкости, производимой электронами. [11]

Характерной особенностью кремнийорганических электроизоляционных жидкостей является слабая зависимость их вязкости от температуры, что облегчает пропитку ими волокнистой изоляции. Кремнийорганические жидкости нетоксичны, не обладают коррозийной активностью, но являются горючими веществами. [12]

В отношении электроизоляционных жидкостей нефтяного происхождения , которые широко применяются уже долгие годы, имеется сложившаяся и общепринятая система методов испытаний. К сожалению, этого нельзя сказать о синтетических жидких диэлектриках, которые применяются сравнительно недавно, и стандарты на эти жидкости и методы их испытаний в большинстве случаев еще не разработаны. В табл. 3 - 1 приведен перечень основных параметров жидких диэлектриков и стандартов ( отечественных, иностранных и публикаций МЭК) на методы их определения. [13]

Применяют как электроизоляционную жидкость для заливки конденсаторов. [14]

Жидкие диэлектрики представляют собой электроизоляционные жидкости , используемые в электрических аппаратах высокого напряжения, а также в блоках электронной аппаратуры. Применение электроизоляционных жидкостей позволяет обеспечить надежную и длительную работу электрической изоляции, находящихся под напряжением элементов конструкции, и отводить от них теплоту, выделяющуюся при работе. [15]

Устройство тягового электродвигателя
Рисунок 1. Разрез тягового электродвигателя.
1 — торсионный вал; 2 — фланец; 3 — гайка; 4 —болт; 5 — упругий элемент; 6 — малый подшипниковый щит; 7 — траверса; 8 — поворотное устройство траверсы; 9 — палец; 10 — щеткодержатель; 11 — уравнительные соединения; 12 — обмотка якоря; 13 — остов; 14 — компенсационная обмотка; 15 — обмотка добавочного полюса; 16 — сердечник добавочного полюса; 17 — сердечник главного полюса; 18 — сердечник якоря; 19 — обмотка главного полюса; 20 — большойподшипниковый щит; 21 — задняя нажимная шайба; 22 — крышка подшипника; 23 — нажимное кольцо; 24 — регулировочная прокладка; 25 — манжета; 26, 38 — подшипник; 27 — внутреннее кольцо; 28 — венец зубчатой полумуфты; 29 — зубчатая полумуфта; 30 — сальник; 31 — барабан; 32 — передняя нажимная шайба; 33 —коллектор; 34 — нажимной конус; 35 — болт; 36 — лабиринтное уплотнение; 37 — втулка якоря.
КОНТРОЛЬ ИЗОЛЯЦИИДля выявления дефектов в изоляции обмоток статора и якоря необходим постоянный контроль тяговых двигателей в процессе их эксплуатации. Развитие дефектов в изоляции в основном связано с проникновением в нее влаги. Все методы контроля изоляции можно разделить на разрушающие и неразрушающие. К первым принадлежат испытания повышенным напряжением, вторые проводятся без приложения к изоляциинапряжений, способных привести к пробою. Для выявления возникающих в изоляции дефектов разработаны и применяются следующие методы испытаний изоляции:
а) измерение тангенса диэлектрических потерь tg δ;
б) измерение частичных разрядов в изоляции;
в) измерение емкости;
г) измерение сопротивления изоляции и др.
Измерение тангенса угла диэлектрических потерь.

Чтобы читать весь документ, зарегистрируйся.

Связанные рефераты

Контроль изоляции силовых трансформаторов

.  Контроль изоляции силовых трансформаторов Контроль и оценка.

Контроль качества

. | ПОЛОЖЕНИЕ ОБ ОРГАНИЗАЦИИ УПРАВЛЕНИЯ КАЧЕСТВОМ ИССЛЕДОВАНИЙ В.

Контроль качества

. ВХОДНОЙ КОНТРОЛЬ КАЧЕСТВА ПРОДУКЦИИ Задание 1).

7 Стр. 2 Просмотры

Контроль качества

. 3 1. Организация контроля качества.

19 Стр. 21 Просмотры

Контроль качества

. сопротивление изоляции тяговых двигателей и вспомогательных машин. Нормы значений.

Читайте также: