Магнитные генераторы импульсов реферат

Обновлено: 02.07.2024

Простейшим генератором импульсов для цепей постоянного тока является пульс-пара, состоящая из двух реле времени (рис. 4.14). При замыкании ключа S срабатывает реле К1 и замыкает контакты К1.2, посылая на выход импульс Uвых. Одновременно замыкаются контакты К1.1, включающие обмотку реле К2. Когда с выдержкой времени К2 сработает, разомкнутся контакты К2.1, реле К1 отпустит и импульс на выходе прекратится. Но при этом контакты К1.1 разомкнут цепь реле К2, что приведет к замыканию контактов К2.1 и новому срабатыванию реле К1. На выход будет подан второй импульс. Затем последовательность работы реле повторится. Регулируя время срабатывания реле К1 и время отпускания реле К2, можно изменять частоту посылаемых импульсов, их длительность и скважность.

Бесконтактный магнитный генератор импульсов (рис. 4.15) представляет собой магнитный усилитель на двух сердечниках, последовательно с обмоткой обратной связи которого включен конденсатор .

Индуктивность обмотки образует с конденсатором контур, в котором за счет энергии сети поддерживаются незатухающие колебания с частотой:

В результате ток рабочих обмоток частотой модулируется частотой , а в цепи нагрузки после выпрямителя протекают импульсы выпрямленного тока, сглаженные фильтрующим конденсатором .


4.16 изображен феррорезонансный формирователь импульсов, питающийся от сети переменного тока частотой 15-400 Гц.

Он состоит из последовательно включенных нелинейного дросселя и конденсатора . Параметры схемы подобраны так, чтобы сердечник доводился до насыщения. Тогда в каждый полупериод в течение некоторого времени сердечник перемагничивается, при этом ток в цепи близок к нулю. При достижении насыщения ток резко возрастает до величины, определяющейся напряжением сети в этот момент времени и сопротивлением R. В зависимости от полупериода напряжения сети, импульс тока появляется в сопротивлении нагрузки или . По мере заряда конденсатора импульс тока спадает до нуля. В следующий полупериод конденсатор заряжается в обратном направлении и импульс тока протекает в другой нагрузке.

В качестве задающего генератора широко применяют магнито-транзисторный мультивибратор (рис. 4.17).

Нетрудно видеть, что эта схема представляет собой не что иное, как магнитно-транзисторный преобразователь постоянного тока, принцип действия которого детально описан в методическом пособии по курсовому проекту /5/. Но раздельная нагрузка включена не в выходную обмотку, ее нет, а в коллекторные цепи транзи

сторов. Период перемагничивания здесь зависит от величины коллекторного тока в цепи нагрузки, объема сердечника и соотношения количества витков обмоток базовой и коллекторной. Менять частоту выходного сигнала можно в небольших пределах, меняя величину постоянного подмагничивания изменением сопротивления R в цепи обмотки постоянного тока.

Срочно?
Закажи у профессионала, через форму заявки
8 (800) 100-77-13 с 7.00 до 22.00

Изобретение относится к импульсной технике, а именно к магнитным генераторам импульсов, и предназначено для генерирования импульсов с коротким фронтом для возбуждения квантовых генераторов, радиолокационных систем и в других технических и технологических применениях, где есть потребность в импульсах с коротким фронтом высокой мощности.

Магнитные формирователи импульсов строятся по следующему принципу:
накопление энергии в накопителе (емкостном или индуктивном) при потреблении ее от источника на малом уровне мощности через управляемый ключевой элемент в течение сравнительно длительного времени, с последующим высвобождением накопленной энергии за малые времена с преобразованиями, сводящимися к трансформации формы и амплитуды импульса для обеспечения требуемого режима работы нагрузки и устройства в целом.

Этот принцип построения утвердился с 1951 г., когда В. Мелвилл предложил использовать для сжатия импульсов нелинейные колебательные контуры (например, в работе: Melville W.S.//Proc.IEE. 1951.V.98. 53.Р158). Недостатком этого устройства при его реализации является значительная величина первого дросселя, обуславливающая значительные потери энергии импульса и габариты.

Этот недостаток устранен в генераторе, описанном в монографии: Меерович Л. А. , Ватин И.М., Зайцев Э.Ф., Кандыкин В.М.: Магнитные генераторы импульсов, М. : Сов. радио. 1968 г., 476 с. (с.18), в котором функцию первого дросселя выполняет импульсный трансформатор, который выполняется с насыщающимся магнитопроводом, однако и этот генератор обладает относительно низким кпд и громоздкостью, поскольку вся энергия импульса проходит через трансформатор при ее сжатии.

Более совершенным (выбран нами как прототип) является магнитный генератор импульсов, описанный в а.с. СССР 1358071 от 19.02.85 г., МПК 7 Н 03 К 3/53, опубл. 07.12.87 г. Бюл. 45. Транзисторно-магнитный генератор импульсов (далее магнитный), содержащий источник питания, между выводами которого включены соединенные последовательно зарядный и накопительный элементы, последний подключен через ключ к первичной обмотке насыщающегося трансформатора, его вторичная обмотка шунтирована вторым емкостным накопителем и соединена последовательно через насыщающийся дроссель и первичную обмотку импульсного трансформатора с первым емкостным накопителем, а к выходной обмотке импульсного трансформатора подключена нагрузка.

Этот генератор обладает повышенным кпд и обладает меньшими габаритами по сравнению с описанными в упомянутой книге. Однако недостатками этого генератора являются относительно значительные габариты и относительно большая длительность фронта или относительно низкий коэффициент сжатия импульса.

Основной задачей, на решение которой направлено заявляемое изобретение, является снижение габаритов, повышение кпд и повышение коэффициента сжатия импульса или укорочение фронта импульса.

Технический результат, достигаемый заявляемым изобретением, является снижение габаритов, повышение кпд и повышение коэффициента сжатия импульса, получаемый за счет объединения сердечников дросселя и трансформатора и получение квазипрямоугольного импульса на нагрузке.

Указанный технический результат достигается тем, что в известном магнитном генераторе импульсов, содержащем источник питания, между выводами которого включены соединенные последовательно зарядный и накопительный элементы, последний подключен через ключ к первичной обмотке насыщающегося трансформатора, его вторичная обмотка шунтирована вторым емкостным накопителем и соединена последовательно через насыщающийся дроссель и первичную обмотку импульсного трансформатора с первым емкостным накопителем, а к выходной обмотке импульсного трансформатора подключена нагрузка, согласно изобретению насыщающийся дроссель имеет один виток, который размещен внутри сердечника и соосно с его осью, а витки первичной обмотки импульсного трансформатора намотаны на сердечник дросселя, при этом первый емкостный накопитель включен последовательно между выводами витка насыщающегося дросселя и первичной обмотки импульсного трансформатора.

Такое объединение сердечников дросселя и трансформатора позволяет сократить объем сердечников, что, естественно, снижает величину потерь в магнитной системе, поскольку потери пропорциональны объему. Снижение потерь в магнитной системе приводит к повышению кпд генератора.

Кроме того, такое изменение выполнения дросселя изменяет характер процессов в нем, т.е. процессы, протекающие в устройстве прототипе в сосредоточенном элементе, преобразуются в процессы в устройствах с распределенными параметрами, а это изменяет и возможности процессов. Так, при сжатии импульса до, например, 10 нС из импульса 200 нС требуется несколько звеньев сжатия с дросселями и конденсаторами, поскольку в этом диапазоне времен коэффициент сжатия звеньев находится в диапазоне 3-1,5. Увеличение количества звеньев увеличивает и количество конденсаторов, что приводит к снижению надежности генератора. Формирование же импульса в устройстве с распределенными параметрами за счет ударной электромагнитной волны позволяет иметь коэффициент сжатия 10-20 и более, см., например. Катаев И.Г. Ударные электромагнитные волны. М. : Сов. радио, 1963., Кухаркин Е.С. Основы инженерной электрофизики. Ч. 1. Основы технической электродинамики. М.: Высшая школа, 1969, 510 с., с. 367, рис. 10.46.

Причем в генераторе первый емкостный накопитель включен последовательно между выводами витка дросселя и витка первичной обмотки импульсного трансформатора. Такое включение первого емкостного накопителя позволяет иметь на обмотке импульсного трансформатора двойное напряжение (относительно напряжения на емкостном накопителе (конденсаторе)), а между выходом витка дросселя и выходом первичной обмотки напряжение конденсатора, т.е. на изоляцию, в том числе и на феррит, действует меньшее напряжение и это обеспечивает большую надежность генератора.

Кроме того, в генераторе по п.1 первый и второй емкостные накопители (конденсаторы) разделены на n одинаковых конденсаторов, соединенных своей ветвью первичной обмотки импульсного трансформатора, при этом и насыщающийся трансформатор снабжен n ветвями вторичной обмотки, каждая из которых присоединена к своей ветви 1-го и 2-го накопительных конденсаторов. Такое исполнение позволяет получить квазипрямоугольный импульс на нагрузке, т.е. импульс с плоской вершиной. Это связано с тем, что после перезаряда вторых накопительных конденсаторов к ветвям первичной обмотки импульсного трансформатора прикладывается напряжение последовательных цепочек конденсаторов, но разряжаться начнет та цепочка конденсаторов, у которой напряжение выше, в силу разных причин: разная величина емкостей, добротностей и т.д., за счет взаимной индукции в других ветвях индуцируется эдс, которая не позволяет другим цепочкам конденсаторов разряжаться. По мере разряда одной ветви напряжение цепочки уменьшается, разряжаться начинает следующая ветвь и так последовательно все. Таким образом формируется плоская часть импульса. Кроме того, сокращается длительность импульса и уменьшается волновое сопротивление генератора в n 1/2 раз. Это приводит к повышению мощности генератора. Поясним это следующим образом: постоянная цепи после деления станет
t = π(LC/n) 1/2 ,
где L - индуктивность рассеяния ветви первичной обмотки импульсного трансформатора; С - величина емкости последовательно соединенных 1-го и 2-го емкостных накопителей до их деления; n - коэффициент деления.

Из этого следует, что длительность импульса уменьшится в п 1/2 раз.

z= (Ln/C) 1/2 - волновое сопротивление ветви, но поскольку n-ветвей, то волновое сопротивление генератора (модулятора) будет
Z=l/n(Ln/C) 1/2
Таким образом, волновое сопротивление генератора (модулятора) уменьшится в (1/n) 1/2 раз.

На чертеже приведены электрические схемы предложенного генератора с вариантами его исполнения (а, б). Предлагаемый магнитный генератор импульсов содержит источник питания 1, между выводами которого включены соединенные последовательно зарядный элемент 2 и накопительный элемент 3, который подключен через ключ 4 к первичной обмотке насыщающегося трансформатора 5. Его вторичная обмотка шунтирована вторым емкостным накопителем 9 и соединена последовательно через насыщающийся дроссель 6 и первичную обмотку импульсного трансформатора 7 с первым емкостным накопителем 8. Нагрузка 10 включена между выводами выходной обмотки импульсного трансформатора 7. Различие в генераторе по вариантам а и б состоит только по исполнению 1-го и 2-го емкостных накопителей. По варианту б они разделены на n количество, и соответственно первичная обмотка импульсного трансформатора и вторичная обмотка насыщающегося трансформатора имеют по n ветвей.

Магнитный генератор импульсов работает следующим образом.

После заряда от источника 1 через зарядный элемент 2 накопительного элемента 3 замыкается ключ 4 и накопительный элемент 3 разряжается через первичную обмотку насыщающегося трансформатора 5. Первый 8 и второй 9 емкостные накопители заряжаются параллельно. Сердечник насыщающегося дросселя 6 и импульсного трансформатора 7 насыщен и существенного влияния на процесс заряда не оказывает. После того, как напряжение на емкостных накопителях 8 и 9 достигнет максимальной величины, сердечник насыщающегося трансформатора 5 насыщается. Напряжение на первом емкостном накопителе 8 прикладывается к витку насыщающегося дросселя 6 и выводит его из насыщения. Второй емкостный накопитель 9 перезаряжается сам на себя практически до такого же напряжения. Потери энергии при перезаряде определяются практически только активными потерями в проводе вторичной обмотки насыщающегося трансформатора 5 с насыщенным сердечником. По окончании перезаряда емкостного накопителя 9 емкостные накопители 8 и 9 оказываются включенными униполярно и последовательно по отношению к витку насыщающегося дросселя 6 и первичной обмотке импульсного трансформатора 7. По витку дросселя 6 начинает распространятся волна тока.

При распространении волны тока образуется ударная электромагнитная волна, как, например, в Катаев И.Г. Ударные электромагнитные волны. М.: Сов. радио, 1963. При этом через импульсный трансформатор 7 осуществляется передача энергии емкостных накопителей 8 и 9 в нагрузку, и они разряжаются. Работа варианта б по фиг. 1 происходит аналогично описанному, только изменяются длительность и мощность импульса.

Похожие патенты RU2189695C1

  • Кривоносенко А.В.
  • Кривоносенко Д.А.
  • Кривоносенко А.В.
  • Шубкин Николай Георгиевич
  • Маньковский Алексей Владимирович
  • Кривоносенко А.В.
  • Батраков А.В.
  • Проскуровский Д.И.
  • Лавринович Иван Валериевич
  • Важов Владислав Фёдорович
  • Лавринович Валерий Александрович
  • Ратахин Николай Александрович
  • Жегалов Александр Константинович
  • Данилов Владимир Михайлович
  • Рукин С.Н.
  • Костыря Игорь Дмитриевич
  • Тарасенко Виктор Федотович
  • Шитц Дмитрий Владимирович
  • Батраков А.В.
  • Попов С.А.
  • Проскуровский Д.И.

Реферат патента 2002 года МАГНИТНЫЙ ГЕНЕРАТОР ИМПУЛЬСОВ


Использование: в импульсной технике для генерирования импульсов с коротким фронтом для возбуждения квантовых генераторов, радиолокационных систем и в других технических и технологических применениях, где есть потребность в импульсах с коротким фронтом высокой мощности. Технический результат заключается в повышении кпд, надежности и коэффициента сжатия импульса. Магнитный генератор импульсов содержит источник питания, зарядный и накопительный элементы, ключ, насыщающийся трансформатор. Его вторичная обмотка содержит насыщающийся дроссель и импульсный трансформатор, первый и второй емкостные накопители. К выходной обмотке импульсного трансформатора подключена нагрузка. Дроссель имеет один виток, размещенный внутри сердечника и соосно его оси. Витки первичной обмотки импульсного трансформатора намотаны на цилиндрический сердечник дросселя. Первый емкостный накопитель включен последовательно между выводами витков дросселя и первичной обмотки импульсного трансформатора. 1 з.п. ф-лы, 1 ил.

Формула изобретения RU 2 189 695 C1

1. Магнитный генератор импульсов, содержащий источник питания, между выводами которого включены соединенные последовательно зарядный и накопительный элементы, последний подключен через ключ к первичной обмотке насыщающегося трансформатора, его вторичная обмотка шунтирована вторым емкостным накопителем и соединена последовательно через насыщающийся дроссель и первичную обмотку импульсного трансформатора с первым емкостным накопителем, а к выходной обмотке импульсного трансформатора подключена нагрузка, отличающийся тем, что насыщающийся дроссель имеет один виток, который размещен внутри сердечника и соосно его оси, а витки первичной обмотки импульсного трансформатора намотаны на сердечник насыщающегося дросселя, при этом первый емкостный накопитель включен последовательно между выводами витков насыщающегося дросселя и первичной обмотки импульсного трансформатора. 2. Магнитный генератор импульсов по п. 1, отличающийся тем, что первый и второй емкостные накопители разделены соответственно на n одинаковых емкостных накопителей, соединенных своей ветвью первичной обмотки импульсного трансформатора, причем и насыщающийся трансформатор снабжен n ветвями вторичной обмотки, каждая из которых присоединена к своей ветви первого и второго емкостных накопителей.

Целью данной работы является разработка формирователя импульсных последовательностей.

Импульсная техника — область техники, исследующая, разрабатывающая и применяющая методы и технические средства генерирования (формирования), преобразования и измерения электрических импульсов. В ней также исследуют и анализируют процессы, возникающие при воздействии электрических импульсов на различные электрические цепи, устройства и объекты.

При импульсном режиме электронные устройства подвергаются воздействию электрических сигналов не непрерывно (в течение всего времени работы устройства), а прерывисто. При этом прерывистая структура импульсных сигналов составляет принципиальную основу полезных функций устройства, работающего в импульсном режиме.

Импульсные сигналы различаются по амплитуде и длительности импульсов, частоте их следования. В импульсной технике часто применяют импульсные сигналы с частотным заполнением от десятков герц до десятков гигагерц.

В импульсной технике проявляется тенденция к укорочению импульсов и увеличению частоты их следования, стремлением повысить эффективность электронных устройств, разрешающую способность (например, радиолокаторов) или быстродействие (в ЭВМ).

Иногда более важно отношение длительности паузы между импульсами к длительности импульса (скважность), которое в цифровой автоматике обычно не превышает 10, в радиосвязи — порядка 10 — 100, в радиолокации колеблется от 100 до 10000. При воздействии импульсов электрического тока или напряжения на цепь, обладающую свойством запасать энергию, возникают переходные процессы, значение которых в импульсной технике весьма велико.

Качество электрической энергии

. ОСНОВНЫЕ ПОЛОЖЕНИЯ ГОСУДАРСТВЕННОГО СТАНДАРТА НА КАЧЕСТВО ЭЛЕКТРИЧЕСКОЙ ЭНЕРГИИ ГОСТ 13109-97 “Нормы качества электрической энергии в системах электроснабжения общего назначения” (далее ГОСТ) устанавливает показатели и нормы качества электроэнергии в электрических сетях систем электроснабжения общего назначения переменного трехфазного и .

Для получения импульсов различной формы, функционального преобразования импульсных сигналов, селекции импульсов по тому или иному признаку, а также для выполнения логических операций над ними служат типовые импульсные логические схемы

К ним относятся линейные устройства формирования импульсов, преобразования формы импульсов, амплитуды, полярности и временного положения (формирующие линии, дифференцирующие и интегрирующие цепи, импульсные трансформаторы и усилители, электромагнитные и ультразвуковые линии задержки); нелинейные устройства преобразования импульсов и переключения цепей (ограничители, фиксаторы уровня, пик-трансформаторы, магнитные генераторы импульсов, электронные ключи и другие); регенеративные спусковые схемы, и генераторы импульсов (пересчётные схемы, триггеры, мультивибраторы, блокинг-генераторы); импульсные делители частоты повторения; электронные генераторы линейно-изменяющегося тока и напряжения; селекторы импульсов; логические схемы и специальные устройства обработки импульсных сигналов (кодирующие и декодирующие устройства, дешифраторы, регистры, матрицы, элементы памяти ЭВМ).

Формирователь импульсных последовательностей можно реализовать различными способами: на логических элементах, регистрах, дешифраторах, мультиплексорах. Рассмотрим каждый из данных способов и выберем оптимальный.

Простейший и наименее затратный с точки зрения количества аппаратных средств способ построения — при помощи логических элементов. Суть его заключается последовательность на языке алгебры логики может быть определена системой из тридцати булевых выражений с пятью неизвестными. Упрощая её любыми известными способами (например, картами Карно), получаем логическую формулу, схемно реализуя которую (в целях унификации можно использовать ИМС логических элементов) получаем устройство, способное формировать необходимую последовательность.

Основным недостатком данного схемного решения является невозможность формирования произвольной последовательности. Полагая основной инженерной задачей разработку устройства, не только удовлетворяющего критериям оптимизации, но и универсального, перспективного, способного решать более широкий спектр задач, нежели предполагается, стоит признать схему формирователя на логических элементах неудачной. Если бы он являлся частью более сложной системы, то можно было пожертвовать универсальностью отдельных компонентов в угоду общей эффективности, но так как в техническом задании об этом ничего не говорится, считаю использование данного способа построения неуместным. Также замечу, что современные формирователи не только поддерживают загрузку произвольной последовательности, но и содержат буферное ОЗУ большого объёма (порядка двух тысяч слов по 32 разряда) по каждому каналу передачи. Число активных линий и вид передаваемой информации по каждой линии задаётся программно.

Проектирование Цифрового устройства

Достаточно прост способ построения с использование регистров. Суть его заключается в следующем. В кольцевой тридцатиразрядный регистр, собранный на базе ИМС D-триггеров, параллельным вводом записывается необходимая двоичная комбинация. Далее подачей импульсов заданной частоты на синхровход регистра осуществляется последовательный сдвиг слова вправо. Так как регистр является кольцевым, то информация с последнего триггера записывается в первый. Таким образом, в регистре осуществляется бесконечная циркуляция двоичного слова. Снимая информацию с одного из триггеров, образующих регистр, получаем искомую импульсную последовательность. Основными достоинствами данного схемного решения являются простота, возможность загрузки произвольной последовательности, отсутствие необходимости подсчёта импульсов (иными словами, можно обойтись без счётчика).

Тем не менее, схема требует большого количества аппаратных средств (тридцать D-триггеров для каждой последовательности) и в случае возникновения ошибки, последняя будет циркулировать в системе до тех пор, пока последовательность в регистре не будет полностью перезаписана. Отсюда заключаю, что использование устройств с памятью в качестве формирователей нерационально.

Довольно удачной является схема построения при помощи дешифраторов. Суть её состоит в следующем. Путём каскадирования собирается дешифратор необходимой разрядности, на входы которого подаётся импульсы от счётчика. Таким образом, на выходах дешифратора последовательно появляется высокий уровень. Выходы, номер которых соответствует номеру элемента последовательности, содержащего логическую единицу, подключаются к многовходовому дизъюнктору, на выходе которого получаем искомую импульсную последовательность.

Основными достоинствами схемы является относительно небольшое количество аппаратных средств и возможность загрузки произвольной комбинации путём переключения входов дизъюнктора. Поэтому будем собирать формирователь импульсных последовательностей на дешифраторах с инверсными выходами, вместо дизъюнкторов используя конъюнкторы. Суть схемы заключается в том, что адресные выходы дешифратора необходимой разрядности, полученного путём каскадирования реально существующих дешифраторов, подключаются к конъюнкторам с инверсией на выходе; снимаем требуемую импульсную последовательность.

Разработка разрабатываемого устройства, определение входных и выходных сигналов

На вход устройства от генератора подаются прямоугольные импульсы с частотой 15 килогерц и амплитудой 12 вольт. Из входных импульсов на счетчике путём деления образуется пять выходов, состояние на которых будет соответствовать номеру текущего импульса. Сигналы со счётчика поступают в формирователь, на котором появляется высокий или низкий уровень (в зависимости от выходной комбинации счётчика и загруженной последовательности).

Тридцатым разрядом счетчик обнуляется, устройство начинает работать заново. Структурная схема устройства представлена в приложении 1.

Графическое представление алгоритма работы

Измерительные трансформаторы тока и напряжения (2)

. размыкать вторичную обмотку трансформатора тока под нагрузкой. Высокое напряжение опасно для персонала и, кроме того, может привести к повреждению изоляции трансформатора тока. Из-за насыщения . токовые обмотки варметров, ваттметров, счётчиков активной и реактивной энергии, токовые цепи релейной защиты и автоматики. Трансформатор тока является источником тока, следовательно, вторичная обмотка .

Разработка функциональной схемы

Разработка генератора тактовых импульсов.

Генератор с самовозбуждением — электрическая цепь, в которой происходит преобразование энергии источника питания постоянного напряжения в энергию периодических электрических колебаний, называется — автогенератором.

Автогенератор вырабатывает электрические колебания, поддерживающиеся подачей по цепи положительной обратной связи части переменного напряжения с выхода автогенератора на его вход. Это будет обеспечено тогда, когда нарастание колебательной энергии будет превосходить потери. При этом амплитуда начальных колебаний будет нарастать.

Такие системы называют автоколебательными системами, а генерируемые ими колебания — автоколебаниями. В них генерируются стационарные колебания, частота и форма которых определяются свойствами самой системы.

По форме выходного напряжения:

1. Генераторы импульсных колебаний:

-ГПН (генератор постоянного напряжения);

-ГЛИН (генератор линейно изменяемого напряжения);

2. Генераторы синусоидальных колебаний:

-с кварцевой стабилизацией.

-маломощные (до 1 Вт);

Примеры похожих учебных работ

Стабилизатор напряжения импульсный

. мощности, рассеиваемой на регулирующем транзисторе, намного меньше, чем при его работе в непрерывном режиме. Поэтому импульсные стабилизаторы напряжения по сравнению с непрерывными имеют более высокий КПД и, при .

Импульсная и цифровая техника

. . Коэффициент скважностью время-импульсный В схемах импульсной техники для обработки и преобразования информации широко применяют . Мультивибраторы относятся к классу узлов импульсной техники, предназначенных для генерирования периодической .

Автоматизация процедуры включения синхронного генератора на параллельную работу с .

. больше интересует способ точной автоматической синхронизации (ТАС), который обеспечивает процесс включения синхронного генератора на параллельную работу с сетью при меньших ударных токах, то рассматривать будем только устройства, реализующие .

Цифровые устройства автоматики

. логической задачи, которую может решать КС в цифровом устройстве. По функциональному признаку можно сформировать следующие группы . и т.п. Основным инструментом анализа и синтеза цифровых устройств всех уровней является алгебра логики. Алгебру логики .

Измерительные сигналы

. параметров которого функционально связан с измеряемой физической величиной. Такой параметр называют информативным. Измерительный сигнал ? это сигнал, содержащий количественную информацию об измеряемой физической величине. Основные понятия, термины и .

На рис. 1 приведена схема генератора, который формирует одиночные импульсы прямоугольной формы при нажатии кнопки S1 (то есть он не является автогенератором, схемы которых приводятся далее). На логических элементах DD1.1 и DD1.2 собран RS-триггер, предотвращающий проникновение импульсов дребезга контактов кнопки на пересчетное устройство. В положении контактов кнопки S1, показанном на схеме, на выходе 1 будет напряжение высокого уровня, на выходе 2 - напряжение низкого уровня; при нажатой кнопке - наоборот. Этот генератор удобно использовать при проверке работоспособности различных счетчиков.

Схема генераторов импульсов

На рис. 2 показана схема простейшего генератора импульсов на электромагнитном реле. При подаче питания конденсатор С1 заряжается через резистор R1 и реле срабатывает, отключая источник питания контактами К 1.1. Но реле отпускает не сразу, поскольку некоторое время через его обмотку будет протекать ток за счет энергии, накопленной конденсатором С1. Когда контакты К 1.1 опять замкнутся, снова начнет заряжаться конденсатор - цикл повторяется.

Частота переключении электромагнитного реле зависит от его параметров, а также номиналов конденсатора С1 и резистора R1. При использовании реле РЭС-15 (паспорт РС4.591.004) переключение происходит примерно один раз в секунду. Такой генератор можно использовать, например, для коммутации гирлянд на новогодней елке, для получения других световых эффектов. Его недостаток - необходимость использования конденсатора значительной емкости.

На рис. 3 приведена схема еще одного генератора на электромагнитном реле, принцип работы которого аналогичен предыдущему генератору, но обеспечивает частоту импульсов 1 Гц при емкости конденсатора в 10 раз меньшей. При подаче питания конденсатор С1 заряжается через резистор R1. Спустя некоторое время откроется стабилитрон VD1 и сработает реле К1. Конденсатор начнет разряжаться через резистор R2 и входное сопротивление составного транзистора VT1VT2. Вскоре реле отпустит и начнется новый цикл работы генератора. Включение транзисторов VT1 и VT2 по схеме составного транзистора повышает входное сопротивление каскада. Реле К 1 может быть таким же, как и в предыдущем устройстве. Но можно использовать РЭС-9 (паспорт РС4.524.201) или любое другое реле, срабатывающее при напряжении 15. 17 В и токе 20. 50 мА.

В генераторе импульсов, схема которого приведена на рис. 4, использованы логические элементы микросхемы DD1 и полевой транзистор VT1. При изменении номиналов конденсатора С1 и резисторов R2 и R3 генерируются импульсы частотой от 0,1 Гц до 1 МГц. Такой широкий диапазон получен благодаря использованию полевого транзистора, что позволило применить резисторы R2 и R3 сопротивлением в несколько мегаом. С помощью этих резисторов можно изменять скважность импульсов: резистор R2 задает длительность напряжения высокого уровня на выходе генератора, а резистор R3 - длительность напряжения низкого уровня. Максимальная емкость конденсатора С1 зависит от его собственного тока утечки. В данном случае она составляет 1. 2 мкФ. Сопротивления резисторов R2, R3 - 10. 15 МОм. Транзистор VT1 может быть любым из серий КП302, КП303. Микросхема - К155ЛА3, ее питание составляет 5В стабилизированного напряжения. Можно использовать КМОП микросхемы серий К561, К564, К176, питание которых лежит в пределах 3 … 12 В, цоколевка таких микросхем другая и показана в конце статьи.

Схема генераторов импульсов

При наличии микросхемы КМОП (серия К176, К561) можно собрать широкодиапазонный генератор импульсов без применения полевого транзистора. Схема приведена на рис. 5. Для удобства установки частоты емкость конденсатора времязадающей цепи изменяют переключателем S1. Диапазон частот, формируемых генератором, составляет 1. 10 000 Гц. Микросхема - К561ЛН2.

Схема кварцованного генераторов импульсов

На рис. 6 представлена схема генератора импульсов с регулируемой скважностью.

Скважность – отношение периода следования импульсов (Т) к их длительности (t):

Скважность импульсов

Скважность импульсов высокого уровня на выходе логического элемента DD1.3, резистором R1 может изменяться от 1 до нескольких тысяч. При этом частота импульсов также незначительно изменяется. Транзистор VT1, работающий в ключевом режиме, усиливает импульсы по мощности.

Генератор, схема которого приведена на рисунке ниже, вырабатывает импульсы как прямоугольной, так и пилообразной формы. Задающий генератор выполнен на логических элементах DD 1.1-DD1.3. На конденсаторе С2 и резисторе R2 собрана дифференцирующая цепь, благодаря которой на выходе логического элемента DD1.5 формируются короткие положительные импульсы (длительностью около 1 мкс). На полевом транзисторе VT2 и переменном резисторе R4 выполнен регулируемый стабилизатор тока. Этот ток заряжает конденсатор С3, и напряжение на нем линейно возрастает. В момент поступления на базу транзистора VT1 короткого положительного импульса транзистор VT1 открывается, разряжая конденсатор СЗ. На его обкладках таким образом формируется пилообразное напряжение. Резистором R4 регулируют ток зарядки конденсатора и, следовательно, крутизну нарастания пилообразного напряжения и его амплитуду. Конденсаторы С1 и СЗ подбирают исходя из требуемой частоты импульсов. Микросхема - К561ЛН2.

Схема генераторов импульсов

Микросхемы для генераторов импульсов

Если требуется повысить нагрузочную способность какого либо узла (чтобы, например, подключить динамик или другую нагрузку), можно применить на выходе усилитель на транзисторе, как в схеме на рис. 6, или же включить несколько элементов микросхемы параллельно, как показано на рисунке ниже:

Включение нескольких элементов микросхемы параллельно

Универсальная печатная макетная плата для двух микросхем. На таких платах удобно собирать несложные схемы с небольшим количеством деталей, как, например, приведенные в этой статье. Детали паяются к контактным площадкам и при необходимости соединятся перемычками. Размеры платы 100 х 55 мм.

Макетная плата

Цоколевка

Барышев Андрей Опубликована: 2012 г. 0 0


Вознаградить Я собрал 0 0

Читайте также: