Манипуляторы и роботы реферат

Обновлено: 05.07.2024

Управляющая (интеллектуальная) система служит для выработки законов управления приводами (двигателями) и механизмами двигательной системы на основе сигналов обратной связи от информационной системы. Другая важная функция данной системы — организация общения робота с человеком, распознавание ситуаций и моделирование среды, планирование действий и принятие целенаправленных решений, программирование… Читать ещё >

Промышленные роботы и манипуляторы ( реферат , курсовая , диплом , контрольная )

В последние годы в мировой промышленности переработки пластмасс все шире применяются промышленные роботы. Причин тому несколько. Главная — существенное снижение брака при улучшении качества изделий, которое, как известно, определяет их конкурентоспособность. На переработку пластмасс приходится от 10 до 15% всего парка мирового выпуска промышленных роботов. Основными производителями таких роботов являются фирмы Японии, Китая, Кореи, США, Германии и Франции. Если в 1985 г. робототехнику использовали предприятия с числом занятых свыше 500 человек, то в настоящее время это количество уменьшилось приблизительно в 10 раз. Большинство крупных зарубежных производителей оборудования для переработки пластмасс комплектуют или предусматривают комплектацию своих изделий промышленными роботами [1].

Общие сведения о роботах

Робот в общем случае состоит из следующих систем [2] (рис. 6.1):

  • — исполнительной (двигательной);
  • — управляющей (интеллектуальной);
  • — информационно-измерительной (сенсорной);
  • — системы связи.

К окружающей среде промышленного робота относятся, например, технологическое оборудование, объекты манипулирования, препятствия в его рабочей зоне и т. д.

Управляющая (интеллектуальная) система служит для выработки законов управления приводами (двигателями) и механизмами двигательной системы на основе сигналов обратной связи от информационной системы. Другая важная функция данной системы — организация общения робота с человеком, распознавание ситуаций и моделирование среды, планирование действий и принятие целенаправленных решений, программирование и оптимизация движений. Данная функция роботов обычно реализуется на основе ЭВМ или микропроцессоров, содержащих широкий набор входных (аналого-цифровых) и выходных (цифро-аналоговых) преобразователей и интерфейсных каналов связи. Адаптационные возможности и интеллектуальные способности робота определяются главным образом алгоритмическим и программным обеспечением его управляющей системы.

/. Обобщенная структура робота.

Рис. 6./. Обобщенная структура робота.

Система связи предназначена для обмена информацией между роботом и человеком, а также для связи с другими роботами и различными функциональными устройствами (в том числе технологическим оборудованием) с целью передачи заданий роботу, контроля над функционированием робота, диагностики неисправностей и т. п. Информация от человека к роботу поступает, как правило, через устройство ввода или с пульта управления. Информация, поступающая от робота к человеку, как правило, имеет форму световых и звуковых сигналов и передается с помощью дисплеев, телевидения, синтезаторов речи и т. д.

Информационная (сенсорная) система предназначена для восприятия и преобразования информации о состоянии внешнего мира и самого робота в соответствии с требованиями управляющей системы. В качестве элементов сенсорной системы обычно используются телевизионные и оптико-электронные устройства, акустические датчики и гидролокаторы, лазерные и ультразвуковые дальномеры, тактильные, контактные и индукционные датчики, а также датчики положения, скорости, сил, моментов и др.

Совокупность описанных систем робота образует его информационно-управляющую систему. Эта система предназначена для обработки информации и непосредственного управления приводами и механизмами двигательной системы в целях организации активного взаимодействия робота с окружающей средой и выполнения заданий, сформулированных человеком.

Исполнительная, или двигательная, система предназначена для отработки управляющих сигналов, формируемых управляющей системой. Тем самым обеспечивается возможность целенаправленного воздействия робота на окружающую среду. Исполнительная система определяет динамические свойства робота, в частности его способность совершать разнообразные движения. В качестве исполнительных систем применяются механические манипуляторы, устройства передвижения, электромагнитные и пневматические манипулирующие устройства. Исполнительная система может также включать силовую лазерную установку, целенаправленно воздействующую на объекты окружающей среды, или устройство, манипулирующее объектами с помощью электромагнитного силового поля [2].

Робот — система обучаемая и адаптивная. Необходимую информацию (знания и навыки) ему можно передавать в режиме обучения как путем непосредственного занесения ее в память управляющей системы, так и посредством воздействия через сенсорную систему (например, показом объектов из определенного класса) ("https://referat.bookap.info", 27).

В ходе обучения (или самообучения) управляющая система изменяет свои параметры или структуру, т. е. адаптируется. Важно отметить, что именно способность роботов к обучению и адаптации путем активного взаимодействия с окружающей средой отличает их от традиционных средств автоматизации (ЭВМ, промышленные автоматы с жесткой структурой, автоматические линии и т. п. ). Традиционные (необучаемые) автоматы и автоматические линии конструируются таким образом, чтобы в течение всего срока эксплуатации надежно выполнять только ту операцию, для автоматизации которой они предназначены. Поэтому применение необучаемых автоматов с жесткой структурой (например, станков-автоматов) целесообразно и экономически выгодно только при многократном повторении рабочей операции. Такие условия характерны для массового и крупносерийного производства.

Характерной чертой роботов является гибкость, т. е. способность оперативно перестраиваться с решения одной задачи (операции) на другую. Обычно это достигается путем переобучения (перепрограммирования) робота или в автоматическом режиме.

Робот (от чешск. robota ) — автоматическое устройство с антропоморфным действием, которое частично или полностью заменяет человека при выполнении работ в опасных для жизни условиях или при относительной недоступности объекта.

Робот может управляться оператором либо работать по заранее составленной программе. Использование роботов позволяет облегчить или вовсе заменить человеческий труд на производстве, в строительстве, при работе с тяжёлыми грузами, вредными материалами, а также в других тяжёлых или небезопасных для человека условиях.

Промышленный робот — автономное устройство, состоящее из механического манипулятора и перепрограммируемой системы управления, которое применяется для перемещения объектов в пространстве в различных производственных процессах.

Промышленные роботы являются важными компонентами автоматизированных гибких производственных систем (ГПС), которые позволяют увеличить производительность труда.

Бытовые роботы

Одним из первых примеров удачной массовой промышленной реализации бытовых роботов стала механическая собачка AIBO корпорации Sony.

Всё большую популярность набирают роботы-уборщики, по своей сути - автоматические пылесосы, способные самостоятельно прибраться в квартире и вернуться на место для подзарядки без участия человека.

Изобретатель Пит Редмонд (Pete Redmond) создал робота RuBot II, который может собрать кубик Рубика за 35 секунд.

Существует также направление моделизма, которое подразумевает создание роботов. Сейчас моделисты делают как радиоуправляемых роботов, так и автономных. Проводятся соревнование по нескольким основным направлениям. Среди соревнований автономных роботов стоит упомянуть бег на скорость по белой линии, борьбу сумо, робо-футбол.

Производители роботов

Известные коммерческие модели роботов

История

Функциональная схема промышленного робота

В составе робота есть механическая часть и система управления этой механической частью, которая в свою очередь получает сигналы от сенсорной части. Механическая часть робота делится на манипуляционную систему и систему передвижения.

Манипуляторы

Манипулятор — это механизм для управления пространственным положением орудий и объектов труда.

Манипуляторы включают в себя подвижные звенья двух типов:

· звенья, обеспечивающие поступательные движения

· звенья, обеспечивающие угловые перемещения

Сочетание и взаимное расположение звеньев определяет степень подвижности, а также область действия манипуляционной системы робота.

Для обеспечения движения в звеньях могут использоваться электрические, гидравлический или пневматический привод.

Вместо захватных устройств манипулятор может быть оснащен рабочим инструментом. Это может быть пульверизатор, сварочная головка, отвёртка и т. д.

Система передвижения. Внутри помещений, на промышленных объектах используются передвижения вдоль монорельсов, по напольной колее и т. д.

Управление

Управление бывает нескольких типов:

1. Программное управление — самый простой тип системы управления, используется для управления манипуляторами на промышленных объектах. В таких роботах отсутствует сенсорная часть, все действия жёстко фиксированы и регулярно повторяются. Для программирования таких роботов могут применяться среды программирования типа VxWorks/Eclipse или языки программирования например Forth, Оберон, Компонентный Паскаль, Си. В качестве аппаратного обеспечения обычно используются промышленные компьютеры в мобильном исполнении PC/104 реже MicroPC. Может происходить с помощью ПК или программируемого логического контроллера.

2. Адаптивное управление — роботы с адаптивной системой управления оснащены сенсорной частью. Сигналы, передаваемые датчиками, анализируются и в зависимости от результатов принимается решение о дальнейших действиях, переходе к следующей стадии действий и т. д.

3. Основанное на методах искусственного интеллекта.

4. Управление человеком (например, дистанционное управление).

Принципы управления

Современные роботы функционируют на основе принципов обратной связи, подчинённого управления и иерархичности системы управления роботом.

Иерархия системы управления роботом подразумевает деление системы управления на горизонтальные слои, управляющие общим поведением робота, расчётом необходимой траектории движения манипулятора, поведением отдельных его приводов, и слои, непосредственно осуществляющие управление двигателями приводов.

Подчинённое управление

Подчинённое управление служит для построения системы управления приводом. Если необходимо построить систему управления приводом по положению (например, по углу поворота звена манипулятора), то система управления замыкается обратной связью по положению, а внутри системы управления по положению функционирует система управления по скорости со своей обратной связью по скорости, внутри которой существует контур управления по току со своей обратной связью.

Современный робот оснащён не только обратными связями по положению, скорости и ускорениям звеньев. При захвате деталей робот должен знать, удачно ли он захватил деталь. Если деталь хрупкая или её поверхность имеет высокую степень чистоты, строятся сложные системы с обратной связью по усилию, позволяющие роботу схватывать деталь, не повреждая её поверхность и не разрушая её.

Управление роботом может осуществляться как человеком-оператором, так и системой управления промышленным предприятием (ERP-системой), согласующими действия робота с готовностью заготовок и станков с числовым программным управлением к выполнению технологических операций.

Действия промышленного робота

Среди самых распространённых действий, совершаемых промышленными роботами можно назвать следующие:

· перемещение деталей и заготовок от станка к станку или от станка к системам сменных палет;

· сварка швов и точечная сварка;

· выполнение операций резанья с движением инструмента по сложной траектории.

Промышленный робот является устройством, производящим некие манипулятивные функции, схожие с функциями руки человека.

Достоинства использования

· достаточно быстрая окупаемость

· исключение влияния человеческого фактора на конвейерных производствах, а также при проведении монотонных работ, требующих высокой точности;

· повышение точности выполнения технологических операций и, как следствие, улучшение качества;

· возможность использования технологического оборудования в три смены, 365 дней в году;

· рациональность использования производственных помещений;

· исключение воздействия вредных факторов на персонал на производствах с повышенной опасностью;

Если этого робота ударить ногой, он рассыплется на три части. Далее эти части оживут и, ползая как гусеницы, начнут сближаться. Через весьма приличное время трём кускам бота наконец удаётся состыковаться, после чего тот встаёт на ноги, готовый к дальнейшей работе

На выставке Wired NextFest 2008, прошедшей в конце сентября – начале октября в Чикаго, был показан забавный робот ckBot, которого можно было бы принять за художественный проект с техническим уклоном. Но он –часть серьёзной работы, чьи плоды однажды могут пригодиться сразу в нескольких прикладных областях.

Любопытно, что все три части робота идентичны (каждая построена из пяти блоков, обладающих моторизованным сочленением, допускающим поворот деталей на 180 градусов). Это не мешает им в нужный момент определиться, какие из них станут ногами, а какая — туловищем.

Американские инженеры назвали это умение "Самосборка после взрыва" (Self-reassembly After Explosion), впрочем, уточняя, что "взрыв" – это просто некое сильное воздействие, не важно, какой природы.

Построил эту машину Марк Йим (Mark Yim), адъюнкт-профессор инженерии в университете Пенсильвании (University of Pennsylvania) и его коллеги из лаборатории модульных роботов (Modular Robotics Lab).

Как вы уже, наверное, догадались, каждый модуль ckBot обладает своими "мозгами", батарейкой, электромоторчиками и системами связи.

Добавим лишь, что между собой части робота стыкуются при помощи магнитов, а ищут они друг друга благодаря встроенным цифровым камерам и мигающим светодиодным маякам. Кроме того, у каждой части есть акселерометр для "чувства равновесия" как при самостоятельном движении, так и в составе полного робота.

Легко представить, что оснащённый различными датчиками самособирающийся робот пригодится как военным (для разведки, например), так и учёным (изучение планет), или ремонтникам (проникновение в труднодоступные части больших установок).

Что может при этом робота "раскидать" — не вполне понятно. Да и неважно. Главное — рассыпавшись, бот может вернуть себе первоначальный вид. Правда, в нынешнем варианте дроида рановато выпускать на настоящее поле боя, пусть сперва набьёт шишек (смотрите видео до конца).

Логично спросить: "К чему такие сложности?" Дело в том, что, по общему замыслу проекта, ckBot и ему подобные машины должны собираться из куда большего количества модулей. При этом фигура, которую они образуют, зависит только от выбранной программы, а таковых внутри модулей может быть запасено немало. Хотите — получите "змею", желаете — "кошку" или "собаку".

Помните змейку Рубика (Rubik's Snake)? Тот же принцип, только всё крутится само. Так что новый бот мог бы стать классной игрушкой. Но Марк видит для него другое поле деятельности.

Непрерывно трансформируемый робот ("самореконфигурируемый" по определению создателей) пригодится там, где нужно проявлять гибкость в зависимости от ситуации. Скажем, в узкую щель может проползти "змея", какую-то механическую работу лучше поручить андроиду, а на большое расстояние путь катится "колесо".

Да, цепочка блоков ckBot может замкнуться и, меняя форму получившегося обода, катиться со скоростью до 1,6 метра в секунду. Это самый быстрый способ передвижения для ckBot, установили американские исследователи.

СkBot напомнил нам о целом ряде его идеологических предшественников. Вспомним, к примеру, робота из университета Корнелла (Cornell University).

Этот аппарат мог не просто собираться из абсолютно идентичных кусочков, но и строить свои копии. Правда, бот тот стоял на месте, а очередные детальки для сборки его собрата ему надо было класть в строго определённое место.

Получается, что группа под руководством Йима сумела "освободить" такого самосборщика, придав ему и его блокам не только способность к перемещению, но и умение находить друг друга. Осталось только научиться делать такие блоки всё более "умными" и мощными, и вперёд — отпускайте фантазию на волю.

4. РОБОТЫ AQUAJ ELLY И A IRJ ELLY

Таким путем пошли и разработчики компании Festo, создатели интереснейших роботов – AquaJelly и AirJelly, обратившие свое внимание на древнейших представителей фауны, медуз. Разумеется, к этому приложены самые современные технологии, доступные человечеству.

AquaJelly, по сути, представляет собой искусственную медузу, которую приводит в движение электромотор и адаптивная механическая система. Она состоит из полупрозрачной полусферы и восьми щупалец, а центр ее занимает водонепроницаемая емкость, в которой укрыт и двигатель, и пара Li-Ion батарей, и сервоприводы.

5. РОБОТ TETWALKER

TETwalker – это пирамида из шести стержней, соединённых узлами.

В каждом узле находится электроника и электродвигатели, способные в широких пределах менять длину стержней.

Потому правильным тетраэдром данный робот является только находясь в покое. Зато когда робот хочет попутешествовать, он меняет свою форму, так, что центр тяжести выносится за предел опоры.

Тут же следует опрокидывание на бок. Но поскольку все стороны машины совершенно равнозначны – никакого "падения" нет – так робот и двигается.

Каждый узел в вершине пирамиды может нести камеры и сенсоры, так что перед нами работающий прототип робота для исследования других планет.

Его авторы считают, что подобный способ передвижения выгоден, так как этот робот принципиально не может опрокинуться на склоне.

Даже если он скатится в кратер, то спокойно продолжит работу. А если стенки не слишком крутые – сможет и подняться наверх. Надо ли говорить, что обычный марсоход (с колёсами), если перевернётся на камне, то тут же и заканчивает своё "выступление".

Однако, полагают создатели TETwalker, куда интереснее будет, когда нанотехнологии и микромеханика позволят уменьшить размеры такого тетраэдра в десятки, а может и в сотни раз.

Все технологические предпосылки к такому радикальному сокращению уже есть или намечаются в ближайшей перспективе.

И если каждый узел такого робота дополнить стыковочным механизмом – мириады подобных машин смогут формировать ту самую "живую амёбу", меняющую форму в зависимости от условий, а также заживляющую пробоины.

Она же сможет автоматически собираться в радиотелескоп или круглый планетоход типа "перекати-поле".

Миниатюрные и сравнительно простые процессоры таких модулей смогут объединяться в единый компьютер, возможно, похожий на нейронную сеть.

"Мы не жили бы долго, если бы наши тела работали, как современные космические корабли, — рассказал глава проекта доктор Стивен Кёртис (Steven Curtis). – Когда у нас возникает травма, новые клетки заменяют повреждённые. Подобным образом неповреждённые единицы роя объединятся, продолжая выполнение миссии, несмотря на обширное повреждение".

Да, авторы проекта предлагают называть такие корабли-роботы роями, хотя, учитывая, что его элементы будут соединены между собой, больше подошло бы определение многоклеточный организм.

Как бы то ни было, нынешний треугольный робот – наглядный пример, как может работать одна клетка такого робота-роя.

Он не только ходил (если можно применить к нему такое слово) по полу лаборатории в центре Годдарда, но уже успел побывать на испытаниях в Антарктиде.

В январе 2005 года машина оказалась на научной станции Макмердо (McMurdo), где условия во многом напоминают Марс.

Тест показал, что некоторые изменения улучшат работу робота. Например, размещение двигателей в середине распорок, а не в узлах, упростит конструкцию узлов и увеличит их надёжность.

Также в рамках данного проекта специалисты развивают новое программное обеспечение, позволяющее треугольникам собираться в "разумные" (до некоторой степени) машины.

Благодаря научно-технологическому прогрессу, эта задача была решена, внедрением электронно-вычислительных систем управления и промышленных роботов. Считается, что это одно из самых крупных достижений промышленности, в т.ч. машиностроения.

Многие современные машиностроительные предприятия заинтересованы во внедрении роботов в производство, в первую очередь с целью сократить расходы, и снизить себестоимость готовых изделий. Подобный переход имеет высокую окупаемость в связи с тем, что роботам нет необходимости выплачивать зарплату, отпуск раз в год, не нужно предоставлять социальные пакеты, некоторые способны работать круглосуточно, и т.д. Также использование роботизированных линий производства существенно повышает качество, точность, скорость.

2 История создания промышленных роботов и манипуляторов

3 Манипуляторы и их классификации


  1. По количеству степеней подвижности:

    1. От трёх до шести степеней свободы

    1. Автоматизированные

    2. Автоматические

    1. Прямоугольная

    2. Полярная (сферическая)

    3. Ангулярная (угловая)

    1. Сверхлегкие ( 1 т)

    1. С автоматической балансировкой массы

    2. С предварительной установкой веса

    С течением времени в промышленности вводились в эксплуатацию все новые и новые виды роботов. Ниже описаны самые популярные из них, применяемых в машиностроении: [4].

    4.1 Роботы сварщики


    • электрическая дуговая сварка в защитной газовой среде плавким и неплавящимся электродом;

    • сварка электрической дугой под слоем флюса или шлака;

    • сварка пламенем плазменной фактуры;

    • сварка лазером;

    • комбинированный гибридный вид сварки с применением деформирующих вальцов;

    • промышленные роботы для сварки точечно


    4.2 Покрасочные роботы

    В машиностроении неотъемлемым видом работ является обработка поверхностей перед финальной сборкой. Это может быть грунтовка, предшествующая покраске, или нанесение антикоррозийных покрытий. С этими и другими аналогичными задачами справляется покрасочный-робот. Самые современные оснащаются пульверизаторами для окраски деталей, поворотными столами и 7-8 осевыми манипуляторами для достижения максимально возможной точности, шлангами повышенной гибкости и прочности для защиты от механических повреждений, излома, скручиваний.[9].



    4.3 Роботы резчики

    В машиностроительных предприятиях, а также в предприятиях, непосредственно связанных с обработкой металла, пользуются спросом манипуляторы для резки металлов. Современные роботы-резчики оснащаются системой отслеживания положения заготовки. Важный элемент этого устройства – датчик контакта головки интсрумента с заготовкой. От его работы точность позиционирования может достигать 0,05 мм, чего вполне достаточно для обработки даже небольших деталей и деталей, требовательных к точности.[8]



    4.4 Роботы-сборщики

    Исследования показывают, до 25% всего времени производства занимают сборочные операции. Промышленные манипуляторы, занятые автоматической сборкой изделий, как правило, имеют 6 степеней свободы, которые приводятся в движение благодаря системе сервоприводов, однако их полный потенциал раскрывается при использовании полностью автоматизированной линии производства. Несмотря на это множество операций все еще сложны для выполнения роботами, поэтому выполняются вручную, но большинство простых и многократно повторяющихся операций идеальны для выполнения роботами. [8]


    4.5 Роботы-сверлильщики

    Операцию сверления, как правило, сейчас производят на станке. И при использовании робота-манипулятора рабочий инструмент закрепляют в захватном устройстве, которое перемещается над заготовкой, высверливая отверстия в необходимых местах. Преимущество использования робота в этом наблюдается, когда приходится работать с крупногабаритными деталями и когда нужно высверливать большое количество отверстий. Например, подобные роботы активно используются в авиастроении, где операции сверления играют важную роль: перед вставкой клепок на одном экземпляре необходимо проделать тысячи отверстий, и неудивительно, что роботы-сверлильщики нашли там свое применение. [8]



    4.6 Роботы для бесконтактной обработки

    Роботы, из-за своей ограниченной твердости и жесткости, не всегда могут применяться для резки твердых материалов резанием, поэтому были изобретены роботы для бесконтактной обработки материалов. В частности, для этого используется лазер. В захватном устройстве робота располагается генератор высокоэнергетического когерентного излучения, который направлен на заготовку. Лазер позволяет добиться высочайшей точности при обработке стали, алюминия, других металлов. Программой задается траектория движения лазера, а также мощность его излучения, в зависимости от толщины обрабатываемой детали. Еще одним способ осуществить бесконтактную резку – применение струи жидкости. Такой метод исключает износ инструмента, а также повышает качество резки. [6].



    Заключение

    Как видно, темпы роботостроения и применяемости промышленных роботов в машиностроении неуклонно растет, так же, как и на заре их развития. На текущий момент множество видов однообразных и трудоемких работ, до этого выполняемых человеком, заменено роботами. Также, применение промышленных роботов дает преимущество при производстве, в сравнении с конкурентами. Снижение энергозатрат, процент брака, повышение экологичности производства, прибыли – в этом положительные стороны применение роботов, поэтому настолько популярно их распространение.

    Многие современные машиностроительные предприятия заинтересованы во внедрении роботов в производство, в первую очередь с целью сократить расходы, и снизить себестоимость готовых изделий. Подобный переход имеет высокую окупаемость в связи с тем, что роботам нет необходимости выплачивать зарплату, отпуск раз в год, не нужно предоставлять социальные пакеты, некоторые способны работать круглосуточно, и т.д. Также использование роботизированных линий производства существенно повышает качество, точность, скорость.

    Используемые источники

    7. Ю. Г. Козырев. Захватные устройства и инструменты промышленных роботов.

    Грачёва Алина Валентиновна


    Оскольский политехнический колледж

    Одной из основных движущих сил автоматизации современного производства являются промышленные роботы-манипуляторы. Их разработка и внедрение позволили выйти предприятиям на новый научно-технический уровень выполнения задач, перераспределить обязанности между техникой и человеком, повысить производительность.

    Целью данной работы является анализ возможностей роботов-манипуляторов, тенденции их развития и применения в хирургии, промышленности и замена тяжелого ручного труда.

    Задачи: изучить основные достоинства роботов-манипуляторов, ознакомится с функциональными возможностями манипуляторов.

    Основные достоинства манипуляторов:

    • повышение производительности труда(поскольку открывается возможность использования технологического оборудования в три-четыре смены и 365 дней в году);
    • уменьшение издержек производстваи повышение конкурентоспособности;
    • рациональное использование оборудования и производственных помещений;
    • улучшение качества продукции, связанное с повышением точности выполнения технологических операций;
    • исключение влияния человеческого факторана конвейерных производствах, а также при проведении монотонных работ, требующих высокой точности;
    • исключение воздействия на персонал вредных факторов, характерных для производств с повышенной опасностью;
    • снижение сроков окупаемости инвестиций.

    При программировании роботов-манипуляторов используется зык "JSk С++ — это языковое расширение C++, в котором объединяются вероятностные средства и средства обучения. В число типов данных С++ входят распределения вероятностей, что позволяет программисту проводить расчеты с использованием неопределенной информации, не затрачивая тех усилий, которые обычно связаны с реализацией вероятностных методов. Еще более важно то, что язык C++ обеспечивает настройку робототехнического программного обеспечения с помощью обучения на основании примеров, во многом аналогично тому, что осуществляется в алгоритмах обучения. [4]

    Язык С++ знает множество программистов так что при внедрении роботов-манипуляторов в производственный процесс не будет проблемой нахождение специалиста в этой области.

    Различные аспекты применения промышленных роботов-манипуляторов рассматриваются, в рамках типовых проектов: исходя из имеющихся требований, выбирается оптимальный вариант, в котором конкретизированы необходимый для данной задачи тип роботов, их количество, а также решаются вопросы инфраструктуры питания (силовые подводки, подача охлаждающей жидкости — в случае использования жидкостного охлаждение элементов оснастки) и интеграции.

    Роботы-манипуляторы способны выполнять основные и вспомогательные операции.

    Действия, выполняемые роботами-манипуляторами:

    - дуговая и точечная сварка;

    - ковка и штамповка;

    - нанесение покрытий распылением;

    -операции сверления, фрезерования, клёпки, шлифовки, полировки;

    - сборка механических, электрических и электронных деталей;

    - контроль качества продукции

    Манипуляторы способны заменить операторов, выполняющих рутинные задачи в опасных и загрязненных условиях, так же людей, выполняющих действия большой точности или физической силы. В системе управления ведется учет внешних возмущающих воздействий, оказываемых на робот-манипулятор в процессе работы. Благодаря этому, манипуляционные системы можно эксплуатировать без защитных ограждений, рядом с рабочими местами персонала. [3]

    Использование роботизированных помощников позволяет справляться одновременно с несколькими задачами:

    • сокращение рабочих площадей и высвобождение специалистов (их опыт и знания могут быть использованы на другом участке);
    • увеличение объемов производства;
    • повышение качества продукции;
    • благодаря непрерывности процесса сокращается цикл изготовления.

    Самыми распространенными вариантом роботов-манипуляторов являются сварочные роботы. Их производительность и точность в 8 раз выше, чем у человека. Такие модели могут выполнять несколько видов сварки: дуговая или точечная (в зависимости от ПО).

    Благодаря тому, что устройства способны сваривать не только ровные детали, но и эффективно проводить сварочные работы под углом, в труднодоступных местах устанавливают целые автоматизированные линии. Запускается конвейерная система, где каждый робот за определенное время проделывает свою часть работы, а после линия начинает двигаться к следующему этапу. Организовать такую систему с людьми достаточно непросто: никто из работников не должен отлучаться ни на секунду, в противном случае сбивается весь производственный процесс, либо появляется брак.

    Продолжающийся рост численности населения, повышение спроса на продукты питания, снижение доступности рабочей силы в сельском хозяйства, рост затрат на сельское хозяйство - все это стимулирует массовую автоматизацию промышленности в области сельского хозяйства.

    Передовые страны работают над переходом к безлюдному автоматизированному сельскому хозяйству на основе широкого применения мобильных и стационарных роботов. Роботы способны выполнять различные операции - обработку почвы, ее удобрение, посев, посадка, доение скота, стрижка шерсти, кормление, разделывание мяса и рыбы и т.п.[1]

    Таким образом можно сделать вывод о том, что роботы-манипуляторы в скором времени станут неотъемлемой частью нашей жизни. Потенциал этих устройств ограничивается только изобретательностью человека

    Читайте также: