Метод ветвей и границ реферат

Обновлено: 05.07.2024

Особенности метода ветвей и границ как одного из распространенных методов решения целочисленных задач. Декомпозиция задачи линейного программирования в алгоритме метода ветвей и границ. Графический, симплекс-метод решения задач линейного программирования.
Краткое сожержание материала:

Содержание

Введение

При рассмотрении целого ряда задач, необходимо учитывать требование целочисленности используемых переменных. Методы решения задач линейного программирования не гарантируют целочисленности решения.

Иногда задачи целочисленного линейного программирования решают приближенно. Для этого решают задачу без учета целочисленности переменных, затем в полученном оптимальном решении округляют результаты до ближайших целых значений. Использование таких решений допустимо в тех ситуациях, где значения переменных достаточно велики, и погрешностью округления можно пренебречь. Если значения переменных невелики, то округление может привести к значительному расхождению с оптимальным решением.

Одним из широко распространенных методов решения целочисленных задач является метод ветвей и границ, впервые, он был предложен Ленд и Дойг в 1960 г.

ветвь граница линейное программирование

1. Метод ветвей и границ

Алгоритм метода ветвей и границ предусматривает декомпозицию исходной задачи линейного программирования (ЗЛП) на последовательность задач, содержащих дополнительные ограничения на переменные, которые затем оптимизируются.

1. Процесс начинают с решения задачи симплексным или графическим методом без учета требования на целочисленность переменных. Эту задачу называют ЗЛП-0. Если все переменные оптимального плана целые, то этот план также является оптимальными для задач целочисленного программирования.

2. Если некоторая переменная, не получила целочисленного значения, то производится ветвление на две новые задачи ЗЛП-1, ЗЛП-2. Одна из задач ЗЛП-1 представляет собой задачу ЗЛП-0, дополненную ограничением где - целая часть числа . Вторая образуется путем добавления к задаче ЗЛП-0 ограничения . Следует отметить, что выбор целочисленной переменной может быть произвольным определяться следующим образом:

по возрастанию или убыванию индексов;

переменная представляет важное решение принимаемое в рамках данной задачи;

коэффициент в целевой функции при этой переменной существенно превосходит все остальные.

3. Задачи ЗЛП-1 и ЗЛП-2 решаются самостоятельно. Ветвь оканчивается, если область допустимых решений пуста, либо её оптимальное решение полностью целочисленное. В противном случае возникает необходимость ветвления с п.2, обозначая следующие номера задач ЗЛП в естественном порядке ЗЛП-3, ЗЛП-4.

Процесс решения можно представить в виде дерева, в котором вершина ЗЛП-0 отвечает начальному плану решения задачи, а каждая из соединенных с ней ветвью вершин отвечает оптимальному плану следующей задачи.

Рассмотрим следующий пример. Максимизировать целевую функцию

при ограничениях

Воспользуемся графическим методом решения задачи линейного программирования.

1. Решим исходную задачу без учета требования целочисленности переменных.

Обозначим эту задачу линейного программирования ЗЛП-0.

На рисунке 1.1 штриховкой выделен многоугольник решений данной задачи. Максимальное значение достигается в точке Решение не является целочисленным.

Следующий шаг метода ветвей и границ состоит в ветвлении по одной из целочисленных переменных, имеющих дробное значение, например . Для этого добавим к задаче ЗЛП-0 два новых ограничения и Этими ограничениями удаляется интервал = в котором нет целых значений . Таким образом, в процессе ветвления создаются две новые задачи ЗЛП-1 и ЗЛП-2.

Рисунок 1.1 Решение задачи ЗЛП-0

2. Решим задачу ЗЛП-1 графически.

На рисунке 1.2 изображена допустимая область задачи ЗЛП-1. Максимальное значение достигается в точке . Решение задачи нецелочисленное.

Рисунок 1.2 Решение задачи ЗЛП-1

3. Решим задачу ЗЛП-2 графически.

В данном случае множество допустимых решений пусто (рисунок 1.2). Система ограничений несовместна, и задачу ЗЛП-2 можно исключить из дальнейшего рассмотрения.

Рисунок 1.3 Решение задачи ЗЛП-2

Теперь продолжим исследование задачи ЗЛП-1, поскольку значение нецелое. Произведем еще одно ветвление, путем введения ограничений и . В результате получаем две новые задачи ЗЛП-3 и ЗЛП-4.

4. Решим задачу ЗЛП-3 графически.

На рисунке 1.3 изображена допустимая область задачи ЗЛП-3. Максимальное значение достигается в точке . Решение задачи целочисленное.

Рисунок 1.4 Решение задачи ЗЛП-3

5. Решим задачу ЗЛП-4 графически.

На рисунке 1.5 изображена допустимая область задачи ЗЛП-4. Максимальное значение достигается в точке . Решение задачи целочисленное.

Таким образом, ветвление всех задач закончено. Получено 2 целочисленных решения:

· в задаче ЗЛП-3 - точка ;

· в задаче ЗЛП-4 - точка .

Рисунок 1.5 Решение задачи ЗЛП-4

Оптимальному решению соответствует точка с наибольшим значением целевой функции. В данном случае .

Информацию, полученную из задач ЗЛП-0 - ЗЛП-4, можно отметить на дереве решений рисунок (1.6)

Рисунок 1.6. Дерево решений задачи

2. Выполнение расчета №1 по теме "Графический метод решения задач линейного программирования"

Решить графически задачу линейного программирования:

при ограничениях:

Решение

Построим многоугольник решений (рисунок 2.1). Для этого изобразим граничные прямые:

Для построения искомого множества решений системы неравенств строим последовательно множество решений каждого неравенства. Полуплоскости, определяемые неравенством, на рисунке 2.1 показаны штриховкой. Условию неотрицательности переменных () удовлетворяют точки первой четверти. Таким образом, областью допустимых решений является четырехугольник ABCD.

Рисунок 2.1 - Решение задачи 2.1

Находим вектор-градиент целевой функции = (1; - 1). Перпендикулярно градиенту проводим прямую и перемещаем её параллельно самой себе в направлении градиента.

Из рисунка 2.1 следует, что последней точкой четырехугольника решений, через которую пройдет указанная прямая, является отрезок СD. Значит, в его точках целевая функция принимает максимальное значение.

Найдем координаты точки С (точка пересечения прямых (2) и (3)), решая систему уравнений:

3). Подставляя значения и в целевую функцию, получим:

Найдем координаты точки D (точка пересечения прямых (1) и (3)), решая систему уравнений:

Ответ: Оптимальное решение данной задачи - и .

3. Выполнение расчета №2 по теме "Решение задач линейного программирования симплекс-методом"

Решить симплекс - методом задачу линейного программирования:

при ограничениях:

Решение

Приведем задачу линейного программирования к предпочтительному виду:

Базисные переменные: , , . Свободные переменные: , . Строим начальную симплекс таблицу 3.1.

Таблица 3.1 - Начальный опорный план

Метод ветвей и границ
Формирование нижних и верхних оценок целевой функции. Алгоритм метода ветвей и границ, решение задач с его помощью. Решение задачи коммивояжера методо.

Задача о составлении маршрута коммивояжера. Метод ветвей и границ
Сущность и содержание, основные понятия и критерии теории графов. Понятие и общее представление о задаче коммивояжера. Описание метода ветвей и границ.

Использование метода ветвей и границ при адаптации рабочей нагрузки к параметрам вычислительного процесса
Нахождение рационального порядка следования запросов для обеспечения максимального критерия эффективности использования компонентов вычислительного пр.

Решение задачи коммивояжера методом ветвей и границ
Методика решения задач высшей математики с помощью теории графов, ее сущность и порядок разрешения. Основная идея метода ветвей и границ, ее практичес.

Выбор параметров контроля с использованием метода динамического программирования и метода ветвей и границ
Сущность и особенности выполнения метода динамического программирования. Решение математической задачи, принцип оптимальности по затратам, ручной счёт.

Формирование нижних и верхних оценок целевой функции. Алгоритм метода ветвей и границ, решение задач с его помощью. Решение задачи коммивояжера методом ветвей и границ. Математическая модель исследуемой задачи, принципы ее формирования и порядок решения.

Рубрика Математика
Вид курсовая работа
Язык русский
Дата добавления 25.11.2011
Размер файла 153,2 K

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Введение

Большой класс прикладных задач оптимизации сводится к задачам целочисленного программирования. Для решения этих задач широко применяются комбинаторные методы, основанные на упорядоченном переборе наиболее перспективных вариантов. Комбинаторные методы решения можно разделить на две группы: методы динамического программирования и методы ветвей и границ.

При решении многомерных задач оптимизации предлагается совместное применение методов ветвей и границ и динамического программирования. На первом этапе задача решается методом динамического программирования отдельно по каждому из ограничений. Последовательности, полученные в результате решения функционального уравнения динамического программирования, в дальнейшем используется для оценки верхней (нижней) границы целевой функции. На втором этапе задача решается методом ветвей и границ. При использовании этого метода определяется способ разбиения всего множества допустимых вариантов на подмножества, то есть способ построения дерева возможных вариантов, и способ оценки верхней границы целевой функции.

Комплексное применение методов динамического программирования и ветвей и границ позволяет повысить эффективность решения дискретных задач оптимизации. При решении задач большой размерности с целью уменьшения членов оптимальной последовательности используются дополнительные условия отсечения.

1. Историческая справка

Этот метод является наиболее общим среди всех методов дискретного программирования и не имеет принципиальных ограничений по применению. Алгоритм метода ветвей и границ представляет собой эффективную процедуру перебора всех целочисленных допустимых решений.

Метод ветвей и границ - один из комбинаторных методов. Его суть заключается в упорядоченном переборе вариантов и рассмотрении лишь тех из них, которые оказываются по определенным признакам перспективными, и отбрасывании бесперспективных вариантов.

2. Описание метода

В основе метода ветвей и границ лежит идея последовательного разбиения множества допустимых решений на подмножества. На каждом шаге метода элементы разбиения подвергаются проверке для выяснения, содержит данное подмножество оптимальное решение или нет. Проверка осуществляется посредством вычисления оценки снизу для целевой функции на данном подмножестве. Если оценка снизу не меньше рекорда - наилучшего из найденных решений, то подмножество может быть отброшено. Проверяемое подмножество может быть отброшено еще и в том случае, когда в нем удается найти наилучшее решение. Если значение целевой функции на найденном решении меньше рекорда, то происходит смена рекорда. По окончанию работы алгоритма рекорд является результатом его работы.

Если удается отбросить все элементы разбиения, то рекорд - оптимальное решение задачи. В противном случае, из неотброшенных подмножеств выбирается наиболее перспективное (например, с наименьшим значением нижней оценки), и оно подвергается разбиению. Новые подмножества вновь подвергаются проверке и т.д.

При применении метода ветвей и границ к каждой конкретной задаче в первую очередь должны быть определены две важнейшие его процедуры: 1) ветвления множества возможных решений; 2) вычисления нижних и верхних оценок целевой функции.

2.1 Правила ветвления

задача коммивояжер ветвь граница

В зависимости от особенностей задачи для организации ветвления обычно используется один из двух способов:

1. ветвление множества допустимых решений исходной задачи D;

2. ветвление множества D' получаемого из D путем снятия условия целочисленности на переменные.

Первый способ ветвления обычно применяется для задач целочисленного программирования и заключается в выделении подобластей возможных решений путем фиксации значений отдельных компонент целочисленных оптимизационных переменных (рис. 1). На рис. 1-а дана геометрическая интерпретация области допустимых решений задачи целочисленного программирования, определяемой двумя линейными ограничениями и условиями неотрицательности переменных, и образующихся при ветвлении подобластей, а на рис. 1-б показана соответствующая схема ветвления.

Второй способ ветвления - более универсальный, чем первый. Для осуществления ветвления некоторой области Di' этим способом на Di' решается оптимизационная задача с целевой функцией исходной задачи и действительными переменными.

Ветвление осуществляется, если в оптимальном решении значение хотя бы одной целочисленной по исходной постановке задача переменной не является целочисленным. Среди этих переменных выбирается одна, например j - я. Обозначим ее значение в найденном оптимальном решении x 0 [j]. Говорят, что ветвление осуществляется по переменной x[j]. Область Di' разделяется на две подобласти Di1' и Di2' следующим образом:

где [x 0 [j]] - целая часть значения x 0 [j]

На рис. 2 условно дана геометрическая интерпретация такого ветвления.

Рис. 2. Геометрическая интерпретация ветвления

Видно, что при этом из области Di' удаляется часть между плоскостями вновь введенных ограничений. Так как переменная x[j] по условиям области допустимых решений исходной задачи - целочисленная, то из подобласти допустимых решений исходной задачи. Di (Di Di') при таком изъятии не исключается ни одного решения.

2.2 Формирование нижних и верхних оценок целевой функции

Прежде чем начать обсуждение данного вопроса, необходимо сказать, что общепринятым является применение метода ветвей и границ для задачи, в которой направление оптимизации приведено к виду минимизации. Для компактности дальнейших обозначений и выкладок запишем задачу дискретного программирования, для которой будем применять метод ветвей и границ, в следующей обобщенной форме:

где х - вектор оптимизационных переменных, среди которых часть действительных, а часть целочисленных; f(x) - в общем случае нелинейная целевая функция; D - область допустимых решений задачи дискретного программирования общего вида.

Нижние оценки целевой дикции в зависимости от выбранного способа ветвления могут определяться либо для подобластей Di D либо для подобластей Di' D' (Di' и D' получены из соответствующих множеств Di и D путем снятия условий целочисленности на дискретные переменные).
Нижней оценкой целевой функции f(x) на множестве Di (или Di') будем называть величину:

Вычисление нижних оценок в каждом конкретном случае может осуществляться с учетом особенностей решаемой задачи. При этом чтобы оценки наиболее эффективно, выполняли свою функцию, они должны быть как можно большими, т.е. быть как можно ближе к действительным значениям min f(x). Это необходимо в первую очередь для того, чтобы нижние оценки как можно точнее отражали действительное соотношение min f(x) на образовавшихся при ветвлении подмножествах и позволяли более точно определять направление дальнейшего поиска оптимального решения исходной задачи.

На рис. 3 показан такой идеальный случай, когда нижние оценки (соединены ломаной штрихпунктирной линией) правильно отражают соотношения между действительными минимальными значениями f(x) (соединены штриховой линией) для четырех подмножеств допустимых решений D1, D2, D3, D4.

Один из универсальных способов вычисления нижних оценок заключается в решении следующей задачи:

Определенная таким образом оi является нижней оценкой f(x) на Di (или Di'), так как Di Di'.

Если при решении задачи (4) установлено, что , то для общности будем полагать, что .

Необходимо отметить одно важное свойство нижних оценок, заключающееся в том, что их значения для образовавшихся при ветвлении подмножеств не могут быть меньше нижней оценки целевой функции на множестве, подвергавшемся ветвлению.

Совместно с нижней оценкой в методе ветвей и границ используются верхние оценки f(x). Как правило, вычисляют лишь одно значение верхней оценки , которую определяют как значение целевой функции для лучшего найденного допустимого решения исходной задачи. Такую верхнюю оценку иногда называют рекордом. Если же можно для решаемой задачи достаточно просто и точно получить верхние оценки f(x) для отдельных множеств, образующихся при ветвлении, то их необходимо использовать в методе для уменьшения вычислительной сложности процесса решения. При использовании единой верхней оценки ее первоначальное значение обычно полагают равным бесконечности (), если, конечно, из априорных соображений не известно ни одного допустимого решения исходной задачи. При нахождении первого допустимого решения :

Затем при определении более лучшего допустимого решения верхнюю оценку корректируют:

Таким образом, значение верхней оценки может лишь уменьшаться в процессе решения задачи.

2.3 Алгоритм метода ветвей и границ

Основные правила алгоритма могут быть сформулированы следующим образом:

2. Если для некоторого i-го подмножества выполняется условие , то ветвление его необходимо прекратить, так как потенциальные возможности нахождения хорошего решения в этом подмножестве (их характеризует ) оказываются хуже, чем значение целевой функции для реального, найденного к данному моменту времени, допустимого решения исходной задачи (оно характеризует ).

3. Ветвление подмножества прекращается, если найденное в задаче (4) оптимальное решение . Обосновывается это тем, что , и, следовательно, лучшего допустимого решения, чем в этом подмножестве не существует. В этом случае рассматривается возможность корректировки .

4. Если , где , то выполняются условия оптимальности для найденного к этому моменту лучшего допустимого решения. Обоснование такое же, как и пункта 2 настоящих правил.

5. После нахождения хотя бы одного допустимого решения исходной задачи может быть рассмотрена возможность остановки работы алгоритма с оценкой близости лучшего из полученных допустимых решений к оптимальному (по значению целевой функции):

2.4 Решение задачи методом ветвей и границ

Первоначально находим симплексным методом или методом искусственного базиса оптимальный план задачи без учета целочисленности переменных.

Если среди компонент этого плана нет дробных чисел, то тем самым найдено искомое решение данной задачи.

Если среди компонент плана имеются дробные числа, то необходимо осуществить переход к новым планам, пока не будет найдено решение задачи.

Метод ветвей и границ основан на предположении, что наш оптимальный нецелочисленный план дает значение функции, большее, чем всякий последующий план перехода.

Пусть переменная в плане - дробное число. Тогда в оптимальном плане ее значение будет по крайней мере либо меньше или равно ближайшему меньшему целому числу , либо больше или равно ближайшему большему целому числу .

Определяя эти числа, находим симплексным методом решение двух задач линейного программирования

- целые .

Возможны четыре случая при решении этой пары задач:

1. Одна из задач неразрешима, а другая имеет целочисленный оптимальный план. Тогда этот план и значение целевой функции дают решение исходной задачи.

2. Одна из задач неразрешима, а другая имеет нецелочисленный оптимальный план. Тогда рассматриваем вторую задачу и в ее оптимальном плане выбираем одну из компонент, значение которой равно дробному числу и строим две задачи, аналогичные предыдущим.

3. Обе задачи разрешимы. Одна из задач имеет оптимальный целочисленный план, а в оптимальном плане другой задачи есть дробные числа. Тогда вычисляем значения целевой функции от планов и сравниваем их между собой. Если на целочисленном оптимальном плане значение целевой функции больше или равно ее значению на плане, среди компонент которого есть дробные числа, то данный целочисленный план является оптимальным для исходной задачи и дает искомое решение.

4. Обе задачи разрешимы, и среди оптимальных планов обеих задач есть дробные числа. Тогда рассматриваем ту из задач, для которой значение целевой функции является наибольшим. И строим две задачи.

Таким образом, при решении задачи получаем схему:

1. Находим решение задачи линейного программирования без учета целочисленности.

2. Составляет дополнительные ограничения на дробную компоненту плана.

3. Находим решение двух задач с ограничениями на компоненту.

4. Строим в случае необходимости дополнительные ограничения, согласно возможным четырем случаям получаем оптимальный целочисленный план либо устанавливаем неразрешимость задачи.

Найдем решение задачи

Решение. Находим решение без учет целочисленности задачи симплексным методом.

Рассмотрим следующую пару задач:

Первая задача имеет оптимальный план

Проверяем на целочисленность план первой задачи. Это условие не выполняется, поэтому строим следующие задачи:

Задача №1.2 неразрешима, а задача №1.1 имеет оптимальный план , на котором значение целевой функции .

В результате получили, что исходная задача целочисленного программирования имеет оптимальный план и .

3. Решение задачи коммивояжера методом ветвей и границ

3.1 Постановка задачи

Формализуем условие в терминах теории графов. Города будут вершинами графа, а дороги между городами - ориентированными (направленными) ребрами графа, на каждом из которых задана весовая функция: вес ребра - это длина соответствующей дороги. Путь, который требуется найти, это - ориентированный остовный простой цикл минимального веса в орграфе (напомним: цикл называется остовным, если он проходит по всем вершинам графа; цикл называется простым, если он проходит по каждой своей вершине только один раз; цикл называется ориентированным, если начало каждого последующего ребра совпадает с концом предыдущего; вес цикла - это сумма весов его ребер; наконец, орграф называется полным, если в нем имеются все возможные ребра); такие циклы называются также гамильтоновыми.

Отсюда следует, что задачу о коммивояжере достаточно решить для полных орграфов с весовой функцией. Сформулируем теперь это в окончательном виде:

Пусть конкретный состав множества вершин и - весовая матрица данного орграфа, т.е. , причем для любого .

Рассмотрение метода ветвей и границ для решения задачи о коммивояжере удобнее всего проводить на фоне конкретного примера. Пользуясь введенными здесь обозначениями, мы проводим это описание в следующей лекции.

Введем некоторые термины. Пусть имеется некоторая числовая матрица. Привести строку этой матрицы означает выделить в строке минимальный элемент (его называют константой приведения) и вычесть его из всех элементов этой строки. Очевидно, в результате в этой строке на месте минимального элемента окажется ноль, а все остальные элементы будут неотрицательными. Аналогичный смысл имеют слова привести столбец матрицы.

Слова привести матрицу по строкам означают, что все строки матрицы приводятся. Аналогичный смысл имеют слова привести матрицу по столбцам.

Наконец, слова привести матрицу означают, что матрица сначала приводится по строкам, а потом приводится по столбцам.

Весом элемента матрицы называют сумму констант приведения матрицы, которая получается из данной матрицы заменой обсуждаемого элемента на Ґ. Следовательно, слова самый тяжелый нуль в матрице означают, что в матрице подсчитан вес каждого нуля, а затем фиксирован нуль с максимальным весом.

Приступим теперь к описанию метода ветвей и границ для решения задачи о коммивояжере.

Первый шаг. Фиксируем множество всех обходов коммивояжера (т.е. всех простых ориентированных остовных циклов). Поскольку граф - полный, это множество заведомо не пусто. Сопоставим ему число, которое будет играть роль значения на этом множестве оценочной функции: это число равно сумме констант приведения данной матрицы весов ребер графа. Если множество всех обходов коммивояжера обозначить через G, то сумму констант приведения матрицы весов обозначим через j(G). Приведенную матрицу весов данного графа следует запомнить; обозначим ее через M1; таким образом, итог первого шага:

множеству G всех обходов коммивояжера сопоставлено чис-ло j(G) и матрица M1.

Второй шаг. Выберем в матрице M1 самый тяжелый нуль; пусть он стоит в клетке ; фиксируем ребро графа и разделим множество G на две части: на часть , состоящую из обходов, которые проходят через ребро , и на часть , состоящую из обходов, которые не проходят через ребро .

Сопоставим множеству следующую матрицу M1,1: в матрице M1 заменим на Ґ число в клетке . Затем в полученной матрице вычеркнем строку номер i и столбец номер j, причем у оставшихся строк и столбцов сохраним их исходные номера. Наконец, приведем эту последнюю матрицу и запомним сумму констант приведения. Полученная приведенная матрица и будет матрицей M1,1; только что запомненную сумму констант приведения прибавим к j(G) и результат, обозначаемый в дальнейшем через j(), сопоставим множеству .

Теперь множеству тоже сопоставим некую матрицу M1,2. Для этого в матрице M1 заменим на Ґ число в клетке и полученную в результате матрицу приведем. Сумму констант приведения запомним, а полученную матрицу обозначим через M1,2. Прибавим запомненную сумму констант приведения к числу j(G) и полученное число, обозначаемое в дальнейшем через j(), сопоставим множеству .

Теперь выберем между множествами и то, на котором минимальна функция j (т.е. то из множеств, которому соответствует меньшее из чисел j() и j()).

Заметим теперь, что в проведенных рассуждениях использовался в качестве исходного только один фактический объект - приведенная матрица весов данного орграфа. По ней было выделено определенное ребро графа и были построены новые матрицы, к которым, конечно, можно все то же самое применить.

При каждом таком повторном применении будет фиксироваться очередное ребро графа. Условимся о следующем действии: перед тем, как в очередной матрице вычеркнуть строку и столбец, в ней надо заменить на Ґ числа во всех тех клетках, которые соответствуют ребрам, заведомо не принадлежащим тем гамильтоновым циклам, которые проходят через уже отобранные ранее ребра.

К выбранному множеству с сопоставленными ему матрицей и числом j повторим все то же самое и так далее, пока это возможно.

Доказывается, что в результате получится множество, состоящее из единственного обхода коммивояжера, вес которого равен очередному значению функции j; таким образом, оказываются выполненными все условия, обсуждавшиеся при описании метода ветвей и границ.

После этого осуществляется улучшение рекорда вплоть до получения окончательного ответа.

3.2 Условие задачи

Студенту Иванову поручили разнести некоторые важные документы из 12-ого корпуса. Но, как назло, у него на это очень мало времени, да и еще надо вернуться обратно. Нужно найти кротчайший путь. Расстояния между объектами даны в таблице

По смыслу значительной части экономических задач, относятся к задачам линейного программирования, компоненты решения должны выражаться в целых числах, т.е. быть целочисленными. К ним относятся, например, задачи, в которых переменные означают количество единиц неделимой продукции, число станков при загрузке оборудования, число судов при распределениях по линиям, число турбин в энергосистеме, число вычислительных машин в управляющем комплексе и многие другие.

Задача линейного целочисленного программирования формируется следующим образом: найти такое решение (план) X = (x 1 ,x 2 . x n ), при котором линейная функция


(1)

принимает максимальное или минимальное значение при ограничениях


=b i , i= 1, 2…, m. (2)

х j ≥ 0, j =1, 2. п. (3)

x j — целые числа (4)

Метод ветвей и границ — один из комбинаторных методов. Его суть заключается в упорядоченном переборе вариантов и рассмотрении лишь тех из них, которые оказываются по определенным признакам перспективными, и отбрасывании бесперспективных вариантов.

Метод ветвей и границ состоит в следующем: множество допустимых решений (планов) некоторым способом разбивается на подмножества, каждое из которых этим же способом снова разбивается на подмножества. Процесс продолжается до тех пор, пока не получено оптимальное целочисленное решение исходной задачи.

Первоначально находим симплексным методом или методом искусственного базиса оптимальный план задачи без учета целочисленности переменных. Пусть им является план X 0 . Если среди компонент этого плана нет дробных чисел, то тем самым найдено искомое решение данной задачи и F max = F(X o ) .

Если же среди компонент плана X 0 имеются дробные числа, то X 0 не удовлетворяет условию целочисленности и необходимо осуществить упорядоченный переход к новым планам, пока не будет найдено решение задачи. Покажем, как это можно сделать, предварительно отметив, что F(X 0 ) ≥ F(X) для всякого последующего плана X .

Предполагая, что найденный оптимальный план X 0 не удовлетворяет условию целочисленности переменных, тем самым считаем, что среди его компонент есть дробные числа. Пусть, например, переменная приняла в плане X 0 дробное значение. Тогда в оптимальном целочисленном плане ее значение будет по крайней мере либо меньше или равно ближайшему меньшему целому числу , либо больше или равно ближайшему большему целому числу + 1. Определяя эти числа, находим симплексным методом решение двух задач линейного программирования:

Найдем решение задач линейного программирования (I) и (II). Очевидно, здесь возможен один из следующих четырех случаев:

1. Одна из задач неразрешима, а другая имеет целочисленный оптимальный план. Тогда этот план и значение целевой функции на нем и дают решение исходной задачи.

2. Одна из задач неразрешима, а другая имеет оптимальный план, среди компонент которого есть дробные числа. Тогда рассматриваем вторую задачу и в ее оптимальном плане выбираем одну из компонент, значение которой равно дробному числу, и строим две задачи, аналогичные задачам (I) и (II).

3. Обе задачи разрешимы. Одна из задач имеет оптимальный целочисленный план, а в оптимальном плане другой задачи есть дробные числа. Тогда вычисляем значения целевой функции на этих планах и сравниваем их между собой. Если на целочисленном оптимальном плане значение целевой функции больше или равно ее значению на плане, среди компонент которого есть дробные числа, то данный целочисленный план является оптимальным для исходной задачи и он вместе со значением целевой функции на нем дает искомое решение.

Если же значение целевой функции больше на плане, среди компонент которого есть дробные числа, то следует взять одно из таких чисел и для задачи, план которой рассматривается, необходимо построить две задачи, аналогичные (I) и (II).

4. Обе задачи разрешимы, и среди оптимальных планов обеих задач есть дробные числа. Тогда вычисляем значение целевой функции на данных оптимальных планах и рассматриваем ту из задач, для которой значение целевой функции является наибольшим. В оптимальном плане этой задачи выбираем одну из компонент, значение которой является дробным числом, и строим две задачи, аналогичные (I) и (II).

Таким образом, описанный выше итерационный процесс может быть представлен в виде некоторого дерева, на котором исходная вершина отвечает оптимальному плану Х 0 задачи (1)-(3), а каждая соединенная с ней ветвью вершина отвечает оптимальным планам задач (I) и (II). Каждая из этих вершин имеет свои ветвления. При этом на каждом шаге выбирается та вершина, для которой значение функции является наибольшим. Если на некотором шаге будет получен план, имеющий целочисленные компоненты, и значение функции на нем окажется больше или равно, чем значение функции в других возможных для ветвления вершинах, то данный план является оптимальным планом исходной задачи целочисленного программирования и значение целевой функции на нем является максимальным.

Итак, процесс нахождения решения задачи целочисленного программирования (1)-(4) методом ветвей и границ включает следующие основные этапы:

1°. Находят решение задачи линейного программирования (1)-(3).

2°. Составляют дополнительные ограничения для одной из пере-менных, значение которой в оптимальном плане задачи (1)-(3) является дробным числом.

3°. Находят решение задач (I) и (II), которые получаются из задачи (1)-(3) в результате присоединения дополнительных ограничений.

4°. В случае необходимости составляют дополнительные ограничения для переменной, значение которой является дробным, формулируют задачи, аналогичные задачам (I) и (II), и находят их решение. Итерационный процесс продолжают до тех пор, пока не будет найдена вершина, соответствующая целочисленному плану задачи (1)-(3) и такая, что значение функции в этой вершине больше или равно значению функции в других возможных для ветвления вершинах.

Описанный выше метод ветвей и границ имеет более простую логическую схему расчетов, чем метод Гомори. Поэтому в большинстве случаев для нахождения решения конкретных задач целочисленного программирования с использованием ЭВМ применяется именно этот метод.

Проиллюстрируем метод ветвей и границ на примере.

Решить задачу

Z = Зх 1 + х 2 — max

х 1 , x 2 — целые числа.

Решение . За нижнюю границу линейной функции примем, например, ее значение в точке (0,0), т.е. Z 0 = Z (0; 0) = 0.

I этап . Решая задачу симплексным методом, получим Z max = 13 при Х 1 * = (4,5; 0; 0; 1,5; 0,5; 4); так как первая компонента х 1 * дробная, то из области решения исключается полоса, содержащая дробное оптимальное значение х 1 * , т.е. 4 1

Определяем ребро ветвления, для чего для всех клеток матрицы табл. 4.5 с нулевыми элементами заменяем поочередно нули на °° и определяем для них сумму образовавшихся констант приведения, они приведены в скобках (см. табл. 4.5). Наибольшая сумма констант приведения равна (40 + 0) = 40 для ребра (1, 4), следовательно, множество разбивается на два подмножества <(1, 4)>включающее ребро, и <(1,4… Читать ещё >

  • экономико-математические методы и модели в коммерческой деятельности

Метод ветвей и границ ( реферат , курсовая , диплом , контрольная )

Существует достаточно большой класс задач, в которых для нахождения оптимального решения необходимо перебрать все возможные варианты решений по какому-либо критерию. Однако такой прямой перебор может занять очень много времени. Например, для выбора оптимальной последовательности проведения маркетинговых исследований группой из т специалистов разного профиля в п объектах рынка необходимо перебрать большое множество вариантов. В задаче коммивояжера для формирования оптимального маршрута объезда п городов необходимо выбрать один лучший из (п- 1)! вариантов по критериям времени, стоимости или длине маршрута. Эта задача связана с определением гамильтонова цикла минимальной длины. В таких случаях множество всех возможных решений следует представить в виде дерева — связного графа, не содержащего циклов и петель. Процесс разбиения множества всех маршрутов на непересекающиеся подмножества в виде дерева представлен на рис. 4.26. Корень этого дерева объединяет все множество вариантов, а вершины дерева — это подмножества частично упорядоченных вариантов решений.

Вершина (i, j) соответствует подмножеству всех маршрутов, содержащих ребро (ij), а вершина (zj) — подмножеству всех маршрутов, где это ребро отсутствует.

Процесс разбиения на эти подмножества можно рассматривать как ветвление дерева. Поэтому метод называется методом поиска по дереву решений или методом ветвей и границ.

Метод ветвей и границ представляет собой алгоритм направленного перебора множества вариантов решения задачи. Сущность этого метода состоит в том, что от корня дерева ветвятся не все вершины.

Рис. 4.26.

Сначала проводится оценка каждой вершины первого уровня, а затем для построения дерева ветвление проводится от той вершины, которая получает лучшую оценку (минимальную или максимальную) в соответствии с выбранным критерием. Однако вычислить точное значение критерия, не перебрав всех вариантов, невозможно. Чтобы избежать этой рутины, используют не точное значение критерия, а оценку снизу или сверху, которую называют нижней оценкой границы или верхней оценкой границы множества вариантов. При этом оценка вершины должна удовлетворять следующим требованиям:

  • 1) оценка не должна быть больше (при минимизации) или меньше (при максимизации) минимального (максимального) значения функции для рассматриваемого множества;
  • 2) оценка подмножества нижнего уровня не должна быть меньше (при минимизации) или больше (при максимизации) значения оценки подмножества более высокого уровня;
  • 3) оценка единственного варианта решения на последнем уровне точно совпадает со значением критерия целевой функции решения.

Процесс разбиения на подмножества позволяет получить подмножество, содержащее оптимальный маршрут. Пары городов (звенья) маршрута фиксируются при движении по дереву в обратном направлении к начальной вершине. На каждом шаге итерации на основе сравнения нижних границ подмножеств ветвление выполняется только из вершины, имеющей меньшее значение нижней границы.

Рассмотрим решение задачи коммивояжера с исходными данными, записанными в табл. 4.1.

Метод ветвей и границ.

Для определения нижней границы множества воспользуемся операцией редукции, или приведения матрицы по строкам и столбцам, для чего необходимо в каждой строке матрицы D найти минимальный элемент табл. 4.3.

Читайте также: