Маркировка оптического кабеля реферат

Обновлено: 07.07.2024

Оптический кабель состоит из скрученных по определенной системе оптических волокон из кварцевого стекла (световодов), заключенных в общую защитную оболочку. При необходимости кабель может содержать силовые (упрочняющие) и демпфирующие элементы.

Существующие ОК по своему назначению могут быть классифицированы на три группы: магистральные, зоновые и городские. В отдельные группы выделяется подводные, объектовые и монтажные ОК.

Магистральные ОК предназначаются для передачи информации на большие расстояния и значительное число каналов. Они должны обладать малыми затуханием и дисперсией и большой информационно-пропускной способностью. Используется одномодовое волокно с размерами сердцевины и оболочки 8/125 мкм. Длина волны 1,3. 1,55 мкм.

Зоновые ОК служат для организации многоканальной связи между областным центром и районами с дальностью связи до 250 км. Используются градиентные волокна с размерами 50/125 мкм. Длина волны 1,3 мкм.

Городские ОК применяются в качестве соединительных между городскими АТС и узлами связи. Они рассчитаны на короткие расстояния (до |10 км) и большое число каналов. Волокна-градиентные (50/125 мкм). Длина волны 0,85 и 1,3 мкм. Эти линии, как правило, работают без промежуточных линейных регенераторов.

Подводные ОК предназначаются для осуществления связи через большие водные преграды. Они должны обладать высокой механической прочностью на разрыв и иметь надежные влагостойкие покрытия. Для подводной связи также важно иметь малое затухание и большие длины регенерационных участков.

Объектовые ОК служат для передачи информации внутри объекта. Сюда относятся учрежденческая и видеотелефонная связь, внутренняя сеть кабельного телевидения, а также бортовые информационные системы подвижных объектов (самолет, корабль и др.).

Монтажные ОК используются для внутри- и межблочного монтажа аппаратуры. Они выполняются в виде жгутов или плоских лент.

Основным элементом ОК является оптическое волокно (световод), выполненное в виде тонкого стеклянного волокна цилиндрической формы, по которому передаются световые сигналы с длинами волны 0,85. 1,6 мкм, что соответствует диапазону частот (2,3. 1,2) • 10 14 Гц.

Световод имеет двухслойную конструкцию и состоит из сердцевины и оболочки с разными показателями преломления . Сердцевина служит для передачи электромагнитной энергии. Назначение оболочки — создание лучших условий отражения на границе “сердцевина — оболочка” и защита от помех из окружающего пространства.

Сердцевина волокна, как правило, состоит из кварца, а оболочка может быть кварцевая или полимерная. Первое волокно называется кварц—кварц, а второе кварц—полимер (кремнеор-ганический компаунд). Исходя из физико-оптических характеристик предпочтение отдается первому. Кварцевое стекло обладает следующими свойствами: показатель преломления 1,46, коэффициент теплопроводности 1,4 Вт/мк, плотность 2203 кг/м 3 .

Снаружи световода располагается защитное покрытие для предохранения его от механических воздействий и нанесения расцветки. Защитное покрытие обычно изготавливается двухслойным: вначале кремнеорганический компаунд (СИЭЛ), а затем—эпоксидакрылат, фторопласт, нейлон, полиэтилен или лак. Общий диаметр волокна 500. 800 мкм (рис. 1).

Рис. 1. Сечение оптического волокна:

1— сердцевина ; 2 — оболочка ; 3 — защитное покрытие

В существующих конструкциях ОК применяются световоды трех типов: ступенчатые с диаметром сердцевины 50 мкм, градиентные со сложным (параболическим) профилем показателя преломления сердцевины и одномодовые с тонкой сердцевиной (6. 8 мкм) (рис. 2).

Рис. 2. Оптические волокна:

а — профиль показателя преломления; б — прохождение луча; 1 — ступенчатые; 2 — градиентные; 3 — одномодовые

По частотно-пропускной способности и дальности передачи лучшими являются одномодовые световоды, а худшими — ступенчатые.

Важнейшая проблема оптической связи — создание оптических волокон (ОВ) с малыми потерями. В качестве исходного материала для изготовления ОВ используется кварцевое стекло , которое является хорошей средой для распространения световой энергии. Однако, как правило, стекло содержит большое количество посторонних примесей, таких как металлы (железо, кобальт, никель, медь) и гидроксильные группы (ОН). Эти примеси приводят к существенному увеличению потерь за счет поглощения и рассеяния света. Для получения ОВ с малыми потерями и затуханием необходимо избавиться от примесей, чтобы было химически чистое стекло.

В настоящее время наиболее распространен метод создания ОВ с малыми потерями путем химического осаждения из газовой фазы.

Получение ОВ путем химического осаждения из газовой фазы выполняется в два этапа: изготовляется двухслойная кварцевая заготовка и из нее вытягивается волокно. Заготовка изготавливается следующим образом (рис. 3).

Рис. 3. Изготовление заготовки методом химического осаждения из газовой фазы:

1—опорная трубка (оболочка ); 2—осажденные продукты (сердцевина ); 3—нагревательная спираль; 4 — газообразный поток кварца

Во внутрь полой кварцевой трубки с показателем преломления длиной 0,5. 2 м и диаметром 16. 18 мм подается струя хлорированного кварца и кислорода . В результате химической реакции при высокой температуре (1500. 1700° С) на внутренней поверхности трубки слоями осаждается чистый кварц . Таким образом, заполняется вся внутренняя полость трубки, кроме самого центра. Чтобы ликвидировать этот воздушный канал, подается еще более высокая температура (1900° С), за счет которой происходит схлопывание и трубчатая заготовка превращается в сплошную цилиндрическую заготовку. Чистый осажденный кварц затем становится сердечником ОВ с показателем преломления , а сама трубка выполняет роль оболочки с показателем преломления . Вытяжка волокна из заготовки и намотка его на приемный барабан производятся при температуре размягчения стекла (1800. 2200° С). Из заготовки длиной в 1 м получается свыше 1 км оптического волокна (рис. 4).

Рис. 4. Вытягивание волокна из заготовки:

1 — заготовка; 2 — печь; 3 — волокно; 4 — приемный барабан

Достоинством данного способа является не только получение ОВ с сердечником из химически чистого кварца, но и возможность создания градиентных волокон с заданным профилем показателя преломления. Это осуществляется: за счет применения легированного кварца с присадкой титана, германия, бора, фосфора или других реагентов. В зависимости от применяемой присадки показатель преломления волокна может изменяться. Так, германий увеличивает, а бор уменьшает показатель преломления. Подбирая рецептуру легированного кварца и соблюдая определенный объем присадки в осаждаемых на внутренней поверхности трубки слоях, можно обеспечить требуемый характер изменения по сечению сердечника волокна.

Конструкции ОК в основном определяются назначением и областью их применения. В связи с этим имеется много конструктивных вариантов. В настоящее время в различных странах разрабатывается и изготавливается большое число типов кабелей.

Рис. 5. Типовые конструкции оптических кабелей:

а—повивная концентрическая скрутка; б—скрутка вокруг профилированного сердечника; в—плоская конструкция; 1— волокно; 2— силовой элемент; 3— демпфирующая оболочка; 4—защитная оболочка; 5—профилированный сердечник; 6— ленты с волокнами

Однако все многообразие существующих типов кабелей можно подразделять на три группы (рис.5) :

  1. кабели повивной концентрической скрутки
  2. кабели с фигурным сердечником
  3. плоские кабели ленточного типа.

Кабели первой группы имеют традиционную повивную концентрическую скрутку сердечника по аналогии с электрическими кабелями. Каждый последующий повив сердечника по сравнению с предыдущим имеет на шесть волокон больше. Известны такие кабели преимущественно с числом волокон 7, 12, 19. Чаще всего волокна располагаются в отдельных пластмассовых трубках, образуя модули.

Кабели второй группы имеют в центре фигурный пластмассовый сердечник с пазами, в которых размещаются ОВ. Пазы и соответственно волокна располагаются по геликоиде, и поэтому они не испытывают продольного воздействия на разрыв. Такие кабели могут содержать 4, 6, 8 и 10 волокон. Если необходимо иметь кабель большой емкости, то применяется несколько первичных модулей.

Кабель ленточного типа состоит из стопки плоских пластмассовых лент, в которые вмонтировано определенное число ОВ. Чаще всего в ленте располагается 12 волокон, а число лент составляет 6, 8 и 12. При 12 лентах такой кабель может содержать 144 волокна.

В оптических кабелях кроме ОВ, как правило, имеются следующие элементы:

  • силовые (упрочняющие) стержни, воспринимающие на себя продольную нагрузку, на разрыв;
  • заполнители в виде сплошных пластмассовых нитей;
  • армирующие элементы, повышающие стойкость кабеля при механических воздействиях;
  • наружные защитные оболочки, предохраняющие кабель от проникновения влаги, паров вредных веществ и внешних механических воздействий.

В России изготавливаются различные типы и конструкций ОК. Для организации многоканальной связи применяются в основном четырех- и восьмиволоконные кабели.

Представляют интерес ОК французского производства (рис.6). Они, как правило, комплектуются из унифицированных модулей, состоящих из пластмассового стержня диаметром 4 мм с ребрами по периметру и десяти ОВ, расположенных по периферии этого стержня. Кабели содержат 1, 4, 7 таких модулей. Снаружи кабели имеют алюминиевую и затем полиэтиленовую оболочку.

Рис. 6. Конструкции оптических кабелей французского производства:

а — 10-волоконный модуль; б — 70-волоконный кабель; 1 — оптические волокна; 2 — фигурный сердечник;

3 — силовой элемент; 4 — пластмассовая лента; 5—модуль на десять волокон; 6 — алюминиевая оболочка; 7—полиэтиленовая оболочка

Американский кабель, широко используемый на ГТС, представляет собой стопку плоских пластмассовых лент, содержащих по 12 ОВ. Кабель может иметь от 4 до 12 лент, содержащих 48— 144 волокна (рис.7).

Рис. 7. Американский кабель плоской конструкции:

а—лента с 12 волокнами; б—сечение кабеля; в—общий вид кабеля; 1—оптическое волокно; 2—полиэтиленовая лента; 3—стопка лент из 144 волокон; 4— защитное покрытие; 5 — внутренняя полиэтиленовая оболочка; 6 — пластмассовые ленты; 7 — силовые элементы; в — полиэтиленовые оболочки

На (рис.8) показан японский ОК с алюминиевой оболочкой и наружным полиэтиленовым шлангом.

Рис. 8. Японский оптический кабель:

1 — оптические волокна; 2—медный силовой элемент; 3 — демпфирующее покрытие; 4—наружная оболочка

В Англии построена опытная линия электропередачи с фазными проводами, содержащими ОВ для, технологической связи вдоль ЛЭП. Как видно из (рис.9), в центре провода ЛЭП располагаются четыре ОВ.

Рис. 9. Оптический кабель, встроенный в фазный провод ЛЭП:

1 — оптические волокна; 2 — защитное покрытие; 3 — проводники ЛЭП

Применяются также подвесные ОК (рис.10). Они имеют металлический трос, встроенный в кабельную оболочку. Кабели предназначаются для подвески по опорам воздушных линий и стенам зданий.

Рис. 10. Подвесной оптический кабель с встроенным тросом:

1—оптические волокна; 2—стальной трос; 3 — полиэтиленовая оболочка

Для подводной связи проектируются ОК, как правило, с наружным броневым покровом из стальных проволок (рис.11). В центре располагается модуль с шестью ОВ. Кабель имеет медную или алюминиевую трубку. По цепи “трубка—вода” подается ток дистанционного питания на подводные необслуживаемые усилительные пункты.

Рис.11. Подводный оптический кабель:

а — шестиволоконный модуль (3 варианта); б—подводный кабель; 1—оптический модуль; 2—шесть оптических волокон; 3—силовой элемент из стальной проволоки; 4 — полиэтиленовая оболочка модуля; 5 —пластмассовые трубки; 6—заполнение компаундом; 7—стальная броня; 8 — медная или алюминиевая трубка; 9—полиэтиленовый шланг

Первое поколение ОК, созданных в 1986—1988 гг., включает кабели городской (ОК-50), зоновой (ОЗКГ) и магистральной (ОМЗКГ) связи. Современные требования развития связи потребовали создания новых усовершенствованных типов ОК (второе поколение). Такими кабелями, разработанными в период 1990—1992 гг., являются: ОКК—для городской связи (прокладка в канализации), ОКЗ—для зоновой и ОКЛ—для линейной магистральной связи.

Отличительные особенности ОК второго поколения:

  • переход на волны 1,3 и 1,55 мкм;
  • применение одномодовых волокон;
  • модульные конструкции кабелей (каждый модуль на 1, 2, 4 волокна);
  • наличие медных жил для дистанционного электропитания;
  • разнообразие типов наружных оболочек (стальные ленты, проволоки, стеклопластик, полиэтилен, оплетка);
  • широкополосность и большие длины регенерационных участков.

Кабель ОКК по сравнению с ОК-50 имеет меньшее затухание, большие дальность связи и широкополосность. Кабель ОКК состоит из градиентных и одномодовых волокон.

Новый зоновый кабель ОКЗ имеет различные типы оболочек, позволяющих использовать его в различных условиях эксплуатации (земля, вода, подвеска).

Кабель междугородной связи ОК.Л по сравнению с предшествующим (ОМЗКГ) обладает большей длиной трансляционного участка и позволяет применять наиболее мощную систему передачи на 7680 каналов (“Сопка-5”).

Рассмотрим конструкции отечественных ОК.

Кабель городской связи типа ОК-50 содержит четыре или восемь волокон (рис.12). Волокна свободно расположены в полимерных трубках. Скрутка — повивная, концентрическая. В центре размещен силовой элемент из высокопрочных полимерных нитей. Снаружи имеется, полиэтиленовая оболочка.

Рис. 12. Оптический кабель городской связи ОК-50:

1 — силовой элемент; 2 — пластмассовая трубка; 3 — волокно; 4 — пластмассовая лента; 5—полиэтиленовая оболочка

Четырехволоконный кабель ОК-4 имеет принципиально ту же конструкцию и размеры, что и восьмиволоконный, но только четыре волокна в нем заменены пластмассовыми стержнями. Изготавливаются также кабели, содержащие больше число волокон. Городские кабели прокладываются в телефонные канализации.

Кабель городской связи типа ОКК, прокладываемый в канализации, содержит 4, 8 или 16 волокон (рис.13). Кабель имеет градиентные волокна с диаметром сердцевины 50 мкм (ОКК-50-01) или одномодовые волокна с диаметром сердцевины 10 мкм (ОКК-10-02).

Рис. 13. Оптический кабель городской связи марки ОККС:

1 — силовой элемент (стеклопластик); 2 — оптическое волокно; 3 — пластмассовая лента; 4 — стеклопластиковые стержни; 5—полиэтиленовый шланг

Силовой центральный элемент выполнен из стеклопластиковых стержней или стального троса, изолированного полиэтиленом. Поверх наложена скрутка из восьми оптических модулей или корделей. В каждом модуле может содержаться 1, 2 или 4 ОВ. Затем наложены фторопластная лента и полиэтиленовый шланг.

Кабели, предназначенные для прокладки в грунтах, зараженных грызунами или подверженных механическим воздействиям, имеют еще броневой покров из стеклопластиковых

стержней, а поверх него—полиэтиленовый шланг (ОККС). Известны конструкции, в которых вместо стержней применяется оплетка (ОККО).

Для подводных речных переходов применяется кабель в алюминиевой оболочке с броневым покровом из круглых стальных проволок и полиэтиленовым шлангом (ОККАК). Для станционных вводов и монтажа создан кабель ОКС.

Кабель зоновой связи марки ОЗКГ (рис.14) содержит восемь градиентных волокон, расположенных в пазах профилированного пластмассового сердечника. Так как кабель предназначен для непосредственной прокладки в грунт, он имеет защитный броневой покров из стальных проволок диаметром 1,2 мм. Дистанционное электропитание регенераторов осуществляется по четырем медным изолированным проводникам диаметром 1,2 мм, расположенным в броневом покрове кабеля. Снаружи кабель имеет полиэтиленовую оболочку.

Рис. 14. Оптический кабель зоновой связи марки ОЗКГ:

1— профилированный сердечник; 2 — силовой элемент; 3 — волокно; 4 — внутренняя пластмассовая оболочка; 5—стальная проволока; 6—наружная полиэтиленовая оболочка; 7—медный проводник

Зоновый кабель ОКЗ содержит четыре или восемь многомодовых ОВ, расположенных в четырех модулях сердечника кабеля, покрытых снаружи полиэтиленовой оболочкой (см. рис.15). Кабель предназначен для прокладки в грунт, поэтому имеет защитный броневой покров. Возможны различные варианты брони: стальные круглые проволоки (ОКЗК), бронеленты (ОКЗБ), стеклопластиковые стержни (ОКЗС), стальная оплетка (ОКЗО). Изготовляются также подводные кабели с алюминиевой оболочкой и круглой стальной броней (ОКЗАК). Станционные кабели маркируются ОКС.

Рис. 15. Оптический кабель зоновой связи марки ОКЗ:

1 — силовой элемент; 2 — оптическое волокно; 3 — медный проводник; 4 и 6 — полиэтиленовая оболочка; 5—стальная броня

Дистанционное электропитание регенераторов осуществляется по четырем медным изолированным проводникам диаметром 1,2 мм, расположенным в сердечнике кабеля.

Кабель магистральной связи ОМЗКГ (рис.16) содержит одномодовые волокна, обеспечивающие многоканальную связь на большие расстояния. Кабель содержит четыре или восемь волокон, расположенных в пазах профилированного пластмассового сердечника. Защитный покров изготавливается в двух модификациях: из стеклопластиковых стержней или стальных проволок. Снаружи имеется пластмассовая оболочка. Кабель предназначен для прокладки в грунт.

Рис.16. Магистральный оптический кабель марки ОМЗКГ:

1 — профилированный сердечник; 2 — волокно; 3 — силовой элемент; 4 — внутренняя пластмассовая оболочка;

5 — стеклопластиковые нити; 6 — наружная полиэтиленовая оболочка

Магистральный кабель ОКЛ изготавливается из одномодовых волокон с сердцевиной диаметром 10 мкм, имеет две модификации: с медными проводниками диаметром 1,2 мм для дистанционного питания регенераторов (рис.17) и без медных проводников с питанием от местной сети или автономных источников теплоэлектрогенераторов (ТЭГ).

Рис. 17. Магистральный оптический кабель марки ОКЛ:

1 — оптическое волокно; 2 — оболочка оптического модуля; 3 — центральный силовой элемент из стеклопластикового стержня;4—оболочка; 5—медная жила; 6—изоляция медной жилы; 7—гидрофобное заполнение; 8 — обмоточная лента; 9 — промежуточная оболочка из полиэтилена; 10— подушка из крепированной бумаги; 11 — сталеленточная броня; 12—наружная защитная оболочка из полиэтилена (с битумной подклейкой к броне)

Центральный силовой элемент выполнен из стеклопластиковых стержней. Наружный покров кабеля имеет несколько разновидностей: для прокладки в канализации — это полиэтиленовый шланг (марка ОКЛ), для подземной прокладки—броневой покров из стеклопластиковых стержней (ОКЛС), стальных лент (марка ОКЛБ), круглой проволоки (ОКЛК).

Для подводных речных переходов создан кабель с алюминиевой оболочкой и круглопроволочной броней (ОКЛАК). Для станционных вводов и монтажа используется кабель ОКС.

Основные оптические и физико-механические свойства ОК отечественного производства приведены в табл.1


Для потребителей стандартизация продукции — одна из наиболее востребованных и важных тем. Соответствие продукции требованиям общепринятых стандартов качества значительно облегчает процесс выбора того или иного поставщика, и при этом все участники рынка взаимодействуют в рамках единых нормативных документов. В частности, в отрасли волоконно-оптических кабелей в России неоднократно озвучивалась проблема отсутствия системного подхода и сильной разрозненности в части классификации, условного обозначения и маркообразования. Для решения этой задачи, а также утверждения обязательного перечня регламентируемых технических параметров и методов их контроля, был разработан новый ГОСТ. Несмотря на то, что полноценное приведение разработанных ранее оптических кабелей в соответствие стандарту предполагается в течение пяти лет с даты введения, т. е. к 2025 году, уже сейчас можно оценить, какую пользу он может принести производителям, заказчикам и подрядчикам, а также выявить нюансы.

Маркировка оптических кабелей. Текущая ситуация в России

На сегодняшний день в России действуют более 20 производителей оптических кабелей, и продукция каждого из них имеет собственную уникальную маркировку. Например, классический диэлектрический самонесущий оптический кабель (ОКСН) в маркировке завода Инкаб обозначается как ДПТ, в маркировке Сарансккабель-Оптики обозначается как ОКК, а в маркировке Москабель-Фуджикуры — ОКСД.

При этом в отрасли сложилось два различных подхода к кодовому обозначению типов кабелей:

Полная маркировка ВОК в обязательном порядке содержит в себе кодовые обозначения особенностей конструктивного исполнения, а также числа оптических волокон. Примеры структуры маркировки различных заводов-производителей приведены на рис. 1:

Расшифровка аббревиатур оптического кабеля разных производителей

Рис. 1. Примеры структуры маркировки ОК различных заводов.

Несомненными недостатками текущей ситуации с маркировкой оптических кабелей являются:

  • Сложность и неудобство использования.
    Потребителю для заказа необходимо разбираться в структуре маркировки кабеля ВОЛС и знать все нюансы. Если закупается продукция нескольких производителей, то сложность возрастает многократно.
  • Трудность сравнения.
    Ввиду достаточно сильных различий в системах маркообразования, прямое сравнение маркировок разных производителей невозможно и необходима полная ручная дешифровка и последующий детальный анализ, который сопряжён со значительными трудозатратами.
  • Возможность ошибок и опечаток.
    В маркировках легко запутаться, пропустить необходимые символы или перепутать их. Это приводит к тому, что, зачастую, даже производитель оптического кабеля не может однозначно идентифицировать запрос потребителя и вынужден задавать уточняющие вопросы, которые также приводят к потерям времени на коммуникацию.


Далее пользователь может заполнить соответствующие поля, имеющие описание, чтобы облегчить ввод и исключить возможные ошибки, и получает полное описание кабеля с детальными характеристиками, а также маркировку аналогичного кабеля производства Инкаб. Весь процесс требует небольшого объёма введённых данных, пару кликов мышки и занимает буквально пару минут. А самое главное — избавляет потребителя от необходимости трудоёмкого поиска системы маркировки на сайтах производителей, её изучения и последующей дешифровки.

Маркировка оптических кабелей. Текущая ситуация в мире

Практически все крупнейшие производители в мире используют собственные уникальные названия и имена для разных типов кабелей, то есть ситуация в целом схожа со сложившейся ситуацией в России.

Например, свои самонесущие кабели Corning называет SOLO, Prysmian — SM@RTSPAN, a OFS — PowerGuide DT.

Не является исключением и полное маркообразование: каждым заводом разработана собственная кодировка, зачастую весьма сложная для понимания (рис. 3):

Пример маркировки кабеля ВОЛС зарубежных производителей

Рис. 3. Примеры маркировки зарубежных производителей

Стоит отметить, что принимались попытки создать унифицированную маркировку. В частности, в странах Центральной Европы широко известен стандарт DIN VDE 0888, который, в том числе, описывает единые принципы кодирования оптических кабелей по типу исполнения, а также применяемым материалам и оптическим волокнам. Тем не менее данная система тоже обладает рядом недостатков, а именно:

Вследствие всего этого, наряду с использованием маркировки по DIN VDE, производители продолжают пользоваться собственными обозначениями в качестве альтернативы.

Таким образом, можно сделать вывод, что ни в мире, ни в России нет единого подхода и единой разработанной системы маркообразования волоконно-оптических кабелей. Такой ситуация и оставалась до недавнего времени.

ГОСТ Р на оптические кабели

Обозначение оптических кабелей по ГОСТ 52266-2020

Рис. 4. Условное обозначение оптических кабелей по ГОСТ 52266-2020

Тем не менее даже новые утверждённые условные обозначения не избавили отрасль от некоторых проблем:

Рассмотрим предполагаемую пользу от унификации маркировок оптоволоконного кабеля, которую декларирует новый ГОСТ:

  • В проектной документации используются единые унифицированные марки кабеля без привязки к конкретному производителю.
  • В закупочной документации на конкурсах, согласно проектной документации, также используются единые маркировки.

Однако становятся очевидными и ряд недостатков с этим связанных:

Следствием возникающих недостатков будет являться то, что рынок разделится на два класса потребителей:

Стандартизация зарубежной кабельной продукции ВОЛС

Общемировая практика, определяемая развитыми странами, сводится к тому, что должен соблюдаться баланс интересов заказчика и производителя. Заказчик всегда определяет свои собственные требования к продукции, которые не исчерпываются общепринятыми мировыми стандартами, такими как IEC или IEEE. К конкурсной процедуре допускаются минимум два производителя, наиболее часто это три-четыре производителя. В документации перечислены собственные маркировки допущенных производителей, как аналоги друг друга. Продукция всех допущенных производителей при этом в обязательном порядке предварительно проходит все необходимые проверки и тестирование, в том числе в независимых испытательных центрах. Другие производители к конкурсу не допускаются. Таким образом, заказчик полностью уверен в качестве предлагаемой продукции и её соответствию своим предъявляемым требованиям, исключив непонятных производителей, предлагающих как бы то же самое, но одновременно с этим обеспечивая конкурентное предложение.

Цветовая кодировка оптических волокон

В мире не принят единый стандарт о том, какие цвета и в каком порядке должны применяться для кодировки оптических волокон в кабеле. Однако многие страны имеют свой собственный стандарт: ANSI/TIA-598 в США и многих других странах, DIN-VDE 0888 в Германии и части стран Европы и другие (рис. 5):

Цветовая кодировка оптических волокон у зарубежных производителей ВОК

Рис. 5. Примеры цветовой кодировки оптических волокон в разных странах.

Общепринятой является кодировка по 12 цветам в связи с тем, что в условиях недостаточного освещения, как это часто бывает где-нибудь на чердаках или в полевых условиях, человеческий глаз отчётливо может различать только 12 цветов. А дополнительные цвета видятся как оттенки основных и могут быть легко перепутаны. Однако в одном оптическом модуле (трубочке) могут быть размещены больше 12 волокон, вплоть до 96. При этом возможны разные схемы кодировки. Наиболее популярен способ нанесения на волокно дополнительных штрихов (кольцевых меток), который может быть применён для модулей, содержащих до 48 волокон. Первая дюжина волокон имеет стандартную цветовую кодировку, а на последующие наносятся один штрих (кольцо), два или три рядом. Вторым возможным способом является использование цветных обмоточных нитей, которые объединяют дюжины. Таким образом, обмоточная нить тоже является кодирующим элементом, определяющим порядок дюжины. При кодировании большого количества волокон штрихами или обмоточными нитями возникает нюанс, который необходимо учитывать, особенно для волокон со сверхнизким затуханием: возникают дополнительные микроизгибные потери, которые несколько увеличивают затухание. Если в оптическом модуле используется не более 16 волокон, то современные стандарты допускают использование дополнительных цветов вместо нанесения кольцевых меток.

В России нет единого стандарта, определяющего порядок цветов оптических волокон. Разные заводы используют различный порядок. Это приводит к большим проблемам и путанице при монтаже кабелей разных производителей. Все потребители отмечают неудобства с этим связанные. Необходимо переделывать схемы соединения волокон друг с другом, учитывать и согласовывать между собой разные цвета.

Цветовая кодировка оптических модулей

Оптические модули, содержащие набор оптических волокон, объединяются в кабеле, как правило, в виде скрутки вокруг центрального силового элемента. Общепринятой мировой практикой здесь является то, что модули тоже имеют свой собственный уникальный цвет, соответствующий порядку, применённому при кодировании оптических волокон, например, по ANSI/TIA-598 (рис. 6):

Цветовая кодировка оптических модулей по ANSI/TIA-598

Рис. 6. Цветовая кодировка оптических модулей по ANSI/TIA-598

Общепринятой практикой в России является использование, так называемой, счётной пары, когда в скрутке присутствует основной модуль определённого цвета и направляющий модуль другого цвета. По направляющему модулю идёт отсчёт всех остальных, которые имеют одинаковый натуральный (белый) цвет (рис. 7):


Рис. 7. Принцип кодировки оптических волокон в России

Необязательность выполнений рекомендаций ГОСТ Р в части цветовой кодировки оптических модулей и использование устаревшей системы кодировки (по счётной паре) приводит к тому, что при монтаже подрядчик вынужден работать с модулями одинакового цвета, что требует повышенной аккуратности и внимательности (рис. 8).

Рис. 8. Пример использования оптических модулей одинакового цвета

Очень часто при этом модули перепутываются, что приводит к дополнительным сложностям при сдаче линии и/или дальнейшей эксплуатации. Производство оптических кабелей с уникальными по цветам оптическими модулями полностью исключает эту проблему, однако невыгодно производителю при отсутствии дополнительных требований со стороны заказчика и при прочих равных условиях о соответствии минимальным требованиям ГОСТ.

Заключение

Несмотря на очевидные достоинства разработанного ГОСТ на оптические кабели в части систематизации предъявляемых требований и методик испытаний, предлагаемая унификация противоречит современным мировым тенденциям. Необязательность соблюдения цветовой кодировки приведёт к продолжающейся путанице на рынке, а единая маркировка снизит общий уровень качества предлагаемых кабелей.

Итак, регулирование стока, если не учитывать его загрязнения, может развиваться и дальше – резервы для этого есть. Однако наиболее дефицитными остаются Екатеринбургский и Нижнетагильский промрайоны, где свободных ресурсов воды практически не осталось. Поэтому для улучшения водообеспечения этих районов, и в первую очередь для питьевых нужд, необходима переброска части стока из соседних речных систем. Для Нижнетагильского промузла донором может быть р. Межевая Утка, для г. Кировграда – р. Сулем, на которых необходимо создать водохранилища для питьевых целей, так как только по этим рекам может быть обеспечено создание санитарно-защитных зон (СЗО).

Волоконно-оптические кабели (ВОК) выпускаются многими компаниями, как зарубежными, например, Alkatel, AMP, BICC Cables Company/BICC KWO Kabel GmbH, Focas, Fujikura, Hellukabel, Lucent Tecnhologies, Mohawk/ CDT, NK Cabls, Phillips, Pirelli, Samsung, Simens, Sumitoto, так и отечественными, например, “Москабельмет” (Москва, теперь “Москабель-Фуджикура”), “Оптен” (С. Петербург), “Оптика-кабель” (Москва, теперь “Москабель- Фуджикура”), Самарская оптическая кабельная компания (СОКК) (Самара), “Сарансккабель” (Саранск), “Севкабель- оптик” (С. Петербург), “Трансвок” (Боровск, Калининская область) “Электропровод” (Москва), и др. Российские компании, как правило, используют импортное оборудование и волокно, их продукция соответствует мировому уровню качества и подтверждена соответствующими сертификатами, что позволяет использовать её с выгодой для отечественного потребителя. Они классифицируются по назначению, условиям прокладки и конструкциям составляющих элементов [5].

П о н а з н а ч е н и ю все кабели можно разделить на три категории:

– внутренней прокладки (indoor);

– наружной прокладки (outdoor);

Кабели внутренней или внутреобъектовой прокладки. используются внутри телефонных станций, офисов, зданий и помещений клиентов/абонентов. По условию прокладки эти кабели в свою очередь можно разделить на:

  • кабели вертикальной прокладки (riser cable);
  • кабели городской прокладки (distribution cable);
  • шнуры коммутации (patch cord).

Кабели наружной прокладки могут применяться практически на любых линиях связи;

  • воздушные (aerial);
  • подземные (buried);
  • подводные (undersea, underwater).

Кабели воздушной подвески подвешиваются на опорах различного типа и, в свою очередь, делятся на кабели:

  • самонесущие (self-supporting, например, типа ADSS – All-Dielectric Self-supporting;
  • полностью диэлектрические самонесущие;
  • с несущим тросом или без него, подвешиваемые на опорах различного типа, в том числе на опорах ЛЭП и контактной сети железных дорог;
  • прикрепляемые (lashed, например, типа ADL – полностью диэлектрические прикрепляемые), которые крепятся к несущему проводу с помощью диэлектрических шнуров или ленты, или же с помощью специальных зажимов, или спиралевидных отрезков металлической проволоки;
  • навиваемые (wrapped, например, типа SkyWrap компании Focas) – навиваются вокруг несущего, например, фазового провода или провода заземления (грозотроса);
  • встраиваемые в грозотрос (типа ORGW – Optical ground Wire – ОКГТ – оптический кабель в грозотросе).

Кабели подземной прокладки в свою очередь делятся на:

  • кабели, прокладываемые в кабельной канализации и туннелях;
  • кабели, закапываемые в грунт;
  • кабели, автоматической прокладки (АП) в специальных трубах (например, трубах типа Silikor – ПЭ трубы компании Dura-Line).

Подводные кабели имеют следующие разновидности:

  • кабели, укладываемые на дно несудоходных рек, неглубоких озёр и болот (используются при прохождении водных преград небольшой длины);
  • кабели, укладываемые на дно морей и океанов (что может означать не только укладку на дно, но и закрепление на определённой глубине, или закапывание в донный грунт на определённую глубину).

К специальным кабелям относят следующие:

  • одноволоконные полностью диэлектрические (ПД) кабели в тонкой специальной оболочке для использования в сети внутренней коммутации различных спецустройств и приборов;
  • многоволоконные плоские (ПД) кабели, используемые для внутренних шин и компьютерных сетей суперкомпьютеров;
  • многоволоконные объёмные (матричные) ПД кабели, используемые для прямой (несканируемой) передачи плоских графических изображений объектов (например, для передачи видеоизображений – содержат тысячи или десятки тысяч волокон).

По конструкции кабели делятся на ряд типов в зависимости от назначения, условий прокладки и других конструктивных элементов. К этим элементам относятся:

  • оптические волокна, имеющие первичное и вторичное защитные покрытия или специально подготовленные для укладки в кабель (например, соединённые вместе в плоскую ленту, а несколько плоских лент в матрицу – для увеличения общего числа волокон в кабеле до нескольких сот);
  • трубчатые модули, пластмассовые или металлические, в которых располагаются ОВ, называемые также оптическими модулями (ОМ);
  • профилированные сердечники, в продольных (по винтовой линии на периферии) пазах которых укладываются отдельные волокна, пучки волокон или размещаются трубчатые модули;
  • силовые элементы: центральные (в виде корда или металлической жилы) – ЦСЭ или внешние (в виде одного или нескольких повивов металлической проволоки). В качестве ЦСЭ может быть стеклопластиковый (СП) стержень, пучок специальных высокопрочных арамидных нитей (Кевлар, Тварон или Терлон), стальная поволока или стальной профилированный стержень;
  • специальные элементы, например, токопроводящие слои и повивы кабеля в грозотросе (ОКГТ) для уменьшения удельного сопротивления троса току короткого замыкания (КЗ);
  • технологические элементы типа гидрофобных заполнителей (гелей) или водоблокирующих лент, препятствующих проникновению (и распространению вдоль кабеля) влаги, увеличивающей затухание в ОВ кабеля, и различных технологических обмоток и оболочек, служащих для различных целей, в том числе и для тех же целей, что и гели;
  • технологические элементы типа корделей (модулей-заполнителей), используемых вместо оптических модулей в случае малого числа требуемых волокон для сохранения выбранной геометрии конструкции кабеля (их диаметры, как правило, одинаковы с диаметром трубок для удобства формирования повива);
  • специальные интегрированные элементы типа служебных жил медного провода, используемых вместе с модулями и корделями в гибридных кабелях для заказчиков, использующих две среды передачи;
  • защитная броня либо в виде стальной (чаще гофрированной) ленты для защиты от механических повреждений и грызунов, либо в виде круглых (реже сегментированных) стальных нержавеющих или оцинкованных проволок накрученных в виде повивов (в один или несколько слоёв) для придания нужных защитных и механических свойств.

В соответствии с “Техническими требованиями к оптическим кабелям связи, предназначенным для применения на взаимоувязанной сети связи Российской федерации”, утверждёнными 21 мая 1998 года ОКС должны удовлетворять нижеперечисленным требованиям, представленным в таблице 7.1.

Оболочки, бронепокровы в соответствии с их функциональными назначениями и областью применения должны обеспечивать:

  • герметичность и влагостойкость;
  • механическую защиту;
  • стойкость к воздействию соляного тумана, солнечного излучения;
  • стойкость к избыточному гидростатическому давлению;
  • защиту от грызунов;
  • нераспространение горения.

Оптические волокна и элементы группирования волокон в кабеле должны иметь цветовую идентификацию.

Таблица 7.1 - Характеристики оптических волокон

Номинальная строительная длина кабеля, указанная в технической документации производителя, должна быть не менее 2 км (кроме станционных кабелей).

Для морских кабелей строительные длины указываются в конкретных контрактах.

ОКС, содержащие металлические элементы, должны удовлетворять следующим требованиям к электрическим параметрам:

  • электрическое сопротивление наружной оболочки кабеля, измеренное между металлическими элементами и землей (водой) должно быть не менее 2000 МОм∙км (при заводских испытаниях);
  • внешняя оболочка кабеля должна выдержать напряжение, приложенное между металлическими элементами, соединенными вместе, и водой (землей) 20 кВ постоянного тока или 10 кВ переменного тока частотой 50 Гц в течение 5 секунд. Для морских кабелей величина испытательного напряжения определяется с учетом величины дистанционного питания (ДП);
  • электрическое сопротивление изоляции жил ДП и между металлическими элементами и жилами ДП должно быть не менее 10000 МОм∙км;
  • электрическое сопротивление жил ДП, приведенное к температуре
    20 0 C, должно быть не более 16 Ом/км;
  • изоляция жил ДП должна выдерживать испытательное напряжение
    2,5 кВ переменного тока или 5 кВ постоянного тока в течение 2 мин;
  • оптический кабель с металлическими наружными покровами должен выдерживать испытания импульсным током в четырех поддиапазонах значений: менее 55 кА (I-ая категория молниестойкости); (55-80) кА (II-ая категория); (80-105) кА (III-я категория молниестойкости);
    105 кА и выше (IV- я категория);

Оптический кабель связи должен быть стойким к механическим воздействиям. Он должен выдерживать 20 циклов изгибов на угол ±90 0 по радиусу не более 20-кратного внешнего диаметра при нормальной температуре и при температуре не ниже минус 10 0 C окружающей среды (кроме внутри объектовых). Кабели должны выдерживать 10 циклов осевых закручиваний на угол ±360 о на длине не более 4 м. при нормальной температуре окружающей среды. Он должен быть стойким к вибрационным нагрузкам в диапазоне частот (10-200) Гц с ускорением 4g.

Срок службы оптических кабелей должен быть не менее 25 лет.

Срок хранения в полевых условиях под навесом должен быть не менее 10 лет, в отапливаемых помещениях не менее 15 лет.

Срок хранения входит в срок службы кабеля.

Транспортирование кабелей допускается любым видом транспорта на любое расстояние в соответствие с правилами перевозки грузов.

Хранение кабелей должно осуществляться в упакованном виде. Не должно быть воздействия паров кислот, щелочей и других агрессивных сред.

Температура окружающей среды при транспортировании и хранения от –50 0 C до +50 0 C, для кабелей с пониженной рабочей температурой окружающей среды от –60 0 C до +50 0 C.

Условия хранения морских кабелей определяются заводом-производителем.

Кабель должен обеспечивать возможность его прокладки и монтажа при температуре до –10 0 C (внутриобъектовые – не ниже –5 0 C).

Допустимый статический радиус изгиба кабеля должен быть равен 20-ти номинальным наружным диаметрам кабеля. Для кабелей, прокладываемых в кабельной канализации, допустимый радиус изгиба не должен превышать 250 мм.

Допустимый радиус изгиба оптического волокна при монтаже должен быть не более 3 мм (в течение 10 мин).

Допустимый статический радиус изгиба оптических модулей должен быть указан в ТУ на конкретный тип кабеля.

Изготовитель должен гарантировать соответствие оптического кабеля требованиям Технических условий при соблюдении потребителем условий транспортирования, хранения, эксплуатации и монтажа, установленных в Технических условиях и эксплуатационной документации.

Срок гарантии составляет не менее 2 лет со дня ввода в эксплуатацию.

Маркировка ВОК достаточно разнообразна и зависит от компаний производителей. Обычно используются два типа маркировки: кодовая буквенно-цифровая и непосредственная, когда вслед за маркой кабеля последовательно указываются значения основных параметров. Рассмотрим маркировку кабеля наружной прокладки.

Примером отечественной кодовой маркировки может служить кодировка кабеля компании “Севкабель-оптик” (см. таблицу 7.2, где код приведён в русской и латинской версиях).

СЕВ – ДПС – 024 Е 06– 06 – M2

SEV – DPC – 024 E 06 – 06 – M2

Примером непосредственной цифровой маркировки (кроме буквенных обозначений типа кабеля) может служить кодировка обозначений кабелей, используемая ЗАО “Самарская оптическая кабельная компания” (СОКК), представленная в таблице 7.3.

Таблица 7.2 – Кодовая маркировка компании “Севкабель-оптик”

Таблица 7.3 – Кодовая маркировка ЗАО СОКК

В маркировке кабелей “Электропровод” (таблица 7.4) нет явного указания на рабочую длину волны волокна, но её можно установить по двум другим параметрам – диаметру сердцевины и коэффициенту затухания, если использовать указанные в примечании значения, связывающие эти параметры ОВ. Например:

ОКВО-М12(0,9)Т-10-0,4-8 ОКНБ М8Т-10-0,25-8/4

Таблица 7.4 – Кодовая маркировка компании “Электропровод”

Все виды волоконно-оптического кабеля можно классифицировать на кабели специального назначения, внешней прокладки и внутренней прокладки. Кабели внешней прокладки используются в магистральных каналах, применяются для прокладки по воздуху, для соединения жилых помещений и офисов. Такой вид кабеля должен иметь отличную стойкость к внешним механическим природным воздействиям окружающей среды, перепаду температур, водонепроницаемость, ударов. Оптоволоконные кабели внутренней прокладки используют внутри помещений и зданий, имеют плотное или полуплотное вторичное буферное покрытие. Оптические кабели специального назначения эксплуатируются в разном виде грунта, по дну водоемов, болотистых и речных местностях.

Волоконно-оптический кабель состоит из стекловолокна, металла или пластика. Оптический кабель является ключевым элементом в процессе передачи данных, находящейся в модулированных электромагнитных колебаниях оптического диапазона. Оптические волокна, изготавливаемые из стекла, имеют внешний диаметр гораздо меньше, нежели ОВ из полимера. Специфическим свойством оптического волокна является его чувствительность к внешним механическим воздействиям. Помимо всего прочего оптический кабель содержит от одного до сотни световодов. Световоды обычно изготавливаются из высокопрочного диэлектрика – стекла или полимера, и обладают отличностью надежностью и практичностью. Световод – это направляющая система для электромагнитных волн оптического диапазона.

Новая маркировка оптических кабелей связи и расшифровка.

ОКГМ: ОК - Оптический кабель, Г - Грунт, М - Многомодульной конструкции.
ОКГЦ: ОК - Оптический кабель, Г - Грунт, Ц - Одномодульной конструкции с центральной трубкой.
ОККМ: ОК - Оптический кабель, , К - Канализация, М - Многомодульной конструкции,
ОККЦ: ОК - Оптический кабель, , К - Канализация, Ц - Одномодульной конструкции с центральной трубкой.
ОКТМ: ОК - Оптический кабель, Т - Трубы пластмассовые, М - Многомодульной конструкции.
ОКТМн: ОК - Оптический кабель, Т - Трубы пластмассовые, М - Многомодульной конструкции, Н - Негорючая оболочка.
ОКТЦ: ОК - Оптический кабель, Т - Трубы пластмассовые, Ц - Одномодульной конструкции с центральной трубкой.
ОКСМ: ОК - Оптический кабель, С - Самонесущий, М - Многомодульной конструкции.
ОКСД: ОК - Оптический кабель, С - Самонесущий, Д – Диэлектрический.
ОКПМ: ОК - Оптический кабель, П – Подвесной, М - Многомодульной конструкции.
ОКПЦ: ОК - Оптический кабель, П – Подвесной, Ц - Одномодульной конструкции с центральной трубкой.

Пример новой маркировки для кабеля ОКГМ: ОКГМ н - HF -01 -3x4E3 -7,0-Т

Тип кабеля с внешней оболочкой, не распространяющей горение:
LS – ПЭ, не содержащий галогенов с пониженным дымо- и газовыделением;
HF – ПЭ, не содержащий галогенов и не содержащий коррозионно-активных газообразных продуктов при горении и тлении.

Конструктивное исполнение:
00 – одномодульный, ЦСЭ отсутствует;
01 – многомодульный, ЦСЭ (ВСЭ - для ОКПМ и ОКПЦ) – стеклопластиковый стержень;
02 – многомодульный, ЦСЭ (ВСЭ - для ОКПМ и ОКПЦ) – стальной трос;
03 – многомодульный, ЦСЭ (ВСЭ - для ОКПМ и ОКПЦ) – стальная проволока;
04 – многомодульный, ВСЭ - для ОКПМ и ОКПЦ – арамидные нити.

Количество ОМ х количество ОВ в ОМ
Тип ОВ:
Е1 – одномодовое ОВ с несмещенной дисперсией по рекомендации ITU-T G.652.B;
Е3 – одномодовое ОВ с дополнительным окном прозрачности по рекомендации ITU-T G.652.D;
Е5 – одномодовое ОВ с ненулевой дисперсией по рекомендации ITU-T G.655;
М1 – многомодовое ОВ 50/125; М2 – многомодовое ОВ 62,5/125.

Допустимое растягивающее усилие (статическое), кН.

ПЭ – полиэтилен, ОВ – оптическое волокно, ОМ – оптические модули, ЦСЭ – центральный силовой элемент, ВСЭ – выносной силовой элемент.

Соответствие марок основных типов оптических кабелей связи:

Маркировка оптических кабелей связи по предыдущим ТУ

Пример новой маркировки для кабеля ОМЗКГМ: ОМЗКГМ -10 -01 -0,22 -16 -(7,0)

Обозначение назначения кабеля, условий прокладки и конструктивных особенностей:
ОМЗКГМ: О - Оптический кабель, М - Магистральный, 3 - Зоновый, К - Канализация, Г - Грунт, М - Многомодульной конструкции.
ОМЗКГЦ: О - Оптический кабель, М - Магистральный, 3 - Зоновый, К - Канализация, Г - Грунт, Ц - Одномодульной конструкции с центральной трубкой.
ОКСТМН: ОК - Оптический кабель, СТ - Стальная гофрированная броня, М - Многомодульной конструкции, Н - Негорючая оболочка
ОКСТЦ: ОК - Оптический кабель, СТ - Стальная гофрированная броня, Ц - Одномодульной конструкции с центральной трубкой.
ОККТМ: ОК - Оптический кабель, К - Канализация, Т - Трубы пластмассовые, М - Многомодульной конструкции.
ОККТЦ: ОК - Оптический кабель, К - Канализация, Т - Трубы пластмассовые, Ц - Одномодульной конструкции с центральной трубкой.
ОКСНМ: ОК - Оптический кабель, С - Самонесущий, Н - Неметаллический, М - Многомодульной конструкции.

Диаметр модового поля, сердцевины:
10 - для одномодового ОВ с несмещенной дисперсией;
10А - для одномодового ОВ с низким пиком воды и расширенной рабочей полосой длин волн;
9,5 - для одномодового ОВ с ненулевой смещенной дисперсией;
50 - для многомодового ОВ;
62,5 - для многомодового ОВ.

Номер разработки: для кабелей с индексом М и МН:
01 - центральный силовой элемент (ЦСЭ) из стеклопластика;
02 - из стального троса;
03 - из стальной проволоки.

Коэффициент затухания:
0,22 дБ/км на длине волны 1550 нм;
0,35 дБ/км на длине волны 1310 нм;
0,70 дБ/км на длине волны 1300 нм.

Количество оптических волокон (ОВ).

Допустимое растягивающее усилие (кН).

Читайте также: