Магнітні властивості речовини реферат фізика

Обновлено: 05.07.2024

  • Для учеников 1-11 классов и дошкольников
  • Бесплатные сертификаты учителям и участникам

Министерство образования и науки Республики Бурятия

Государственное бюджетное профессиональное

Выполнил: Туртуев Ринчин,

Проверил: Ламажапова А.Ш..

1. Магнитное поле

Мы привыкли к магниту и относимся к нему чуточку снисходительно как к устаревшему атрибуту школьных уроков физики, порой даже не подозревая, сколько магнитов вокруг нас. В наших квартирах десятки магнитов: в электробритвах, динамиках, магнитофонах, в часах, в банках с гвоздями, наконец. Сами мы – тоже магниты: биотоки, текущие в нас, рождают вокруг нас причудливый узор магнитных силовых линий. Земля, на которой мы живём, - гигантский голубой магнит. Солнце – жёлтый плазменный шар – магнит ещё более грандиозный. Галактик и туманности, едва различимые телескопами, - непостижимые по размерам магниты. Термоядерный синтез, магнитодинамическое генерирование электроэнергии, ускорение заряженных частиц в синхротронах, подъём затонувших судов – всё это области, где требуются грандиозные, невиданные раньше по размерам магниты. Проблема создания сильных, сверхсильных, ультрасильных и ещё более сильных магнитных полей стала одной из основных в современной физике и технике.

Вещества, притягивающие железо, были известны человечеству более 2000лет назад. Они получили название магнитов. Постоянный магнит в форме тонкой полоски, расположенный на плавающей в воде деревянной дощечке, поворачивается одним

После изобретения в 1800 г. источника постоянного тока возможности экспериментаторов значительно расширились. Первое фундаментальное открытие было сделано в 1820г. датским физиком Г.Х. Эрстедом (1777-1851).Убежденный в том, что электрические и магнитные явления взаимосвязаны, он хотел выяснить, не производит ли электричество каких-либо действий на магнит. В феврале 1820г. Эрстед показывал студентам тепловое действие тока. Рядом с проводником случайно оказался компас. При включении тока стрелка отклонилась от первоначального положения. В этом эффекте Эрстед увидел подтверждение своих идей. Описание опыта вышло в свет 21 июля 1820г. Этот простой опыт произвел сильное впечатление на современников и положил начало новой области физики – электродинамике.

Дальнейшие исследования развивались стремительно. 11 сентября 1820г. опыт был показан на заседании Французской академии наук. Академики спокойно разошлись, и только один из них – А.М. Ампер – поспешил заказывать приборы для проведения новых опытов. Он был уверен, что они должны были подтвердить его догадки, сводящие магнетизм к чисто электрическим явлениям. Все считали, что ток, проходя по проводник, превращает его в магнит, который и заставляет отклоняться стрелку компаса. Ампер высказал гениальную мысль: магнит представляет совокупность токов, движущихся по замкнутым контурам; отклонение стрелки вызвано взаимодействием токов. 25 сентября он демонстрирует новый эффект: два незаряженных параллельных провода, по которым текут одинаково направленные токи, притягиваются друг к другу. На каждый из проводников действует сила, зависящая от величины силы тока и расстояния между проводами. При перемене направления одного из токов силы притяжения сменяются силами отталкивания. В новой серии опытов спирали, по которым пропускали ток, вели себя подобно магнитам.

Новую область знаний о явлениях, обусловленных протеканием токов, Ампер назвал электродинамикой. Открытие явлений электромагнетизма оказало влияние не только на развитие науки, но и техники. В том же году Д. Арго изобрел электромагнит. В 1821г. Фарадею удалось осуществить вращение проводника с током в магнитном поле. Это был первый электродвигатель. Ампер предложил использовать отклонение электромагнитной стрелки для передачи сигналов в электромагнитном телеграфе.

Исследования природы подобных явлений проводились и в нашей стране. Так, например, исследования, проведенные русским физиком А.А. Эйхенвальдом в 1901г., показали, что если заряженное тело покоится относительно наблюдателя, то вокруг этого тела существует электрическое поле. Если же оно движется относительно наблюдателя, то возникает магнитное поле, которое вызывает отклонение легкоподвижной магнитной стрелки. Аналогичное действие на магнитную стрелку оказывает и проводник с током. Если по прямому проводнику, расположенному по магнитному меридиану а направлении к север-юг, пропустить ток, то расположенная под ним магнитная стрелка отклонится. Если поместить стрелку над проводником, то стрелка отклонится в другую сторону.

Согласно теории близкодействия , взаимодействие неподвижных электрических зарядов осуществляется посредством электрического поля. Проводники с током электрически нейтральны. Но, пропустив по двум параллельным проводникам ток, мы увидим, что проводники по которым токи текут в одном направлении, притягиваются, а проводники, по которым токи текут в противоположных направлениях, отталкиваются.

Взаимодействие между проводниками с током, т.е. взаимодействие между движущимися электрическими зарядами, называют магнитным. Силы, с которыми проводники с током действуют друг на друга, называют магнитными силами. Причиной возникновения сил магнитного взаимодействия является магнитное поле, которое появляется вокруг проводника с током.

Экспериментальным доказательством реальности магнитного и электрического полей является факт существования электромагнитных волн. Магнитное поле, как и электрическое, является частным проявлением единого электромагнитного поля.

Характерной отличительной особенностью электрического поля является способность действовать на неподвижные заряды.

Главное свойство магнитного поля заключается в том, что оно действует на движущиеся заряды (электрический ток).

Неподвижные заряды не создают магнитного поля. Только движущиеся заряды (электрический ток) и постоянные магниты создают магнитное поле.

При изучении взаимодействия постоянных магнитов было установлено:

постоянные магниты имеют два полюса: северный и южный; одноименные полюсы отталкиваются друг от друга, а разноименные притягиваются.

Если отдельные тела можно зарядить положительно или отрицательно, так как существует элементарный электрический заряд, то никогда нельзя отделить северный полюс магнита от южного. Таким образом, нет оснований считать, что в природе существуют отдельные магнитные заряды.

Эта мысль была высказана Ампером в гипотезе об элементарных электрических токах. Согласно гипотезе Ампера, внутри атомов и молекул вещества циркулируют элементарные электрические токи. Если эти токи расположены хаотически по отношению друг к другу, то их действие взаимно компенсируется и никакими магнитными свойствами тело не обладает. В намагниченном состоянии (например, в постоянных магнитах) элементарные токи ориентированы определенным образом. Следовательно, магнитные свойства любого тела объясняются замкнутыми электрическими токами внутри него, т.е. магнитное взаимодействие – это взаимодействие токов.

Результаты опытов Ампера и последующих многочисленных исследований можно сформулировать следующим образом. Способность магнитного поля вызывать появление механической силы, действующей на какой-либо элемент тока, можно количественно описать, задавая в каждой точке поля некоторый вектор В. Вектор В называется магнитной индукцией и является основной характеристикой магнитного поля.

2.Сила Ампера . На проводник с током, находящийся в магнитном поле, действует сила, равная

F = I·L·B·sin(a) , (1)

где I - сила тока в проводнике;
B - модуль вектора индукции магнитного поля;
L - длина проводника, находящегося в магнитном поле;
a - угол между вектором магнитного поля и проводником.

Сила, действующая на проводник с током в магнитном поле, называют силой Ампера.

hello_html_15fd2d3f.jpg

Направление силы Ампера определяется по правилу левой руки (см. рис.1):

четыре пальца по току;

перпендикулярная проводнику составляющая вектора индукции В входит в ладонь;

отогнутый большой палец дает направление F .

Подобно тому, как электрические поля графически изображаются с помощью электрических силовых линий, магнитные поля изображаются с помощью линий магнитной индукции (или магнитных силовых линий).

Из опытов следует, что линии магнитной индукции прямого проводника с током представляют концентрические окружности, лежащие в плоскости, перпендикулярной току. Центр этих окружностей находится на оси проводника. С помощью железных опилок можно получить изображение линий магнитной индукции проводников с током любой формы. Линии магнитной индукции всегда замкнуты и охватывают проводники с токами. Это отличает их от линий напряженности электростатического поля. Такие поля называют вихревыми в отличие от потенциальных, примером которых является электростатическое поле.

Направление линий магнитной индукции связано с направлением тока в проводнике. Направление силовых линий магнитного поля, создаваемого проводником с током, определяется по правилу буравчика (если правовинтовой буравчик ввинчивать по направлению тока, то направление вращения рукоятки буравчика совпадет м направлением линий магнитной индукции).

Одним из проявлений магнитного поля является его силовое воздействие на движущиеся электрические заряды и проводники с током. В 1820г. А. Ампером был установлен закон, определяющий силу, действующую на элемент тока в магнитном поле. Так как создать обособленный элемент нельзя, то Ампер изучал поведение подвижных проволочных замкнутых контуров различной формы. Им было установлено, что на проводник с током помещенный в однородное магнитное поле индукции В, действует сила, пропорциональная длине отрезка проводника L ,силе тока I , протекающего по проводнику, и индукции магнитного поля В. Впоследствии этот вывод получил название закона Ампера. Используя закон Ампера, можно вычислить силу, действующую на проводник с током в магнитном поле.

Движущиеся электрические заряды создают вокруг себя магнитные поля, которые распространяются в вакууме со скоростью света с. Если же заряд движется во внешнем магнитном поле, то происходит силовое взаимодействие магнитных полей, определяемое по закону Ампера. Процесс взаимодействия магнитных полей исследовался Лоренцем, который вывел формулу для расчета силы действующей со стороны магнитного поля на движущуюся заряженную частицу. Данная сила получила название силы Лоренца.

3. Сила Лоренца. Так как электрический ток представляет собой упорядоченное движение зарядов, то действие магнитного поля на проводник с током есть результат его действия на отдельные движущиеся заряды.

Силу, действующую со стороны магнитного поля на движущиеся в нем заряды, называют силой Лоренца.

Из закона Ампера (1) следует, что сила Лоренца определяется соотношением:

F л = q · V · B · sin(  

где q - величина движущегося заряда;
V - модуль его скорости;
B - модуль вектора индукции магнитного поля;
 - угол между вектором скорости заряда и вектором магнитной индукции.

hello_html_d8051fa.jpg

Направление вектора F л определяется по правилу левой руки:

четыре пальца по направлению скорости движения положительного заряда V ;

перпендикулярная скорости составляющая вектора индукции входит в ладонь;

отогнутый большой палец дает направление силы Лоренца F л (см. рис. 2).

Магнитные свойства веществ: магнетизм, гипотеза Ампера. Магнитная проницаемость вещества. Классификация веществ по действию на них внешнего магнитного поля. Антиферромагнетики и ферримагнетики. Постоянные магниты, точка Кюри и их характеристика.

Рубрика Физика и энергетика
Вид реферат
Язык русский
Дата добавления 13.03.2016
Размер файла 108,3 K

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

ФЕДЕРАЛЬНОЕ АГЕНСТВО ПО ОБРАЗОВАНИЮ ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДНИЕ ВЫСШЕГО И ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

(ГОУ ВПО ВГУ)

Геологический факультет

Кафедра экологической геологии

по теме: Магнитные свойства веществ

Выполнила: студентка I курса, гр. №9

Агошкова Екатерина Владимировна

Доцент, кандидат наук Воронова Т.А.

Магнитные свойства веществ

Магнитная проницаемостью вещества

Классификация веществ по действию на них внешнего магнитного поля

Антиферромагнетики и ферримагнетики

Магнитные свойства веществ

Магнетизм -- форма взаимодействия движущихся электрических зарядов, осуществляемая на расстоянии посредством магнитного поля.

Магнитные свойства вещества объясняются согласно гипотезе Ампера .

Гипотеза Ампера - магнитные свойства тела можно объяснить циркулирующими внутри него токами.

Внутри атомов, вследствие движения электронов по орбитам, существуют элементарные электрические токи, которые создают элементарные магнитные поля.

1. если вещество не обладает магнитными свойствами - элементарные магнитные поля несориентированы (из-за теплового движения);

2. если вещество обладает магнитными свойствами - элементарные магнитные поля одинаково направлены (сориентированы) и образуется собственное внутреннее магнитное поле вещества.

Намагниченным называется то вещество, которое создает собственное магнитное поле. Намагниченность возникает, если вещество поместить во внешнее магнитное поле.

магнетизм ампер антиферромагнетика кюри

Магнитная проницаемостью вещества

Влияние вещества на внешнее магнитное поле характеризуется величиной м, которая называется магнитной проницаемостью вещества.

Магнитная проницаемость -- это физическая скалярная величина, показывающая, во сколько раз индукция магнитного поля в данном веществе отличается от индукции магнитного поля в вакууме.

где B? -- магнитная индукция поля в веществе; B? 0 -- магнитная индукция поля в вакууме.

Классификация веществ по действию на них внешнего магнитного поля

1. Диамагнетики [м 1] - слабомагнитные вещества, внутреннее магнитное поле направлено также, как и внешнее магнитное поле. У этих веществ магнитная восприимчивость тоже не зависит от того, какая напряженность поля существует. Она при этом положительная. То есть при сближении парамагнетика с постоянно действующим магнитом, возникает сила притягивания. К ним можно отнести алюминий, платину, кислород, марганец, железо.

3. Ферромагнетики[м>>1] - сильномагнитные вещества, внутреннее магнитное поле в 100-1000 раз больше внешнего магнитного поля.

У этих веществ, в отличие от диамагнетиков и парамагнетиков, магнитная восприимчивость зависит от температуры и напряженности магнитного поля, причем в значительной мере.

К ним относятся кристаллы никеля и кобальта.

Антиферромагнетики и ферримагнетики

Вещества, у которых во время нагревания совершается фазовый переход данного вещества, сопровождающегося появлением парамагнитных свойств, называются антиферромагнетиками. Если температура становится, ниже какой-то определенной, эти свойства у вещества наблюдаться не будут. Примерами этих веществ будут марганец и хром.

Магнитная восприимчивость ферримагнетиков тоже зависит от температур и напряженности магнитного поля. Но отличия у них все же, есть. К этим веществам можно отнести различные оксиды.

Все вышеперечисленные магнетики можно еще разделить на 2 категории:

Магнитотвердые материалы. Это материалы с высоким значением коэрцитивной силы. Для их перемагничивания необходимо создать мощное магнитное поле. Эти материалы применяются в изготовлении постоянных магнитов.

Магнитомягкие материалы, напротив, имеют маленькую коэрцитивную силу. При слабых магнитных полях они способны войти в насыщение. На перемагничивание у них малые потери. Из-за этого эти материалы применяются для изготовления сердечников для электрических машин, которые работают на переменном токе. Это, например, трансформатор тока и напряжения, или генератор, или асинхронный двигатель.

Постоянные магниты

Постоянные магниты - это тела, длительное время сохраняющие намагниченность.

Постоянный магнит всегда имеет 2 магнитных полюса: северный (N) и южный (S).

Наиболее сильно магнитное поле постоянного магнита у его полюсов.

Постоянные магниты изготавливают обычно из железа, стали, чугуна и других сплавов железа (сильные магниты), а также из никеля, кобальта (слабые магниты). Магниты бывают естественные (природные) из железной руды магнитного железняка и искусственные, полученные намагничиванием железа при внесении его в магнитное поле.

Взаимодействие магнитов: одноименные полюса отталкиваются, а разноимённые полюса притягиваются.

Взаимодействие магнитов объясняется тем, что любой магнит имеет магнитное поле, и эти магнитные поля взаимодействуют между собой.

Магнитное поле постоянных магнитов

В чем причины намагничивания железа? Согласно гипотезе французского ученого Ампера, внутри вещества существуют элементарные электрические токи (токи Ампера), которые образуются вследствие движения электронов вокруг ядер атомов и вокруг собственной оси. При движении электронов возникает элементарные магнитные поля. При внесении куска железа во внешнее магнитное поле все элементарные магнитные поля в этом железе ориентируются одинаково во внешнем магнитном поле, образуя собственное магнитное поле. Так кусок железа становится магнитом.

Как выглядит магнитное поле постоянных магнитов?

Представление о виде магнитного поля можно получить с помощью железных опилок. Стоит лишь положить на магнит лист бумаги и посыпать его сверху железными опилками.

Для постоянного полосового магнита Для постоянного дугообразного магнита

Точка Кюри

Точка Кюри, или температура Кюри, -- температура фазового перехода II рода, связанного со скачкообразным изменением свойств симметрии вещества при изменении температуры, но при заданных значениях других термодинамических параметров (давлении, напряженности электрического или магнитного поля). Фазовый переход второго рода при температуре Кюри связан с изменением свойств симметрии вещества. При Тс во всех случаях фазовых переходов исчезает какой-либо тип атомной упорядоченности, например, упорядоченность электронных спинов (сегнетоэлектрики), атомных магнитных моментов (ферромагнетики), упорядоченность в расположении атомов разных компонент сплава по узлам кристаллической решетки (фазовые переходы в сплавах). Вблизи Тс наблюдаются резкие аномалии физических свойств, например, пьезоэлектрических, электрооптических, тепловых.

Магнитной точкой Кюри называют температуру такого фазового перехода, при котором исчезает спонтанная намагниченность доменов ферромагнетиков, и ферромагнетик переходит в парамагнитное состояние. При сравнительно низких температурах тепловое движение атомов, которое неизбежно приводит к некоторым нарушениям упорядоченного расположения магнитных моментов, незначительно. При увеличении температуры его роль возрастает и, наконец, при некоторой температуре (Тс) тепловое движение атомов способно разрушить упорядоченное расположение магнитных моментов, и ферромагнетик превращается в парамагнетик. Вблизи точки Кюри наблюдается ряд особенностей в изменении и немагнитных свойств ферромагнетиков (удельного сопротивления, удельной теплоемкости, температурного коэффициента линейного расширения).

Величина Тс зависит от прочности связи магнитных моментов друг с другом, в случае прочной связи достигает: для чистого железа Тс= 768 о С, для кобальта Тс=1131 о С, превышает 1000 о С для железо-кобальтовых сплавов. Для многих веществ Тс невелика (для никеля Тс=358 о С). По величине Тс можно оценить энергию связи магнитных моментов друг с другом. Для разрушения упорядоченного расположения магнитных моментов необходима энергия теплового движения, намного превосходящая как энергию взаимодействия диполей, так и потенциальную энергию магнитного диполя в поле.

При температуре Кюри магнитная проницаемость ферромагнетика становится примерно равной единице, выше точки Кюри изменение магнитной восприимчивости подчиняется закону Кюри-Вейса.

Для каждого ферромагнетика существует определенная температура - точка Кюри.

1. Если t вещества t Кюри, то ферромагнитные свойства (намагниченность) исчезают, и вещество становится парамагнетиком. Поэтому постоянные магниты при нагревании теряют свои магнитные свойства.

Литература

Жилко, В. В. Физика: учеб. пособие для 11-го кл. общеобразоват. шк. с рус. яз. обучения / В. В. Жилко, А.В. Лавриненко, Л. Г. Маркович. -- Мн.: Нар. асвета, 2002. -- С. 291-297.

Название работы: Магнітні властивості речовини

Предметная область: Физика

Описание: Пара та діа магнетиками називаються речовини які за відсутності магнітного поля завжди не намагнічені і які характеризуються однозначною залежністю між вектором намагнічування I и напруженістю статичного магнітного поля Н. Зокрема у слабких магнітних полях ця залежність лінійна: причому для парамагнетиків χ 0 а для діамагнетиків χ 0. Феромагнетиками називаються тверді тіла які можуть мати спонтанну намагніченість тобто намагнічені вже при відсутності магнітного поля. Магнітна сприйнятливість феромагнетику є функцією напруженості.

Размер файла: 36 KB

Работу скачали: 6 чел.

Магнітні властивості речовини.

Пара-, діа-, феромагнетизм та їх природа

За своїми магнітними властивостями всі речовини можна розділити на

слабомагнітні та сильно магнітні. До слабомагнітних речовин належать парамагнетики та діамагнетики, до сильно магнітних —феромагнетики, антиферомагнетики и ферімагнетики. Пара- та діа- магнетиками називаються речовини, які за відсутності магнітного поля завжди не намагнічені і які характеризуються однозначною

залежністю між вектором намагнічування I и напруженістю

(статичного) магнітного поля Н. Зокрема, у слабких магнітних полях ця залежність лінійна:, причому для парамагнетиків χ> 0, а для діамагнетиків χ

Феромагнетиками називаються тверді тіла, які можуть мати спонтанну намагніченість, тобто намагнічені вже при відсутності магнітного поля. Типовими представниками феромагнетиків є метали: залізо, кобальт, нікель.

Характерна особливість феромагнетиків - залежність В від Н або I від Н не однозначна, а визначається попередньою історією намагнічування феромагнітного зразка. Це явище називається магнітним гістерезісом.

Для всякого феромагнетика існує певна температура Т = Т k - температура або точка Кюрі, при переході через яку відбувається фазовий перехід (другого роду). Речовина є феромагнетиком тільки нижче точки Кюрі, вище точки Кюрі вона стає парамагнетиком.

Магнітна сприйнятливість феромагнетику є функцією напруженості зовнішнього

поля, а залежність J(H) має вид


Намагніченість при збільшенні напруги має границю - намагніченість насичення. Її існування за аналогією з парамагнетиками вказує, що намагніченість феромагнетиків обумовлюється також переорієнтуванням деяких елементарних магнітних моментів.


крива залежності В(Н) не виходить на насичення, хоча J відчуває насичення.


Якщо перемагнічувати зразок в періодичному магнітному полі, то крива

залежності В( H ) має вид петлі( петля гістерезісу )


ОА - крива намагнічування (включення поля здійснюється при нулі індукції, тобто за відсутності постійної намагніченості). ОС залишкова індукція, феромагнетик в цьому стані - постійний магніт. Форма петлі гістерезіса залежить від матеріалу феромагнетика.

А также другие работы, которые могут Вас заинтересовать

Собрала для вас похожие темы рефератов, посмотрите, почитайте:

Введение

Когда два параллельных проводника подключены к источнику питания таким образом, что через них протекает электрический ток, проводники либо отталкиваются, либо втягиваются, в зависимости от направления тока в них.

Объяснение этого явления возможно с точки зрения возникновения вокруг проводников особого вида материи — магнитного поля.

Силы, с которыми проводники взаимодействуют с током, называются магнитными.

Магнитное поле — особый вид материи, особенностью которого является действие на движущийся электрический заряд, на проводники с током, на тела с магнитным моментом, где сила зависит от вектора скорости заряда, от направления тока в проводнике и от направления магнитного момента тела.

Магнитные полюса взаимодействуют друг с другом: отталкиваются полюса с одним и тем же именем и притягиваются полюса с разными именами. По аналогии с понятием электрического поля, окружающего электрический заряд, вводится идея магнитного поля вокруг магнита.

В 1820 году Эрстед (1777-1851) обнаружил, что магнитная стрелка рядом с электрическим проводником отклоняется при протекании тока вдоль проводника, т.е. вокруг проводника создается магнитное поле с током. Когда мы берем рамку с током, внешнее магнитное поле взаимодействует с магнитным полем рамки и оказывает на нее токопроводящее воздействие, т.е. есть положение рамки, в котором внешнее магнитное поле оказывает на нее максимальное вращательное воздействие, и есть положение, в котором вращательный момент сил равен нулю.

Магнитное поле в любой точке может быть охарактеризовано вектором B, который называется вектором магнитной индукции или магнитной индукции в этой точке.

Магнитная индукция B — это векторная физическая величина, которая является силовой характеристикой магнитного поля в точке. Он равен отношению максимального механического момента сил, действующих на раму, когда ток находится в однородном поле, к произведению силы тока в раме на ее поверхности.

Направление вектора магнитной индукции В — это направление положительного эталона к раме, которая по правилу правого винта подключается к току в раме в механический момент, равный нулю.

Так же, как были показаны линии напряженности электрического поля, показаны и линии индукции магнитного поля. Индукционная линия магнитного поля — это воображаемая линия, касательная которой совпадает с направлением B в точке.

Направления магнитного поля в определенной точке также можно определить как направление, указанное северным полюсом стрелки-компаса, расположенной в этой точке. Предполагается, что индукционные линии магнитного поля направлены от северного полюса к южному.

Направление линий

Направление линий магнитной индукции магнитного поля, создаваемого электрическим током, проходящим по прямому проводнику, определяется правилом сверла или правым винтом. Направление линий магнитной индукции принимается за направление вращения головки винта, которое обеспечит его поступательное движение в направлении электрического тока.

В отличие от линий электростатического поля, которые начинаются с положительного заряда и заканчиваются отрицательным, линии индукции магнитного поля всегда закрыты. Магнитный заряд не обнаруживается так же, как и электрический заряд.

За единицу индукции принимается корпус (1 Тел) — индукция такого однородного магнитного поля, в котором максимальный механический момент сил, равный 1 Н — м, действует на раму площадью 1 м2, на которую протекает ток в 1 А.

Индукцию магнитного поля можно также определить по силе, воздействующей на проводник с током в магнитном поле.

Амперная сила действует на проводник с током в магнитном поле, величина которого определяется следующим выражением.

Направление ампер-силы может быть определено по правилу левой руки: Положим ладонь левой руки так, чтобы линии магнитной индукции проникали в ладонь, четырьмя пальцами в направлении тока в проводнике, затем согнутый большой палец указывает направление амперной силы.

Определите силу, прилагаемую магнитным полем к одной заряженной частице, движущейся в магнитном поле.

Эта сила известна как сила Лоренца (1853-1928). Направление силы Лоренца может быть определено по правилу левой руки: Ладонь левой руки расположена так, чтобы линии магнитной индукции проникали в ладонь, четыре пальца указывают направление положительного заряда, большой изогнутый палец указывает направление силы Лоренца.

Сила взаимодействия двух параллельных проводников, на которых токи I1 и I2 равны.

l является частью проводника, который находится в магнитном поле. Если токи равны в одном направлении, то проводники притягиваются (рис. 60), если в противоположном направлении, то они отталкиваются. Силы, действующие на каждый проводник, одинаковы в модуле, в противоположном направлении. Формула (3.22) является базовой формулой для определения единицы тока 1 ампер (1 А).

Магнитные свойства вещества характеризуются скалярной физической величиной — магнитной проницаемостью, которая показывает, как часто индукция магнитного поля в веществе, полностью заполняющем поле, отличается по модулю от индукции магнитного поля B0 в вакууме.

По своим магнитным свойствам все материалы делятся на надиамагнитные, парамагнитные и ферромагнитные.

Рассмотрим природу магнитных свойств веществ

Электроны в оболочке атомов материи движутся по разным орбитам. Для простоты эти орбиты считаются круговыми, и любой электрон, вращающийся вокруг ядра атома, может рассматриваться как круговой электрический ток. Как круговой ток, каждый электрон генерирует магнитное поле, которое мы называем орбитальным. Кроме того, электрон в атоме имеет собственное магнитное поле, называемое спином.

Если при введении во внешнее магнитное поле с индукцией В =1).

В разных областях индукция магнитных полей имеет разные направления и в большом кристалле они компенсируют друг друга.

Когда ферромагнитный образец помещается во внешнее магнитное поле, границы отдельных доменов смещаются таким образом, что объем доменов, выровненных с внешним полем, увеличивается.

С увеличением индукции внешнего поля В0 увеличивается магнитная индукция намагниченного вещества. При некоторых значениях B0 индукция останавливает сильное увеличение. Это явление называется магнитным насыщением.

Характерной особенностью ферромагнитных материалов является явление гистерезиса, заключающееся в неоднозначной зависимости индукции в материале от индукции внешнего магнитного поля по мере его изменения.

Петля магнитного гистерезиса представляет собой замкнутую кривую (cdc`d`c), выражающую зависимость индукции в материале от амплитуды индукции внешнего поля с периодическими, достаточно медленными изменениями последнего.

Петля гистерезиса характеризуется следующими значениями Bs, Br, Bc. Bs — максимальное значение индукции материала при B0s; Vg — остаточная индукция, равная значению индукции в материале при снижении индукции внешнего магнитного поля с B0s до нуля; -Bs и All — коэрцитивная сила — величина, равная индукции внешнего магнитного поля, необходимой для изменения индукции в материале с остаточной до нуля.

Для каждого ферромагнита существует температура (точка Кюри (J. Curie, 1859-1906)), выше которой ферромагнит теряет свои ферромагнитные свойства.

Существует два способа размагничивания намагниченного ферромагнитного материала: а) нагрев и охлаждение выше точки Кюри; б) намагничивание материала переменным магнитным полем с медленно уменьшающейся амплитудой.

Заключение

Ферромагнитные материалы с низкой остаточной индукцией и коэрцитивной силой называются магнитомагнетиками. Они используются в устройствах, в которых ферромагнитные материалы часто должны быть намагничены (сердечники трансформаторов, генераторы и т.д.).

Для постоянных магнитов используются магнитожесткие ферромагнитные материалы с высоким коэрцитивным сопротивлением.

Список литературы

Помощь студентам в учёбе
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal
lfirmal

Образовательный сайт для студентов и школьников

© Фирмаль Людмила Анатольевна — официальный сайт преподавателя математического факультета Дальневосточного государственного физико-технического института

Реферат - Магнітне поле в речовині. Магнітні властивості речовин

Історія магнітних досліджень. Магнітні властивості речовин.
Магнітне поле. Закон Біо-Савара-Лапласа.
10 стр.

Дашенков В.М. Исследование колебаний линейных и нелинейных систем методом фазовой плоскости

  • формат pdf
  • размер 463.88 КБ
  • добавлен 22 января 2012 г.

Белорусский государственный университет информатики и радиоэлектроники, 1996, 33с. Методическое пособие для лабораторных и практических занятий. С использованием специально разработанной программы на ЭВМ в лабораторной работе исследуются движения линейного осциллятора, нелинейного маятника и автоколебательных систем с мягким и жестким возбуждением. Программа допускает построение поля направлений, изоклин, фазовых траекторий и графиков зависимосте.

Дипломный проект - Синтезатор частот для мобильных систем связи

  • формат pdf
  • размер 1.72 МБ
  • добавлен 12 ноября 2011 г.

Пояснительная записка 122 с. , 22 рисунка, 37 таблиц, 45 источников, 3 приложения. Объект разработки – синтезатор частот. Цель работы – разработать синтезатор частот, формирующий сетку частот с шагом 30 кГц на диапазон от 734,64 до 748, 62 МГц из одного высокостабильного опорного сигнала 8,192 МГц со второй опорной частотой 15,36 МГц. Метод исследования и аппаратура – компьютерное моделирование в программе ADIsimPLL. Основные технико-эксплуатацио.

Дмитриев С.П. Высокоточная морская навигация

  • формат djvu
  • размер 2.37 МБ
  • добавлен 09 ноября 2011 г.

СПб.: Судостроение, 1991. - 224 с.: ил. ISBN 5-7355-0410-Х Книга посвящена проблеме повышения точности навигации подвижных объектов. Автор излагает основные подходы к построению эффективных алгоритмов обработки навигационной информации. Рассматриваются задачи оптимальной линейной и нелинейной фильтрации, вопросы обработки навигационной информации в условиях априорной неопределенности. Исследуются особенности работы инерциальной системы в аномальн.

Курсовая по антеннам

  • формат doc
  • размер 3.45 МБ
  • добавлен 25 августа 2011 г.

Тема работы: Проектирование рупорной пирамидальной антенны Формулировка задания. Разработать пирамидальную рупорную антенну кругового обзора для обнаружения целей в воздушном пространстве. Характеристики исследуемой антенны: fср = 3ГГц – средняя рабочая час-тота, D = 60 – коэффициент направленного действия, 2*?f = 0.6 ГГц – диапазон рабочих частот, Рн = 20кВт – мощность передатчика в импульсе, Длина фи-дерной линии = 5, Поле антенны с вертикально.

Курсовой проект - Разработка приёмного полукомплекта ТУ

  • формат doc
  • размер 1.76 МБ
  • добавлен 15 октября 2009 г.

Лекции - Защита электронных устройств от воздействия электромагнитных помех

  • формат doc
  • размер 444.5 КБ
  • добавлен 11 июня 2011 г.

КГТУ, Институт радиоэлектроники, Кафедра КиПР. Преподаватель: Юзова Вера Александровна. Этот конспект лекций отражает один из разделов дисциплины "Проектирование конструкций микроэлектронных средств и систем", связанный с защитой микроэлекронных устройств от воздействия электромагнитных помех. В конспекте лекций излагаются причины возникновения электромагнитных помех, способы защиты конструкций от электростатических, магнитных, электромагнитных п.

Реферат (дополнительный материал) - Системы транкинговой радиотелефонной связи

  • формат pdf
  • размер 6.07 МБ
  • добавлен 04 ноября 2009 г.

Специальное предложение Т-Хелпер официального диллера по России, СНГ и Балтии. Системы транкинговой радиотелефонной связи стандарта SmartTrank-II, стр. 36. Приводится спецпредложение от дилера; Принцип организации транкинговой связи; Структурные схемы системы; Источники бесперебойного питания и много др. вопросов.

Реферат - Взаимодействие электронов с поверхностными акустическимим волнами

  • формат doc
  • размер 112.5 КБ
  • добавлен 24 апреля 2011 г.

В данной работе рассматривается взаимодействие электронов с поверхностными акустическими волнами. в работе присутствует: техническое описание эффекта. основные параметры эффекта. используемые источники информации.

Реферат - применение теории фракталов в описании формирования диссипативных структур

  • формат doc
  • размер 297.5 КБ
  • добавлен 14 июня 2011 г.

КГТУ имени А. Н. Туполева, Россия, Данилаев М. П. 18 стр. ,2010. Реферат по дисциплине "История и методология радиотехники", Содержание. Введение. Бифуркации. Самоподобные множества. Аттракторы и фракталы. Аттракторы. Система Лоренца. Динамический хаос. Связь хаотичности и фрактальности. Приложения теории фракталов в описании открытых систем. Фракталы в медицине. Фракталы в геологии. Заключение. Список литературы.

Старр А.Т. Радиотехника и радиолокация

  • формат djvu
  • размер 19.91 МБ
  • добавлен 31 июля 2011 г.

Москва: Соверсткое радио, 1960, 674с. Книга известного английского ученого Старра содержит сжатое и вместе с тем достаточно глубокое изложение принципов теории (радиосвязи и (радиолокационной техники. Она предоставляет в распоряжение инженера и конструктора систематизированные и вполне современные сведения по основным вопросам теории многоканальной радиосвязи, техники сверхвысоких частот и радиолокации. Книга написана достаточно точным языком на.

Читайте также: